Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nanostructured cobalt on porous silicon substrate : Structure and magnetic behaviour

Identifieur interne : 000142 ( PascalFrancis/Corpus ); précédent : 000141; suivant : 000143

Nanostructured cobalt on porous silicon substrate : Structure and magnetic behaviour

Auteurs : W. Belkacem ; N. Mliki ; R. Delhi ; W. Saikaly ; B. Yangui

Source :

RBID : Pascal:07-0489693

Descripteurs français

English descriptors

Abstract

During an anodization process, porous silicon (PS) consisting of pores with a diameter of about 40 nm and a depth from 5 μm to 40 μm has been produced. To achieve oriented channels in this mesoporous range, a p+-type Si wafer was electrochemically etched in an aqueous electrolyte of HF. We report the formation, after the anodization step, of a cobalt nanostructure in a porous silicon matrix. Co nanocrystals on and in a porous silicon layer have been prepared by the UHV evaporation technique and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). This technique was performed to show the chemical element distribution within the channels. It is found that the deposition condition is an important factor for obtaining nanostructures. Initial deposition leads to Co particle penetration in silicon pores whereas subsequent deposition results only in an increase of the thickness at the surface with no further penetration. Additional experiments were carried out by using the magneto-optical Kerr effect to obtain information about the magnetic properties. The first results show that the magnetic response for layers <5 nm presents an important perpendicular component of magnetization whereas for thicker deposited layers (8 nm < t < 20 nm) the magnetic response seems to act as that of a thin film in which the squareness of the hysteresis loop decreases with increasing film thickness.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1862-6300
A03   1    @0 Phys. status solidi, A Appl. mater. sci. : (Print)
A05       @2 204
A06       @2 10
A08 01  1  ENG  @1 Nanostructured cobalt on porous silicon substrate : Structure and magnetic behaviour
A11 01  1    @1 BELKACEM (W.)
A11 02  1    @1 MLIKI (N.)
A11 03  1    @1 DELHI (R.)
A11 04  1    @1 SAIKALY (W.)
A11 05  1    @1 YANGUI (B.)
A14 01      @1 Laboratoire Matériaux, Organisation et Propriétés; Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire Tunis El Manar 2092 @3 TUN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 5 aut.
A14 02      @1 Centre Pluridisciplinaire de Microscopie électronique et de Microanalyse, Faculté des Sciences et Techniques St. Jérôme @2 13397 Marseille @3 FRA @Z 4 aut.
A20       @1 3321-3332
A21       @1 2007
A23 01      @0 ENG
A43 01      @1 INIST @2 10183A @5 354000160936440120
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 21 ref.
A47 01  1    @0 07-0489693
A60       @1 P
A61       @0 A
A64 01  1    @0 Physica status solidi. A, Applications and materials science : (Print)
A66 01      @0 DEU
C01 01    ENG  @0 During an anodization process, porous silicon (PS) consisting of pores with a diameter of about 40 nm and a depth from 5 μm to 40 μm has been produced. To achieve oriented channels in this mesoporous range, a p+-type Si wafer was electrochemically etched in an aqueous electrolyte of HF. We report the formation, after the anodization step, of a cobalt nanostructure in a porous silicon matrix. Co nanocrystals on and in a porous silicon layer have been prepared by the UHV evaporation technique and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). This technique was performed to show the chemical element distribution within the channels. It is found that the deposition condition is an important factor for obtaining nanostructures. Initial deposition leads to Co particle penetration in silicon pores whereas subsequent deposition results only in an increase of the thickness at the surface with no further penetration. Additional experiments were carried out by using the magneto-optical Kerr effect to obtain information about the magnetic properties. The first results show that the magnetic response for layers <5 nm presents an important perpendicular component of magnetization whereas for thicker deposited layers (8 nm < t < 20 nm) the magnetic response seems to act as that of a thin film in which the squareness of the hysteresis loop decreases with increasing film thickness.
C02 01  3    @0 001B70E75
C02 02  3    @0 001B80A07B
C03 01  3  FRE  @0 Dépôt phase vapeur @5 02
C03 01  3  ENG  @0 Vapor deposition @5 02
C03 02  3  FRE  @0 Dépôt sous vide @5 03
C03 02  3  ENG  @0 Vacuum deposition @5 03
C03 03  3  FRE  @0 Ultravide @5 04
C03 03  3  ENG  @0 Ultrahigh vacuum @5 04
C03 04  3  FRE  @0 Aimantation @5 05
C03 04  3  ENG  @0 Magnetization @5 05
C03 05  3  FRE  @0 Hystérésis magnétique @5 06
C03 05  3  ENG  @0 Magnetic hysteresis @5 06
C03 06  X  FRE  @0 Relation structure propriété @5 07
C03 06  X  ENG  @0 Property structure relationship @5 07
C03 06  X  SPA  @0 Relación estructura propiedad @5 07
C03 07  3  FRE  @0 Epaisseur @5 08
C03 07  3  ENG  @0 Thickness @5 08
C03 08  3  FRE  @0 Microscopie électronique balayage @5 09
C03 08  3  ENG  @0 Scanning electron microscopy @5 09
C03 09  3  FRE  @0 Microscopie électronique transmission @5 10
C03 09  3  ENG  @0 Transmission electron microscopy @5 10
C03 10  3  FRE  @0 Spectre perte énergie électron @5 11
C03 10  3  ENG  @0 Electron energy loss spectra @5 11
C03 11  3  FRE  @0 Effet Kerr magnétooptique @5 14
C03 11  3  ENG  @0 Kerr magneto-optical effect @5 14
C03 12  3  FRE  @0 Nanoparticule @5 15
C03 12  3  ENG  @0 Nanoparticles @5 15
C03 13  3  FRE  @0 Cobalt @2 NC @5 16
C03 13  3  ENG  @0 Cobalt @2 NC @5 16
C03 14  X  FRE  @0 Nanocristal @5 19
C03 14  X  ENG  @0 Nanocrystal @5 19
C03 14  X  SPA  @0 Nanocristal @5 19
C03 15  3  FRE  @0 Substrat silicium poreux @4 INC @5 63
N21       @1 323

Format Inist (serveur)

NO : PASCAL 07-0489693 INIST
ET : Nanostructured cobalt on porous silicon substrate : Structure and magnetic behaviour
AU : BELKACEM (W.); MLIKI (N.); DELHI (R.); SAIKALY (W.); YANGUI (B.)
AF : Laboratoire Matériaux, Organisation et Propriétés; Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire Tunis El Manar 2092/Tunisie (1 aut., 2 aut., 3 aut., 5 aut.); Centre Pluridisciplinaire de Microscopie électronique et de Microanalyse, Faculté des Sciences et Techniques St. Jérôme/13397 Marseille/France (4 aut.)
DT : Publication en série; Niveau analytique
SO : Physica status solidi. A, Applications and materials science : (Print); ISSN 1862-6300; Allemagne; Da. 2007; Vol. 204; No. 10; Pp. 3321-3332; Bibl. 21 ref.
LA : Anglais
EA : During an anodization process, porous silicon (PS) consisting of pores with a diameter of about 40 nm and a depth from 5 μm to 40 μm has been produced. To achieve oriented channels in this mesoporous range, a p+-type Si wafer was electrochemically etched in an aqueous electrolyte of HF. We report the formation, after the anodization step, of a cobalt nanostructure in a porous silicon matrix. Co nanocrystals on and in a porous silicon layer have been prepared by the UHV evaporation technique and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). This technique was performed to show the chemical element distribution within the channels. It is found that the deposition condition is an important factor for obtaining nanostructures. Initial deposition leads to Co particle penetration in silicon pores whereas subsequent deposition results only in an increase of the thickness at the surface with no further penetration. Additional experiments were carried out by using the magneto-optical Kerr effect to obtain information about the magnetic properties. The first results show that the magnetic response for layers <5 nm presents an important perpendicular component of magnetization whereas for thicker deposited layers (8 nm < t < 20 nm) the magnetic response seems to act as that of a thin film in which the squareness of the hysteresis loop decreases with increasing film thickness.
CC : 001B70E75; 001B80A07B
FD : Dépôt phase vapeur; Dépôt sous vide; Ultravide; Aimantation; Hystérésis magnétique; Relation structure propriété; Epaisseur; Microscopie électronique balayage; Microscopie électronique transmission; Spectre perte énergie électron; Effet Kerr magnétooptique; Nanoparticule; Cobalt; Nanocristal; Substrat silicium poreux
ED : Vapor deposition; Vacuum deposition; Ultrahigh vacuum; Magnetization; Magnetic hysteresis; Property structure relationship; Thickness; Scanning electron microscopy; Transmission electron microscopy; Electron energy loss spectra; Kerr magneto-optical effect; Nanoparticles; Cobalt; Nanocrystal
SD : Relación estructura propiedad; Nanocristal
LO : INIST-10183A.354000160936440120
ID : 07-0489693

Links to Exploration step

Pascal:07-0489693

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Nanostructured cobalt on porous silicon substrate : Structure and magnetic behaviour</title>
<author>
<name sortKey="Belkacem, W" sort="Belkacem, W" uniqKey="Belkacem W" first="W." last="Belkacem">W. Belkacem</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Matériaux, Organisation et Propriétés; Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire Tunis El Manar 2092</s1>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mliki, N" sort="Mliki, N" uniqKey="Mliki N" first="N." last="Mliki">N. Mliki</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Matériaux, Organisation et Propriétés; Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire Tunis El Manar 2092</s1>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Delhi, R" sort="Delhi, R" uniqKey="Delhi R" first="R." last="Delhi">R. Delhi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Matériaux, Organisation et Propriétés; Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire Tunis El Manar 2092</s1>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Saikaly, W" sort="Saikaly, W" uniqKey="Saikaly W" first="W." last="Saikaly">W. Saikaly</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Centre Pluridisciplinaire de Microscopie électronique et de Microanalyse, Faculté des Sciences et Techniques St. Jérôme</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yangui, B" sort="Yangui, B" uniqKey="Yangui B" first="B." last="Yangui">B. Yangui</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Matériaux, Organisation et Propriétés; Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire Tunis El Manar 2092</s1>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0489693</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0489693 INIST</idno>
<idno type="RBID">Pascal:07-0489693</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000142</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Nanostructured cobalt on porous silicon substrate : Structure and magnetic behaviour</title>
<author>
<name sortKey="Belkacem, W" sort="Belkacem, W" uniqKey="Belkacem W" first="W." last="Belkacem">W. Belkacem</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Matériaux, Organisation et Propriétés; Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire Tunis El Manar 2092</s1>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mliki, N" sort="Mliki, N" uniqKey="Mliki N" first="N." last="Mliki">N. Mliki</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Matériaux, Organisation et Propriétés; Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire Tunis El Manar 2092</s1>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Delhi, R" sort="Delhi, R" uniqKey="Delhi R" first="R." last="Delhi">R. Delhi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Matériaux, Organisation et Propriétés; Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire Tunis El Manar 2092</s1>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Saikaly, W" sort="Saikaly, W" uniqKey="Saikaly W" first="W." last="Saikaly">W. Saikaly</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Centre Pluridisciplinaire de Microscopie électronique et de Microanalyse, Faculté des Sciences et Techniques St. Jérôme</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yangui, B" sort="Yangui, B" uniqKey="Yangui B" first="B." last="Yangui">B. Yangui</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire Matériaux, Organisation et Propriétés; Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire Tunis El Manar 2092</s1>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Physica status solidi. A, Applications and materials science : (Print)</title>
<title level="j" type="abbreviated">Phys. status solidi, A Appl. mater. sci. : (Print)</title>
<idno type="ISSN">1862-6300</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Physica status solidi. A, Applications and materials science : (Print)</title>
<title level="j" type="abbreviated">Phys. status solidi, A Appl. mater. sci. : (Print)</title>
<idno type="ISSN">1862-6300</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cobalt</term>
<term>Electron energy loss spectra</term>
<term>Kerr magneto-optical effect</term>
<term>Magnetic hysteresis</term>
<term>Magnetization</term>
<term>Nanocrystal</term>
<term>Nanoparticles</term>
<term>Property structure relationship</term>
<term>Scanning electron microscopy</term>
<term>Thickness</term>
<term>Transmission electron microscopy</term>
<term>Ultrahigh vacuum</term>
<term>Vacuum deposition</term>
<term>Vapor deposition</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dépôt phase vapeur</term>
<term>Dépôt sous vide</term>
<term>Ultravide</term>
<term>Aimantation</term>
<term>Hystérésis magnétique</term>
<term>Relation structure propriété</term>
<term>Epaisseur</term>
<term>Microscopie électronique balayage</term>
<term>Microscopie électronique transmission</term>
<term>Spectre perte énergie électron</term>
<term>Effet Kerr magnétooptique</term>
<term>Nanoparticule</term>
<term>Cobalt</term>
<term>Nanocristal</term>
<term>Substrat silicium poreux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">During an anodization process, porous silicon (PS) consisting of pores with a diameter of about 40 nm and a depth from 5 μm to 40 μm has been produced. To achieve oriented channels in this mesoporous range, a p
<sup>+</sup>
-type Si wafer was electrochemically etched in an aqueous electrolyte of HF. We report the formation, after the anodization step, of a cobalt nanostructure in a porous silicon matrix. Co nanocrystals on and in a porous silicon layer have been prepared by the UHV evaporation technique and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). This technique was performed to show the chemical element distribution within the channels. It is found that the deposition condition is an important factor for obtaining nanostructures. Initial deposition leads to Co particle penetration in silicon pores whereas subsequent deposition results only in an increase of the thickness at the surface with no further penetration. Additional experiments were carried out by using the magneto-optical Kerr effect to obtain information about the magnetic properties. The first results show that the magnetic response for layers <5 nm presents an important perpendicular component of magnetization whereas for thicker deposited layers (8 nm < t < 20 nm) the magnetic response seems to act as that of a thin film in which the squareness of the hysteresis loop decreases with increasing film thickness.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1862-6300</s0>
</fA01>
<fA03 i2="1">
<s0>Phys. status solidi, A Appl. mater. sci. : (Print)</s0>
</fA03>
<fA05>
<s2>204</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Nanostructured cobalt on porous silicon substrate : Structure and magnetic behaviour</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BELKACEM (W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MLIKI (N.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DELHI (R.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SAIKALY (W.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>YANGUI (B.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire Matériaux, Organisation et Propriétés; Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire Tunis El Manar 2092</s1>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Centre Pluridisciplinaire de Microscopie électronique et de Microanalyse, Faculté des Sciences et Techniques St. Jérôme</s1>
<s2>13397 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>3321-3332</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10183A</s2>
<s5>354000160936440120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>21 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0489693</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica status solidi. A, Applications and materials science : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>During an anodization process, porous silicon (PS) consisting of pores with a diameter of about 40 nm and a depth from 5 μm to 40 μm has been produced. To achieve oriented channels in this mesoporous range, a p
<sup>+</sup>
-type Si wafer was electrochemically etched in an aqueous electrolyte of HF. We report the formation, after the anodization step, of a cobalt nanostructure in a porous silicon matrix. Co nanocrystals on and in a porous silicon layer have been prepared by the UHV evaporation technique and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). This technique was performed to show the chemical element distribution within the channels. It is found that the deposition condition is an important factor for obtaining nanostructures. Initial deposition leads to Co particle penetration in silicon pores whereas subsequent deposition results only in an increase of the thickness at the surface with no further penetration. Additional experiments were carried out by using the magneto-optical Kerr effect to obtain information about the magnetic properties. The first results show that the magnetic response for layers <5 nm presents an important perpendicular component of magnetization whereas for thicker deposited layers (8 nm < t < 20 nm) the magnetic response seems to act as that of a thin film in which the squareness of the hysteresis loop decreases with increasing film thickness.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70E75</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Dépôt phase vapeur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Vapor deposition</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Dépôt sous vide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Vacuum deposition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Ultravide</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Ultrahigh vacuum</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Aimantation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Magnetization</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Hystérésis magnétique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Magnetic hysteresis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Relation structure propriété</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Property structure relationship</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Relación estructura propiedad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Epaisseur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Thickness</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Spectre perte énergie électron</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Electron energy loss spectra</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Effet Kerr magnétooptique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Kerr magneto-optical effect</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Nanoparticule</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Nanoparticles</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Substrat silicium poreux</s0>
<s4>INC</s4>
<s5>63</s5>
</fC03>
<fN21>
<s1>323</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 07-0489693 INIST</NO>
<ET>Nanostructured cobalt on porous silicon substrate : Structure and magnetic behaviour</ET>
<AU>BELKACEM (W.); MLIKI (N.); DELHI (R.); SAIKALY (W.); YANGUI (B.)</AU>
<AF>Laboratoire Matériaux, Organisation et Propriétés; Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire Tunis El Manar 2092/Tunisie (1 aut., 2 aut., 3 aut., 5 aut.); Centre Pluridisciplinaire de Microscopie électronique et de Microanalyse, Faculté des Sciences et Techniques St. Jérôme/13397 Marseille/France (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Physica status solidi. A, Applications and materials science : (Print); ISSN 1862-6300; Allemagne; Da. 2007; Vol. 204; No. 10; Pp. 3321-3332; Bibl. 21 ref.</SO>
<LA>Anglais</LA>
<EA>During an anodization process, porous silicon (PS) consisting of pores with a diameter of about 40 nm and a depth from 5 μm to 40 μm has been produced. To achieve oriented channels in this mesoporous range, a p
<sup>+</sup>
-type Si wafer was electrochemically etched in an aqueous electrolyte of HF. We report the formation, after the anodization step, of a cobalt nanostructure in a porous silicon matrix. Co nanocrystals on and in a porous silicon layer have been prepared by the UHV evaporation technique and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). This technique was performed to show the chemical element distribution within the channels. It is found that the deposition condition is an important factor for obtaining nanostructures. Initial deposition leads to Co particle penetration in silicon pores whereas subsequent deposition results only in an increase of the thickness at the surface with no further penetration. Additional experiments were carried out by using the magneto-optical Kerr effect to obtain information about the magnetic properties. The first results show that the magnetic response for layers <5 nm presents an important perpendicular component of magnetization whereas for thicker deposited layers (8 nm < t < 20 nm) the magnetic response seems to act as that of a thin film in which the squareness of the hysteresis loop decreases with increasing film thickness.</EA>
<CC>001B70E75; 001B80A07B</CC>
<FD>Dépôt phase vapeur; Dépôt sous vide; Ultravide; Aimantation; Hystérésis magnétique; Relation structure propriété; Epaisseur; Microscopie électronique balayage; Microscopie électronique transmission; Spectre perte énergie électron; Effet Kerr magnétooptique; Nanoparticule; Cobalt; Nanocristal; Substrat silicium poreux</FD>
<ED>Vapor deposition; Vacuum deposition; Ultrahigh vacuum; Magnetization; Magnetic hysteresis; Property structure relationship; Thickness; Scanning electron microscopy; Transmission electron microscopy; Electron energy loss spectra; Kerr magneto-optical effect; Nanoparticles; Cobalt; Nanocrystal</ED>
<SD>Relación estructura propiedad; Nanocristal</SD>
<LO>INIST-10183A.354000160936440120</LO>
<ID>07-0489693</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000142 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000142 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:07-0489693
   |texte=   Nanostructured cobalt on porous silicon substrate : Structure and magnetic behaviour
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024