Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Double (n = 2) and triple (n = 3) [M4Bi2n-2O2n]x+ polycationic ribbons in the new Bi∼3Cd∼3.72M∼1.28O5(PO4)3 oxyphosphate (M=Co, Cu, Zn)

Identifieur interne : 000219 ( PascalFrancis/Corpus ); précédent : 000218; suivant : 000220

Double (n = 2) and triple (n = 3) [M4Bi2n-2O2n]x+ polycationic ribbons in the new Bi∼3Cd∼3.72M∼1.28O5(PO4)3 oxyphosphate (M=Co, Cu, Zn)

Auteurs : Marie Colmont ; Marielle Huve ; El Mostafa Ketatni ; Francis Abraham ; Olivier Mentre

Source :

RBID : Pascal:04-0016354

Descripteurs français

English descriptors

Abstract

The crystal structure of the new Bi∼3Cd∼3.72Co∼1.28O5(PO4)3 has been refined from single crystal XRD data, R1 = 5.37%, space group Abmm, a = 11.5322(28) Å, b = 5.4760(13) Å, c = 23.2446(56) Å, Z = 4. Compared to Bi∼1.2M∼1.2O1.5(PO4) and Bi∼6.2Cu∼6.2O8(PO4)5, this compound is an additional example of disordered Bi3+/M2+ oxyphosphate and is well described from the arrangement of double [Bi4Cd4O6]8+ (= D) and triple [Bi2Cd3.44Co0.56O4]6+ (= T) polycationic ribbons formed of edge-sharing O(Bi,M)4 tetrahedra surrounded by PO4 groups. According to the nomenclature defined in this work, the sequence is TT/DtDt, where t stands for the tunnels created by PO4 between two subsequent double ribbons and occupied by Co2+. The HREM study allows a clear visualization of the announced sequence by comparison with the refined crystal structure. The Bi3+ / M2+ statistic disorder at the edges of T and D entities is responsible for the PO4 multi-configuration disorder around a central P atom. Infrared spectroscopy and neutron diffraction of similar compounds (without the highly absorbing Cadmium) even suggests the long range ordering loss for phosphates. Therefore, electron diffraction shows the existence of a modulation vector q* = 1/2a* + (1/3 + ε)b* which pictures cationic ordering in the (001) plane, at the crystallite scale. This ordering is largely lost at the single crystal scale. The existence of mixed Bi3+/M2+ positions also enables a partial filling of the tunnels by Co2+ and yields a composition range checked by solid state reaction. The title compound can be prepared as a single phase and also the M = Zn2+ term can be obtained in a biphasic mixture. For M = Cu2+, a monoclinic distortion has been evidenced from XRD and HREM patterns but surprisingly, the orthorhombic ideal form can also be obtained in similar conditions.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-4596
A02 01      @0 JSSCBI
A03   1    @0 J. solid state chem. : (Print)
A05       @2 176
A06       @2 1
A08 01  1  ENG  @1 Double (n = 2) and triple (n = 3) [M4Bi2n-2O2n]x+ polycationic ribbons in the new Bi∼3Cd∼3.72M∼1.28O5(PO4)3 oxyphosphate (M=Co, Cu, Zn)
A11 01  1    @1 COLMONT (Marie)
A11 02  1    @1 HUVE (Marielle)
A11 03  1    @1 KETATNI (El Mostafa)
A11 04  1    @1 ABRAHAM (Francis)
A11 05  1    @1 MENTRE (Olivier)
A14 01      @1 Laboratoire de Cristallochimie et Physicochimie du Solide, Universite des Sciences et Technologies de Lille, UMR CNRS 8012, ENSCL, B.P. 108 @2 59652 Villeneuve d'Ascq @3 FRA @Z 1 aut. @Z 2 aut. @Z 4 aut. @Z 5 aut.
A14 02      @1 Laboratoire d'Electrochmie et Chimie des Matériaux, Faculté des Sciences et Technique Cadi Ayyad, B.P. 523 @2 Béni Mellal @3 MAR @Z 3 aut.
A20       @1 221-233
A21       @1 2003
A23 01      @0 ENG
A43 01      @1 INIST @2 14677 @5 354000118777360310
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 28 ref.
A47 01  1    @0 04-0016354
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of solid state chemistry : (Print)
A66 01      @0 USA
C01 01    ENG  @0 The crystal structure of the new Bi∼3Cd∼3.72Co∼1.28O5(PO4)3 has been refined from single crystal XRD data, R1 = 5.37%, space group Abmm, a = 11.5322(28) Å, b = 5.4760(13) Å, c = 23.2446(56) Å, Z = 4. Compared to Bi∼1.2M∼1.2O1.5(PO4) and Bi∼6.2Cu∼6.2O8(PO4)5, this compound is an additional example of disordered Bi3+/M2+ oxyphosphate and is well described from the arrangement of double [Bi4Cd4O6]8+ (= D) and triple [Bi2Cd3.44Co0.56O4]6+ (= T) polycationic ribbons formed of edge-sharing O(Bi,M)4 tetrahedra surrounded by PO4 groups. According to the nomenclature defined in this work, the sequence is TT/DtDt, where t stands for the tunnels created by PO4 between two subsequent double ribbons and occupied by Co2+. The HREM study allows a clear visualization of the announced sequence by comparison with the refined crystal structure. The Bi3+ / M2+ statistic disorder at the edges of T and D entities is responsible for the PO4 multi-configuration disorder around a central P atom. Infrared spectroscopy and neutron diffraction of similar compounds (without the highly absorbing Cadmium) even suggests the long range ordering loss for phosphates. Therefore, electron diffraction shows the existence of a modulation vector q* = 1/2a* + (1/3 + ε)b* which pictures cationic ordering in the (001) plane, at the crystallite scale. This ordering is largely lost at the single crystal scale. The existence of mixed Bi3+/M2+ positions also enables a partial filling of the tunnels by Co2+ and yields a composition range checked by solid state reaction. The title compound can be prepared as a single phase and also the M = Zn2+ term can be obtained in a biphasic mixture. For M = Cu2+, a monoclinic distortion has been evidenced from XRD and HREM patterns but surprisingly, the orthorhombic ideal form can also be obtained in similar conditions.
C02 01  3    @0 001B60A66F4
C03 01  3  FRE  @0 Etude expérimentale @5 01
C03 01  3  ENG  @0 Experimental study @5 01
C03 02  3  FRE  @0 Diffraction RX @5 02
C03 02  3  ENG  @0 XRD @5 02
C03 03  3  FRE  @0 Diffraction électron @5 03
C03 03  3  ENG  @0 Electron diffraction @5 03
C03 04  3  FRE  @0 Microscopie électronique @5 04
C03 04  3  ENG  @0 Electron microscopy @5 04
C03 05  3  FRE  @0 Structure cristalline @5 05
C03 05  3  ENG  @0 Crystal structure @5 05
C03 06  3  FRE  @0 Bismuth oxyde @2 NK @5 06
C03 06  3  ENG  @0 Bismuth oxides @2 NK @5 06
C03 07  3  FRE  @0 Cadmium oxyde @2 NK @5 07
C03 07  3  ENG  @0 Cadmium oxides @2 NK @5 07
C03 08  3  FRE  @0 Cobalt oxyde @2 NK @5 08
C03 08  3  ENG  @0 Cobalt oxides @2 NK @5 08
C03 09  3  FRE  @0 Bismuth phosphate @2 NK @5 09
C03 09  3  ENG  @0 Bismuth phosphates @2 NK @5 09
C03 10  3  FRE  @0 Cobalt phosphate @2 NK @5 10
C03 10  3  ENG  @0 Cobalt phosphates @2 NK @5 10
C03 11  3  FRE  @0 Cadmium phosphate @2 NK @5 11
C03 11  3  ENG  @0 Cadmium phosphates @2 NK @5 11
C03 12  X  FRE  @0 Structure tunnel @5 13
C03 12  X  ENG  @0 Channel structure @5 13
C03 12  X  SPA  @0 Estructura túnel @5 13
C03 13  3  FRE  @0 Modèle structure @5 14
C03 13  3  ENG  @0 Structural models @5 14
C03 14  3  FRE  @0 6166F @2 PAC @4 INC @5 56
C03 15  3  FRE  @0 Bi3Cd3,72Co1,28O5(PO4)3 @4 INC @5 93
C03 16  3  FRE  @0 Bi Cd Co O P @4 INC @5 94
C03 17  3  FRE  @0 Oxyphosphate @4 CD @5 96
C03 17  3  ENG  @0 Oxyphosphates @4 CD @5 96
C07 01  3  FRE  @0 Composé minéral @5 81
C07 01  3  ENG  @0 Inorganic compounds @5 81
C07 02  3  FRE  @0 Métal transition composé @5 82
C07 02  3  ENG  @0 Transition element compounds @5 82
N21       @1 012
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 04-0016354 INIST
ET : Double (n = 2) and triple (n = 3) [M4Bi2n-2O2n]x+ polycationic ribbons in the new Bi∼3Cd∼3.72M∼1.28O5(PO4)3 oxyphosphate (M=Co, Cu, Zn)
AU : COLMONT (Marie); HUVE (Marielle); KETATNI (El Mostafa); ABRAHAM (Francis); MENTRE (Olivier)
AF : Laboratoire de Cristallochimie et Physicochimie du Solide, Universite des Sciences et Technologies de Lille, UMR CNRS 8012, ENSCL, B.P. 108/59652 Villeneuve d'Ascq/France (1 aut., 2 aut., 4 aut., 5 aut.); Laboratoire d'Electrochmie et Chimie des Matériaux, Faculté des Sciences et Technique Cadi Ayyad, B.P. 523/Béni Mellal/Maroc (3 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of solid state chemistry : (Print); ISSN 0022-4596; Coden JSSCBI; Etats-Unis; Da. 2003; Vol. 176; No. 1; Pp. 221-233; Bibl. 28 ref.
LA : Anglais
EA : The crystal structure of the new Bi∼3Cd∼3.72Co∼1.28O5(PO4)3 has been refined from single crystal XRD data, R1 = 5.37%, space group Abmm, a = 11.5322(28) Å, b = 5.4760(13) Å, c = 23.2446(56) Å, Z = 4. Compared to Bi∼1.2M∼1.2O1.5(PO 4) and Bi∼6.2Cu∼6.2O8(PO4)5, this compound is an additional example of disordered Bi3+/M2+ oxyphosphate and is well described from the arrangement of double [Bi4Cd4O6]8+ (= D) and triple [Bi2Cd3.44Co0.56O4]6+ (= T) polycationic ribbons formed of edge-sharing O(Bi,M)4 tetrahedra surrounded by PO4 groups. According to the nomenclature defined in this work, the sequence is TT/DtDt, where t stands for the tunnels created by PO4 between two subsequent double ribbons and occupied by Co2+. The HREM study allows a clear visualization of the announced sequence by comparison with the refined crystal structure. The Bi3+ / M2+ statistic disorder at the edges of T and D entities is responsible for the PO4 multi-configuration disorder around a central P atom. Infrared spectroscopy and neutron diffraction of similar compounds (without the highly absorbing Cadmium) even suggests the long range ordering loss for phosphates. Therefore, electron diffraction shows the existence of a modulation vector q* = 1/2a* + (1/3 + ε)b* which pictures cationic ordering in the (001) plane, at the crystallite scale. This ordering is largely lost at the single crystal scale. The existence of mixed Bi3+/M2+ positions also enables a partial filling of the tunnels by Co2+ and yields a composition range checked by solid state reaction. The title compound can be prepared as a single phase and also the M = Zn2+ term can be obtained in a biphasic mixture. For M = Cu2+, a monoclinic distortion has been evidenced from XRD and HREM patterns but surprisingly, the orthorhombic ideal form can also be obtained in similar conditions.
CC : 001B60A66F4
FD : Etude expérimentale; Diffraction RX; Diffraction électron; Microscopie électronique; Structure cristalline; Bismuth oxyde; Cadmium oxyde; Cobalt oxyde; Bismuth phosphate; Cobalt phosphate; Cadmium phosphate; Structure tunnel; Modèle structure; 6166F; Bi3Cd3,72Co1,28O5(PO4)3; Bi Cd Co O P; Oxyphosphate
FG : Composé minéral; Métal transition composé
ED : Experimental study; XRD; Electron diffraction; Electron microscopy; Crystal structure; Bismuth oxides; Cadmium oxides; Cobalt oxides; Bismuth phosphates; Cobalt phosphates; Cadmium phosphates; Channel structure; Structural models; Oxyphosphates
EG : Inorganic compounds; Transition element compounds
SD : Estructura túnel
LO : INIST-14677.354000118777360310
ID : 04-0016354

Links to Exploration step

Pascal:04-0016354

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Double (n = 2) and triple (n = 3) [M
<sub>4</sub>
Bi
<sub>2n-2</sub>
O
<sub>2n</sub>
]
<sup>x+</sup>
polycationic ribbons in the new Bi
<sub>∼3</sub>
Cd
<sub>∼3.72</sub>
M
<sub>∼1.28</sub>
O
<sub>5</sub>
(PO
<sub>4</sub>
)
<sub>3</sub>
oxyphosphate (M=Co, Cu, Zn)</title>
<author>
<name sortKey="Colmont, Marie" sort="Colmont, Marie" uniqKey="Colmont M" first="Marie" last="Colmont">Marie Colmont</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Cristallochimie et Physicochimie du Solide, Universite des Sciences et Technologies de Lille, UMR CNRS 8012, ENSCL, B.P. 108</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Huve, Marielle" sort="Huve, Marielle" uniqKey="Huve M" first="Marielle" last="Huve">Marielle Huve</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Cristallochimie et Physicochimie du Solide, Universite des Sciences et Technologies de Lille, UMR CNRS 8012, ENSCL, B.P. 108</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ketatni, El Mostafa" sort="Ketatni, El Mostafa" uniqKey="Ketatni E" first="El Mostafa" last="Ketatni">El Mostafa Ketatni</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Electrochmie et Chimie des Matériaux, Faculté des Sciences et Technique Cadi Ayyad, B.P. 523</s1>
<s2>Béni Mellal</s2>
<s3>MAR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Abraham, Francis" sort="Abraham, Francis" uniqKey="Abraham F" first="Francis" last="Abraham">Francis Abraham</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Cristallochimie et Physicochimie du Solide, Universite des Sciences et Technologies de Lille, UMR CNRS 8012, ENSCL, B.P. 108</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mentre, Olivier" sort="Mentre, Olivier" uniqKey="Mentre O" first="Olivier" last="Mentre">Olivier Mentre</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Cristallochimie et Physicochimie du Solide, Universite des Sciences et Technologies de Lille, UMR CNRS 8012, ENSCL, B.P. 108</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0016354</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 04-0016354 INIST</idno>
<idno type="RBID">Pascal:04-0016354</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000219</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Double (n = 2) and triple (n = 3) [M
<sub>4</sub>
Bi
<sub>2n-2</sub>
O
<sub>2n</sub>
]
<sup>x+</sup>
polycationic ribbons in the new Bi
<sub>∼3</sub>
Cd
<sub>∼3.72</sub>
M
<sub>∼1.28</sub>
O
<sub>5</sub>
(PO
<sub>4</sub>
)
<sub>3</sub>
oxyphosphate (M=Co, Cu, Zn)</title>
<author>
<name sortKey="Colmont, Marie" sort="Colmont, Marie" uniqKey="Colmont M" first="Marie" last="Colmont">Marie Colmont</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Cristallochimie et Physicochimie du Solide, Universite des Sciences et Technologies de Lille, UMR CNRS 8012, ENSCL, B.P. 108</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Huve, Marielle" sort="Huve, Marielle" uniqKey="Huve M" first="Marielle" last="Huve">Marielle Huve</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Cristallochimie et Physicochimie du Solide, Universite des Sciences et Technologies de Lille, UMR CNRS 8012, ENSCL, B.P. 108</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ketatni, El Mostafa" sort="Ketatni, El Mostafa" uniqKey="Ketatni E" first="El Mostafa" last="Ketatni">El Mostafa Ketatni</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Electrochmie et Chimie des Matériaux, Faculté des Sciences et Technique Cadi Ayyad, B.P. 523</s1>
<s2>Béni Mellal</s2>
<s3>MAR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Abraham, Francis" sort="Abraham, Francis" uniqKey="Abraham F" first="Francis" last="Abraham">Francis Abraham</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Cristallochimie et Physicochimie du Solide, Universite des Sciences et Technologies de Lille, UMR CNRS 8012, ENSCL, B.P. 108</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mentre, Olivier" sort="Mentre, Olivier" uniqKey="Mentre O" first="Olivier" last="Mentre">Olivier Mentre</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Cristallochimie et Physicochimie du Solide, Universite des Sciences et Technologies de Lille, UMR CNRS 8012, ENSCL, B.P. 108</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of solid state chemistry : (Print)</title>
<title level="j" type="abbreviated">J. solid state chem. : (Print)</title>
<idno type="ISSN">0022-4596</idno>
<imprint>
<date when="2003">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of solid state chemistry : (Print)</title>
<title level="j" type="abbreviated">J. solid state chem. : (Print)</title>
<idno type="ISSN">0022-4596</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bismuth oxides</term>
<term>Bismuth phosphates</term>
<term>Cadmium oxides</term>
<term>Cadmium phosphates</term>
<term>Channel structure</term>
<term>Cobalt oxides</term>
<term>Cobalt phosphates</term>
<term>Crystal structure</term>
<term>Electron diffraction</term>
<term>Electron microscopy</term>
<term>Experimental study</term>
<term>Oxyphosphates</term>
<term>Structural models</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>Diffraction RX</term>
<term>Diffraction électron</term>
<term>Microscopie électronique</term>
<term>Structure cristalline</term>
<term>Bismuth oxyde</term>
<term>Cadmium oxyde</term>
<term>Cobalt oxyde</term>
<term>Bismuth phosphate</term>
<term>Cobalt phosphate</term>
<term>Cadmium phosphate</term>
<term>Structure tunnel</term>
<term>Modèle structure</term>
<term>6166F</term>
<term>Bi3Cd3,72Co1,28O5(PO4)3</term>
<term>Bi Cd Co O P</term>
<term>Oxyphosphate</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The crystal structure of the new Bi
<sub>∼3</sub>
Cd
<sub>∼3.72</sub>
Co
<sub>∼1.28</sub>
O
<sub>5</sub>
(PO
<sub>4</sub>
)
<sub>3</sub>
has been refined from single crystal XRD data, R
<sub>1</sub>
= 5.37%, space group Abmm, a = 11.5322(28) Å, b = 5.4760(13) Å, c = 23.2446(56) Å, Z = 4. Compared to Bi
<sub>∼1.2</sub>
M
<sub>∼1.2</sub>
O
<sub>1.5</sub>
(PO
<sub>4</sub>
) and Bi
<sub>∼6.2</sub>
Cu
<sub>∼6.2</sub>
O
<sub>8</sub>
(PO
<sub>4</sub>
)
<sub>5</sub>
, this compound is an additional example of disordered Bi
<sup>3+</sup>
/M
<sup>2+</sup>
oxyphosphate and is well described from the arrangement of double [Bi
<sub>4</sub>
Cd
<sub>4</sub>
O
<sub>6</sub>
]
<sup>8+</sup>
(= D) and triple [Bi
<sub>2</sub>
Cd
<sub>3.44</sub>
Co
<sub>0.56</sub>
O
<sub>4</sub>
]
<sup>6+</sup>
(= T) polycationic ribbons formed of edge-sharing O(Bi,M)
<sub>4</sub>
tetrahedra surrounded by PO
<sub>4</sub>
groups. According to the nomenclature defined in this work, the sequence is TT/DtDt, where t stands for the tunnels created by PO
<sub>4</sub>
between two subsequent double ribbons and occupied by Co
<sup>2+</sup>
. The HREM study allows a clear visualization of the announced sequence by comparison with the refined crystal structure. The Bi
<sup>3+</sup>
/ M
<sup>2+</sup>
statistic disorder at the edges of T and D entities is responsible for the PO
<sub>4</sub>
multi-configuration disorder around a central P atom. Infrared spectroscopy and neutron diffraction of similar compounds (without the highly absorbing Cadmium) even suggests the long range ordering loss for phosphates. Therefore, electron diffraction shows the existence of a modulation vector q* = 1/2a* + (1/3 + ε)b* which pictures cationic ordering in the (001) plane, at the crystallite scale. This ordering is largely lost at the single crystal scale. The existence of mixed Bi
<sup>3+</sup>
/M
<sup>2+</sup>
positions also enables a partial filling of the tunnels by Co
<sup>2+</sup>
and yields a composition range checked by solid state reaction. The title compound can be prepared as a single phase and also the M = Zn
<sup>2+</sup>
term can be obtained in a biphasic mixture. For M = Cu
<sup>2+</sup>
, a monoclinic distortion has been evidenced from XRD and HREM patterns but surprisingly, the orthorhombic ideal form can also be obtained in similar conditions.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-4596</s0>
</fA01>
<fA02 i1="01">
<s0>JSSCBI</s0>
</fA02>
<fA03 i2="1">
<s0>J. solid state chem. : (Print)</s0>
</fA03>
<fA05>
<s2>176</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Double (n = 2) and triple (n = 3) [M
<sub>4</sub>
Bi
<sub>2n-2</sub>
O
<sub>2n</sub>
]
<sup>x+</sup>
polycationic ribbons in the new Bi
<sub>∼3</sub>
Cd
<sub>∼3.72</sub>
M
<sub>∼1.28</sub>
O
<sub>5</sub>
(PO
<sub>4</sub>
)
<sub>3</sub>
oxyphosphate (M=Co, Cu, Zn)</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>COLMONT (Marie)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HUVE (Marielle)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KETATNI (El Mostafa)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ABRAHAM (Francis)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MENTRE (Olivier)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire de Cristallochimie et Physicochimie du Solide, Universite des Sciences et Technologies de Lille, UMR CNRS 8012, ENSCL, B.P. 108</s1>
<s2>59652 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire d'Electrochmie et Chimie des Matériaux, Faculté des Sciences et Technique Cadi Ayyad, B.P. 523</s1>
<s2>Béni Mellal</s2>
<s3>MAR</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>221-233</s1>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14677</s2>
<s5>354000118777360310</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0016354</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of solid state chemistry : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The crystal structure of the new Bi
<sub>∼3</sub>
Cd
<sub>∼3.72</sub>
Co
<sub>∼1.28</sub>
O
<sub>5</sub>
(PO
<sub>4</sub>
)
<sub>3</sub>
has been refined from single crystal XRD data, R
<sub>1</sub>
= 5.37%, space group Abmm, a = 11.5322(28) Å, b = 5.4760(13) Å, c = 23.2446(56) Å, Z = 4. Compared to Bi
<sub>∼1.2</sub>
M
<sub>∼1.2</sub>
O
<sub>1.5</sub>
(PO
<sub>4</sub>
) and Bi
<sub>∼6.2</sub>
Cu
<sub>∼6.2</sub>
O
<sub>8</sub>
(PO
<sub>4</sub>
)
<sub>5</sub>
, this compound is an additional example of disordered Bi
<sup>3+</sup>
/M
<sup>2+</sup>
oxyphosphate and is well described from the arrangement of double [Bi
<sub>4</sub>
Cd
<sub>4</sub>
O
<sub>6</sub>
]
<sup>8+</sup>
(= D) and triple [Bi
<sub>2</sub>
Cd
<sub>3.44</sub>
Co
<sub>0.56</sub>
O
<sub>4</sub>
]
<sup>6+</sup>
(= T) polycationic ribbons formed of edge-sharing O(Bi,M)
<sub>4</sub>
tetrahedra surrounded by PO
<sub>4</sub>
groups. According to the nomenclature defined in this work, the sequence is TT/DtDt, where t stands for the tunnels created by PO
<sub>4</sub>
between two subsequent double ribbons and occupied by Co
<sup>2+</sup>
. The HREM study allows a clear visualization of the announced sequence by comparison with the refined crystal structure. The Bi
<sup>3+</sup>
/ M
<sup>2+</sup>
statistic disorder at the edges of T and D entities is responsible for the PO
<sub>4</sub>
multi-configuration disorder around a central P atom. Infrared spectroscopy and neutron diffraction of similar compounds (without the highly absorbing Cadmium) even suggests the long range ordering loss for phosphates. Therefore, electron diffraction shows the existence of a modulation vector q* = 1/2a* + (1/3 + ε)b* which pictures cationic ordering in the (001) plane, at the crystallite scale. This ordering is largely lost at the single crystal scale. The existence of mixed Bi
<sup>3+</sup>
/M
<sup>2+</sup>
positions also enables a partial filling of the tunnels by Co
<sup>2+</sup>
and yields a composition range checked by solid state reaction. The title compound can be prepared as a single phase and also the M = Zn
<sup>2+</sup>
term can be obtained in a biphasic mixture. For M = Cu
<sup>2+</sup>
, a monoclinic distortion has been evidenced from XRD and HREM patterns but surprisingly, the orthorhombic ideal form can also be obtained in similar conditions.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60A66F4</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>XRD</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Diffraction électron</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Electron diffraction</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Microscopie électronique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Electron microscopy</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Bismuth oxyde</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Bismuth oxides</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Cadmium oxyde</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Cadmium oxides</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Cobalt oxyde</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Cobalt oxides</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Bismuth phosphate</s0>
<s2>NK</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Bismuth phosphates</s0>
<s2>NK</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Cobalt phosphate</s0>
<s2>NK</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Cobalt phosphates</s0>
<s2>NK</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Cadmium phosphate</s0>
<s2>NK</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Cadmium phosphates</s0>
<s2>NK</s2>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Structure tunnel</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Channel structure</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Estructura túnel</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Modèle structure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Structural models</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>6166F</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Bi3Cd3,72Co1,28O5(PO4)3</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Bi Cd Co O P</s0>
<s4>INC</s4>
<s5>94</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Oxyphosphate</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Oxyphosphates</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>81</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>81</s5>
</fC07>
<fC07 i1="02" i2="3" l="FRE">
<s0>Métal transition composé</s0>
<s5>82</s5>
</fC07>
<fC07 i1="02" i2="3" l="ENG">
<s0>Transition element compounds</s0>
<s5>82</s5>
</fC07>
<fN21>
<s1>012</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 04-0016354 INIST</NO>
<ET>Double (n = 2) and triple (n = 3) [M
<sub>4</sub>
Bi
<sub>2n-2</sub>
O
<sub>2n</sub>
]
<sup>x+</sup>
polycationic ribbons in the new Bi
<sub>∼3</sub>
Cd
<sub>∼3.72</sub>
M
<sub>∼1.28</sub>
O
<sub>5</sub>
(PO
<sub>4</sub>
)
<sub>3</sub>
oxyphosphate (M=Co, Cu, Zn)</ET>
<AU>COLMONT (Marie); HUVE (Marielle); KETATNI (El Mostafa); ABRAHAM (Francis); MENTRE (Olivier)</AU>
<AF>Laboratoire de Cristallochimie et Physicochimie du Solide, Universite des Sciences et Technologies de Lille, UMR CNRS 8012, ENSCL, B.P. 108/59652 Villeneuve d'Ascq/France (1 aut., 2 aut., 4 aut., 5 aut.); Laboratoire d'Electrochmie et Chimie des Matériaux, Faculté des Sciences et Technique Cadi Ayyad, B.P. 523/Béni Mellal/Maroc (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of solid state chemistry : (Print); ISSN 0022-4596; Coden JSSCBI; Etats-Unis; Da. 2003; Vol. 176; No. 1; Pp. 221-233; Bibl. 28 ref.</SO>
<LA>Anglais</LA>
<EA>The crystal structure of the new Bi
<sub>∼3</sub>
Cd
<sub>∼3.72</sub>
Co
<sub>∼1.28</sub>
O
<sub>5</sub>
(PO
<sub>4</sub>
)
<sub>3</sub>
has been refined from single crystal XRD data, R
<sub>1</sub>
= 5.37%, space group Abmm, a = 11.5322(28) Å, b = 5.4760(13) Å, c = 23.2446(56) Å, Z = 4. Compared to Bi
<sub>∼1.2</sub>
M
<sub>∼1.2</sub>
O
<sub>1.5</sub>
(PO
<sub>4</sub>
) and Bi
<sub>∼6.2</sub>
Cu
<sub>∼6.2</sub>
O
<sub>8</sub>
(PO
<sub>4</sub>
)
<sub>5</sub>
, this compound is an additional example of disordered Bi
<sup>3+</sup>
/M
<sup>2+</sup>
oxyphosphate and is well described from the arrangement of double [Bi
<sub>4</sub>
Cd
<sub>4</sub>
O
<sub>6</sub>
]
<sup>8+</sup>
(= D) and triple [Bi
<sub>2</sub>
Cd
<sub>3.44</sub>
Co
<sub>0.56</sub>
O
<sub>4</sub>
]
<sup>6+</sup>
(= T) polycationic ribbons formed of edge-sharing O(Bi,M)
<sub>4</sub>
tetrahedra surrounded by PO
<sub>4</sub>
groups. According to the nomenclature defined in this work, the sequence is TT/DtDt, where t stands for the tunnels created by PO
<sub>4</sub>
between two subsequent double ribbons and occupied by Co
<sup>2+</sup>
. The HREM study allows a clear visualization of the announced sequence by comparison with the refined crystal structure. The Bi
<sup>3+</sup>
/ M
<sup>2+</sup>
statistic disorder at the edges of T and D entities is responsible for the PO
<sub>4</sub>
multi-configuration disorder around a central P atom. Infrared spectroscopy and neutron diffraction of similar compounds (without the highly absorbing Cadmium) even suggests the long range ordering loss for phosphates. Therefore, electron diffraction shows the existence of a modulation vector q* = 1/2a* + (1/3 + ε)b* which pictures cationic ordering in the (001) plane, at the crystallite scale. This ordering is largely lost at the single crystal scale. The existence of mixed Bi
<sup>3+</sup>
/M
<sup>2+</sup>
positions also enables a partial filling of the tunnels by Co
<sup>2+</sup>
and yields a composition range checked by solid state reaction. The title compound can be prepared as a single phase and also the M = Zn
<sup>2+</sup>
term can be obtained in a biphasic mixture. For M = Cu
<sup>2+</sup>
, a monoclinic distortion has been evidenced from XRD and HREM patterns but surprisingly, the orthorhombic ideal form can also be obtained in similar conditions.</EA>
<CC>001B60A66F4</CC>
<FD>Etude expérimentale; Diffraction RX; Diffraction électron; Microscopie électronique; Structure cristalline; Bismuth oxyde; Cadmium oxyde; Cobalt oxyde; Bismuth phosphate; Cobalt phosphate; Cadmium phosphate; Structure tunnel; Modèle structure; 6166F; Bi3Cd3,72Co1,28O5(PO4)3; Bi Cd Co O P; Oxyphosphate</FD>
<FG>Composé minéral; Métal transition composé</FG>
<ED>Experimental study; XRD; Electron diffraction; Electron microscopy; Crystal structure; Bismuth oxides; Cadmium oxides; Cobalt oxides; Bismuth phosphates; Cobalt phosphates; Cadmium phosphates; Channel structure; Structural models; Oxyphosphates</ED>
<EG>Inorganic compounds; Transition element compounds</EG>
<SD>Estructura túnel</SD>
<LO>INIST-14677.354000118777360310</LO>
<ID>04-0016354</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000219 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000219 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0016354
   |texte=   Double (n = 2) and triple (n = 3) [M4Bi2n-2O2n]x+ polycationic ribbons in the new Bi∼3Cd∼3.72M∼1.28O5(PO4)3 oxyphosphate (M=Co, Cu, Zn)
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024