Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural and 31P NMR investigation of Bi(MM')2PO6 statistic solid solutions : Deconvolution of lattice constraints and cationic influences

Identifieur interne : 000161 ( PascalFrancis/Corpus ); précédent : 000160; suivant : 000162

Structural and 31P NMR investigation of Bi(MM')2PO6 statistic solid solutions : Deconvolution of lattice constraints and cationic influences

Auteurs : Marie Colmont ; Laurent Delevoye ; EL MOSTAFA KETATNI ; Lionel Montagne ; Olivier Mentre

Source :

RBID : Pascal:06-0397501

Descripteurs français

English descriptors

Abstract

Two solid solutions BiMxMg2-x)PO6 (with M2+ = Zn or Cd) have been studied through 31P MAS NMR. The analysis has been performed on the basis of refined crystal structures through X-ray diffraction and neutron diffraction. The BiZnxMg(2-x)PO6 does not provide direct evidence for sensitive changes in the phosphorus local symmetry. This result is in good agreement with structural data which show nearly unchanged lattices and atomic separations through the Zn2+ for Mg2+ substitution. On the other hand, the Cd2+ for Mg2+ substitution behaves differently. Indeed, up to five resonances are observed, each corresponding to one of the five first-cationic neighbour distributions, i.e. 4Mg/0Cd, 3Mg/lCd, 2Mg/2Cd, 1Mg/3Cd and 0Mg/4Cd. Their intensities match rather well the expected weight for each configuration of the statistical Cd2+/Mg2+ mixed occupancy. The match is further improved when one takes into account the influence of the 2nd cationic sphere that is available from high-field NMR data (18.8T). Finally, the fine examination of the chemical shift for each resonance versus x allows to de-convolute the mean Z/a2 effective field into two sub-effects: a lattice constraint-only term and a chemical-only term whose effects are directly quantifiable.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-4596
A02 01      @0 JSSCBI
A03   1    @0 J. solid state chem. : (Print)
A05       @2 179
A06       @2 7
A08 01  1  ENG  @1 Structural and 31P NMR investigation of Bi(MM')2PO6 statistic solid solutions : Deconvolution of lattice constraints and cationic influences
A11 01  1    @1 COLMONT (Marie)
A11 02  1    @1 DELEVOYE (Laurent)
A11 03  1    @1 EL MOSTAFA KETATNI
A11 04  1    @1 MONTAGNE (Lionel)
A11 05  1    @1 MENTRE (Olivier)
A14 01      @1 Laboratoire de eristallochimie et physicochimie du solide de Lille- UMR CNRS N° 8012-ENSCL, BP 108 @2 59650 Villeneuve d'Ascq @3 FRA @Z 1 aut. @Z 2 aut. @Z 4 aut. @Z 5 aut.
A14 02      @1 Laboratoire de Spectro-Chimie Appliqué et Environnement, Faculté des Sciences et Techniques. BP 523 @2 Béni Mellal @3 MAR @Z 3 aut.
A20       @1 2111-2119
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 14677 @5 354000138926910240
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 30 ref.
A47 01  1    @0 06-0397501
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of solid state chemistry : (Print)
A66 01      @0 USA
C01 01    ENG  @0 Two solid solutions BiMxMg2-x)PO6 (with M2+ = Zn or Cd) have been studied through 31P MAS NMR. The analysis has been performed on the basis of refined crystal structures through X-ray diffraction and neutron diffraction. The BiZnxMg(2-x)PO6 does not provide direct evidence for sensitive changes in the phosphorus local symmetry. This result is in good agreement with structural data which show nearly unchanged lattices and atomic separations through the Zn2+ for Mg2+ substitution. On the other hand, the Cd2+ for Mg2+ substitution behaves differently. Indeed, up to five resonances are observed, each corresponding to one of the five first-cationic neighbour distributions, i.e. 4Mg/0Cd, 3Mg/lCd, 2Mg/2Cd, 1Mg/3Cd and 0Mg/4Cd. Their intensities match rather well the expected weight for each configuration of the statistical Cd2+/Mg2+ mixed occupancy. The match is further improved when one takes into account the influence of the 2nd cationic sphere that is available from high-field NMR data (18.8T). Finally, the fine examination of the chemical shift for each resonance versus x allows to de-convolute the mean Z/a2 effective field into two sub-effects: a lattice constraint-only term and a chemical-only term whose effects are directly quantifiable.
C02 01  3    @0 001B60A66F1
C02 02  3    @0 001B70F60C
C03 01  3  FRE  @0 Etude expérimentale @5 02
C03 01  3  ENG  @0 Experimental study @5 02
C03 02  3  FRE  @0 Résonance magnétique nucléaire @5 03
C03 02  3  ENG  @0 Nuclear magnetic resonance @5 03
C03 03  3  FRE  @0 Paramètre cristallin @5 04
C03 03  3  ENG  @0 Lattice parameters @5 04
C03 04  3  FRE  @0 Déconvolution @5 05
C03 04  3  ENG  @0 Deconvolution @5 05
C03 05  X  FRE  @0 Affinement @5 06
C03 05  X  ENG  @0 Refinement @5 06
C03 05  X  SPA  @0 Afinamiento @5 06
C03 06  3  FRE  @0 Diffraction RX @5 07
C03 06  3  ENG  @0 XRD @5 07
C03 07  3  FRE  @0 Diffraction neutron @5 08
C03 07  3  ENG  @0 Neutron diffraction @5 08
C03 08  3  FRE  @0 Déplacement chimique @5 09
C03 08  3  ENG  @0 Chemical shift @5 09
C03 09  3  FRE  @0 Solution solide @5 15
C03 09  3  ENG  @0 Solid solutions @5 15
C03 10  3  FRE  @0 Bismuth phosphate @2 NK @5 16
C03 10  3  ENG  @0 Bismuth phosphates @2 NK @5 16
C03 11  3  FRE  @0 Magnésium phosphate @2 NK @5 17
C03 11  3  ENG  @0 Magnesium phosphates @2 NK @5 17
C03 12  3  FRE  @0 Zinc phosphate @2 NK @5 18
C03 12  3  ENG  @0 Zinc phosphates @2 NK @5 18
C03 13  3  FRE  @0 Cobalt phosphate @2 NK @5 19
C03 13  3  ENG  @0 Cobalt phosphates @2 NK @5 19
C03 14  3  FRE  @0 Composé n éléments @5 20
C03 14  3  ENG  @0 Multi-element compounds @5 20
C03 15  3  FRE  @0 BiZnMg2-xPO6 @4 INC @5 52
C03 16  3  FRE  @0 Bi Mg O P Zn @4 INC @5 53
C03 17  3  FRE  @0 BiCdMg2-xPO6 @4 INC @5 54
C03 18  3  FRE  @0 Bi Cd Mg O P @4 INC @5 55
C03 19  3  FRE  @0 6166F @2 PAC @4 INC @5 56
C03 20  3  FRE  @0 7660C @2 PAC @4 INC @5 57
C07 01  3  FRE  @0 Composé minéral @5 48
C07 01  3  ENG  @0 Inorganic compounds @5 48
C07 02  3  FRE  @0 Métal transition composé @5 49
C07 02  3  ENG  @0 Transition element compounds @5 49
N21       @1 261
N44 01      @1 PSI
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 06-0397501 INIST
ET : Structural and 31P NMR investigation of Bi(MM')2PO6 statistic solid solutions : Deconvolution of lattice constraints and cationic influences
AU : COLMONT (Marie); DELEVOYE (Laurent); EL MOSTAFA KETATNI; MONTAGNE (Lionel); MENTRE (Olivier)
AF : Laboratoire de eristallochimie et physicochimie du solide de Lille- UMR CNRS N° 8012-ENSCL, BP 108/59650 Villeneuve d'Ascq/France (1 aut., 2 aut., 4 aut., 5 aut.); Laboratoire de Spectro-Chimie Appliqué et Environnement, Faculté des Sciences et Techniques. BP 523/Béni Mellal/Maroc (3 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of solid state chemistry : (Print); ISSN 0022-4596; Coden JSSCBI; Etats-Unis; Da. 2006; Vol. 179; No. 7; Pp. 2111-2119; Bibl. 30 ref.
LA : Anglais
EA : Two solid solutions BiMxMg2-x)PO6 (with M2+ = Zn or Cd) have been studied through 31P MAS NMR. The analysis has been performed on the basis of refined crystal structures through X-ray diffraction and neutron diffraction. The BiZnxMg(2-x)PO6 does not provide direct evidence for sensitive changes in the phosphorus local symmetry. This result is in good agreement with structural data which show nearly unchanged lattices and atomic separations through the Zn2+ for Mg2+ substitution. On the other hand, the Cd2+ for Mg2+ substitution behaves differently. Indeed, up to five resonances are observed, each corresponding to one of the five first-cationic neighbour distributions, i.e. 4Mg/0Cd, 3Mg/lCd, 2Mg/2Cd, 1Mg/3Cd and 0Mg/4Cd. Their intensities match rather well the expected weight for each configuration of the statistical Cd2+/Mg2+ mixed occupancy. The match is further improved when one takes into account the influence of the 2nd cationic sphere that is available from high-field NMR data (18.8T). Finally, the fine examination of the chemical shift for each resonance versus x allows to de-convolute the mean Z/a2 effective field into two sub-effects: a lattice constraint-only term and a chemical-only term whose effects are directly quantifiable.
CC : 001B60A66F1; 001B70F60C
FD : Etude expérimentale; Résonance magnétique nucléaire; Paramètre cristallin; Déconvolution; Affinement; Diffraction RX; Diffraction neutron; Déplacement chimique; Solution solide; Bismuth phosphate; Magnésium phosphate; Zinc phosphate; Cobalt phosphate; Composé n éléments; BiZnMg2-xPO6; Bi Mg O P Zn; BiCdMg2-xPO6; Bi Cd Mg O P; 6166F; 7660C
FG : Composé minéral; Métal transition composé
ED : Experimental study; Nuclear magnetic resonance; Lattice parameters; Deconvolution; Refinement; XRD; Neutron diffraction; Chemical shift; Solid solutions; Bismuth phosphates; Magnesium phosphates; Zinc phosphates; Cobalt phosphates; Multi-element compounds
EG : Inorganic compounds; Transition element compounds
SD : Afinamiento
LO : INIST-14677.354000138926910240
ID : 06-0397501

Links to Exploration step

Pascal:06-0397501

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structural and
<sup>31</sup>
P NMR investigation of Bi(MM')
<sub>2</sub>
PO
<sub>6</sub>
statistic solid solutions : Deconvolution of lattice constraints and cationic influences</title>
<author>
<name sortKey="Colmont, Marie" sort="Colmont, Marie" uniqKey="Colmont M" first="Marie" last="Colmont">Marie Colmont</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de eristallochimie et physicochimie du solide de Lille- UMR CNRS N° 8012-ENSCL, BP 108</s1>
<s2>59650 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Delevoye, Laurent" sort="Delevoye, Laurent" uniqKey="Delevoye L" first="Laurent" last="Delevoye">Laurent Delevoye</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de eristallochimie et physicochimie du solide de Lille- UMR CNRS N° 8012-ENSCL, BP 108</s1>
<s2>59650 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="El Mostafa Ketatni" sort="El Mostafa Ketatni" uniqKey="El Mostafa Ketatni" last="El Mostafa Ketatni">EL MOSTAFA KETATNI</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Spectro-Chimie Appliqué et Environnement, Faculté des Sciences et Techniques. BP 523</s1>
<s2>Béni Mellal</s2>
<s3>MAR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Montagne, Lionel" sort="Montagne, Lionel" uniqKey="Montagne L" first="Lionel" last="Montagne">Lionel Montagne</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de eristallochimie et physicochimie du solide de Lille- UMR CNRS N° 8012-ENSCL, BP 108</s1>
<s2>59650 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mentre, Olivier" sort="Mentre, Olivier" uniqKey="Mentre O" first="Olivier" last="Mentre">Olivier Mentre</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de eristallochimie et physicochimie du solide de Lille- UMR CNRS N° 8012-ENSCL, BP 108</s1>
<s2>59650 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0397501</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0397501 INIST</idno>
<idno type="RBID">Pascal:06-0397501</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000161</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Structural and
<sup>31</sup>
P NMR investigation of Bi(MM')
<sub>2</sub>
PO
<sub>6</sub>
statistic solid solutions : Deconvolution of lattice constraints and cationic influences</title>
<author>
<name sortKey="Colmont, Marie" sort="Colmont, Marie" uniqKey="Colmont M" first="Marie" last="Colmont">Marie Colmont</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de eristallochimie et physicochimie du solide de Lille- UMR CNRS N° 8012-ENSCL, BP 108</s1>
<s2>59650 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Delevoye, Laurent" sort="Delevoye, Laurent" uniqKey="Delevoye L" first="Laurent" last="Delevoye">Laurent Delevoye</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de eristallochimie et physicochimie du solide de Lille- UMR CNRS N° 8012-ENSCL, BP 108</s1>
<s2>59650 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="El Mostafa Ketatni" sort="El Mostafa Ketatni" uniqKey="El Mostafa Ketatni" last="El Mostafa Ketatni">EL MOSTAFA KETATNI</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire de Spectro-Chimie Appliqué et Environnement, Faculté des Sciences et Techniques. BP 523</s1>
<s2>Béni Mellal</s2>
<s3>MAR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Montagne, Lionel" sort="Montagne, Lionel" uniqKey="Montagne L" first="Lionel" last="Montagne">Lionel Montagne</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de eristallochimie et physicochimie du solide de Lille- UMR CNRS N° 8012-ENSCL, BP 108</s1>
<s2>59650 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mentre, Olivier" sort="Mentre, Olivier" uniqKey="Mentre O" first="Olivier" last="Mentre">Olivier Mentre</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de eristallochimie et physicochimie du solide de Lille- UMR CNRS N° 8012-ENSCL, BP 108</s1>
<s2>59650 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of solid state chemistry : (Print)</title>
<title level="j" type="abbreviated">J. solid state chem. : (Print)</title>
<idno type="ISSN">0022-4596</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of solid state chemistry : (Print)</title>
<title level="j" type="abbreviated">J. solid state chem. : (Print)</title>
<idno type="ISSN">0022-4596</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bismuth phosphates</term>
<term>Chemical shift</term>
<term>Cobalt phosphates</term>
<term>Deconvolution</term>
<term>Experimental study</term>
<term>Lattice parameters</term>
<term>Magnesium phosphates</term>
<term>Multi-element compounds</term>
<term>Neutron diffraction</term>
<term>Nuclear magnetic resonance</term>
<term>Refinement</term>
<term>Solid solutions</term>
<term>XRD</term>
<term>Zinc phosphates</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>Résonance magnétique nucléaire</term>
<term>Paramètre cristallin</term>
<term>Déconvolution</term>
<term>Affinement</term>
<term>Diffraction RX</term>
<term>Diffraction neutron</term>
<term>Déplacement chimique</term>
<term>Solution solide</term>
<term>Bismuth phosphate</term>
<term>Magnésium phosphate</term>
<term>Zinc phosphate</term>
<term>Cobalt phosphate</term>
<term>Composé n éléments</term>
<term>BiZnMg2-xPO6</term>
<term>Bi Mg O P Zn</term>
<term>BiCdMg2-xPO6</term>
<term>Bi Cd Mg O P</term>
<term>6166F</term>
<term>7660C</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Two solid solutions BiM
<sub>x</sub>
Mg
<sub>2-x)</sub>
PO
<sub>6</sub>
(with M
<sup>2+</sup>
= Zn or Cd) have been studied through
<sup>31</sup>
P MAS NMR. The analysis has been performed on the basis of refined crystal structures through X-ray diffraction and neutron diffraction. The BiZn
<sub>x</sub>
Mg
<sub>(2-x</sub>
)PO
<sub>6</sub>
does not provide direct evidence for sensitive changes in the phosphorus local symmetry. This result is in good agreement with structural data which show nearly unchanged lattices and atomic separations through the Zn
<sup>2+</sup>
for Mg
<sup>2+</sup>
substitution. On the other hand, the Cd
<sup>2+</sup>
for Mg
<sup>2+</sup>
substitution behaves differently. Indeed, up to five resonances are observed, each corresponding to one of the five first-cationic neighbour distributions, i.e. 4Mg/0Cd, 3Mg/lCd, 2Mg/2Cd, 1Mg/3Cd and 0Mg/4Cd. Their intensities match rather well the expected weight for each configuration of the statistical Cd
<sup>2+</sup>
/Mg
<sup>2+</sup>
mixed occupancy. The match is further improved when one takes into account the influence of the 2nd cationic sphere that is available from high-field NMR data (18.8T). Finally, the fine examination of the chemical shift for each resonance versus x allows to de-convolute the mean Z/a
<sup>2</sup>
effective field into two sub-effects: a lattice constraint-only term and a chemical-only term whose effects are directly quantifiable.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-4596</s0>
</fA01>
<fA02 i1="01">
<s0>JSSCBI</s0>
</fA02>
<fA03 i2="1">
<s0>J. solid state chem. : (Print)</s0>
</fA03>
<fA05>
<s2>179</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structural and
<sup>31</sup>
P NMR investigation of Bi(MM')
<sub>2</sub>
PO
<sub>6</sub>
statistic solid solutions : Deconvolution of lattice constraints and cationic influences</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>COLMONT (Marie)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DELEVOYE (Laurent)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>EL MOSTAFA KETATNI</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MONTAGNE (Lionel)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MENTRE (Olivier)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire de eristallochimie et physicochimie du solide de Lille- UMR CNRS N° 8012-ENSCL, BP 108</s1>
<s2>59650 Villeneuve d'Ascq</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire de Spectro-Chimie Appliqué et Environnement, Faculté des Sciences et Techniques. BP 523</s1>
<s2>Béni Mellal</s2>
<s3>MAR</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>2111-2119</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14677</s2>
<s5>354000138926910240</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0397501</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of solid state chemistry : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Two solid solutions BiM
<sub>x</sub>
Mg
<sub>2-x)</sub>
PO
<sub>6</sub>
(with M
<sup>2+</sup>
= Zn or Cd) have been studied through
<sup>31</sup>
P MAS NMR. The analysis has been performed on the basis of refined crystal structures through X-ray diffraction and neutron diffraction. The BiZn
<sub>x</sub>
Mg
<sub>(2-x</sub>
)PO
<sub>6</sub>
does not provide direct evidence for sensitive changes in the phosphorus local symmetry. This result is in good agreement with structural data which show nearly unchanged lattices and atomic separations through the Zn
<sup>2+</sup>
for Mg
<sup>2+</sup>
substitution. On the other hand, the Cd
<sup>2+</sup>
for Mg
<sup>2+</sup>
substitution behaves differently. Indeed, up to five resonances are observed, each corresponding to one of the five first-cationic neighbour distributions, i.e. 4Mg/0Cd, 3Mg/lCd, 2Mg/2Cd, 1Mg/3Cd and 0Mg/4Cd. Their intensities match rather well the expected weight for each configuration of the statistical Cd
<sup>2+</sup>
/Mg
<sup>2+</sup>
mixed occupancy. The match is further improved when one takes into account the influence of the 2nd cationic sphere that is available from high-field NMR data (18.8T). Finally, the fine examination of the chemical shift for each resonance versus x allows to de-convolute the mean Z/a
<sup>2</sup>
effective field into two sub-effects: a lattice constraint-only term and a chemical-only term whose effects are directly quantifiable.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60A66F1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70F60C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Résonance magnétique nucléaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Nuclear magnetic resonance</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Paramètre cristallin</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Lattice parameters</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Déconvolution</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Deconvolution</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Affinement</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Refinement</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Afinamiento</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>XRD</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Diffraction neutron</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Neutron diffraction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Déplacement chimique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Chemical shift</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Solution solide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Solid solutions</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Bismuth phosphate</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Bismuth phosphates</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Magnésium phosphate</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Magnesium phosphates</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Zinc phosphate</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Zinc phosphates</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Cobalt phosphate</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Cobalt phosphates</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Composé n éléments</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Multi-element compounds</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>BiZnMg2-xPO6</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Bi Mg O P Zn</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>BiCdMg2-xPO6</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Bi Cd Mg O P</s0>
<s4>INC</s4>
<s5>55</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>6166F</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>7660C</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>48</s5>
</fC07>
<fC07 i1="02" i2="3" l="FRE">
<s0>Métal transition composé</s0>
<s5>49</s5>
</fC07>
<fC07 i1="02" i2="3" l="ENG">
<s0>Transition element compounds</s0>
<s5>49</s5>
</fC07>
<fN21>
<s1>261</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 06-0397501 INIST</NO>
<ET>Structural and
<sup>31</sup>
P NMR investigation of Bi(MM')
<sub>2</sub>
PO
<sub>6</sub>
statistic solid solutions : Deconvolution of lattice constraints and cationic influences</ET>
<AU>COLMONT (Marie); DELEVOYE (Laurent); EL MOSTAFA KETATNI; MONTAGNE (Lionel); MENTRE (Olivier)</AU>
<AF>Laboratoire de eristallochimie et physicochimie du solide de Lille- UMR CNRS N° 8012-ENSCL, BP 108/59650 Villeneuve d'Ascq/France (1 aut., 2 aut., 4 aut., 5 aut.); Laboratoire de Spectro-Chimie Appliqué et Environnement, Faculté des Sciences et Techniques. BP 523/Béni Mellal/Maroc (3 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of solid state chemistry : (Print); ISSN 0022-4596; Coden JSSCBI; Etats-Unis; Da. 2006; Vol. 179; No. 7; Pp. 2111-2119; Bibl. 30 ref.</SO>
<LA>Anglais</LA>
<EA>Two solid solutions BiM
<sub>x</sub>
Mg
<sub>2-x)</sub>
PO
<sub>6</sub>
(with M
<sup>2+</sup>
= Zn or Cd) have been studied through
<sup>31</sup>
P MAS NMR. The analysis has been performed on the basis of refined crystal structures through X-ray diffraction and neutron diffraction. The BiZn
<sub>x</sub>
Mg
<sub>(2-x</sub>
)PO
<sub>6</sub>
does not provide direct evidence for sensitive changes in the phosphorus local symmetry. This result is in good agreement with structural data which show nearly unchanged lattices and atomic separations through the Zn
<sup>2+</sup>
for Mg
<sup>2+</sup>
substitution. On the other hand, the Cd
<sup>2+</sup>
for Mg
<sup>2+</sup>
substitution behaves differently. Indeed, up to five resonances are observed, each corresponding to one of the five first-cationic neighbour distributions, i.e. 4Mg/0Cd, 3Mg/lCd, 2Mg/2Cd, 1Mg/3Cd and 0Mg/4Cd. Their intensities match rather well the expected weight for each configuration of the statistical Cd
<sup>2+</sup>
/Mg
<sup>2+</sup>
mixed occupancy. The match is further improved when one takes into account the influence of the 2nd cationic sphere that is available from high-field NMR data (18.8T). Finally, the fine examination of the chemical shift for each resonance versus x allows to de-convolute the mean Z/a
<sup>2</sup>
effective field into two sub-effects: a lattice constraint-only term and a chemical-only term whose effects are directly quantifiable.</EA>
<CC>001B60A66F1; 001B70F60C</CC>
<FD>Etude expérimentale; Résonance magnétique nucléaire; Paramètre cristallin; Déconvolution; Affinement; Diffraction RX; Diffraction neutron; Déplacement chimique; Solution solide; Bismuth phosphate; Magnésium phosphate; Zinc phosphate; Cobalt phosphate; Composé n éléments; BiZnMg2-xPO6; Bi Mg O P Zn; BiCdMg2-xPO6; Bi Cd Mg O P; 6166F; 7660C</FD>
<FG>Composé minéral; Métal transition composé</FG>
<ED>Experimental study; Nuclear magnetic resonance; Lattice parameters; Deconvolution; Refinement; XRD; Neutron diffraction; Chemical shift; Solid solutions; Bismuth phosphates; Magnesium phosphates; Zinc phosphates; Cobalt phosphates; Multi-element compounds</ED>
<EG>Inorganic compounds; Transition element compounds</EG>
<SD>Afinamiento</SD>
<LO>INIST-14677.354000138926910240</LO>
<ID>06-0397501</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000161 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000161 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0397501
   |texte=   Structural and 31P NMR investigation of Bi(MM')2PO6 statistic solid solutions : Deconvolution of lattice constraints and cationic influences
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024