Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Formation study of the ball-milled Cr20Co80 alloy

Identifieur interne : 000098 ( PascalFrancis/Corpus ); précédent : 000097; suivant : 000099

Formation study of the ball-milled Cr20Co80 alloy

Auteurs : S. Louidi ; F.-Z. Bentayeb ; J. J. Sunol ; L. Escoda

Source :

RBID : Pascal:10-0176842

Descripteurs français

English descriptors

Abstract

The ball milling of blended chromium and cobalt powders was carried out in a planetary mill in order to obtain a nanostructured Cr20Co80 alloy. The structural modifications at different stages of the ball milling are investigated with X-ray diffraction. Several microstructure parameters such as the crystallite size, microstrains, stacking faults, dislocation density and phase fractions are determined. As the milling proceeded, the chromium peaks disappeared progressively indicating the dissolution of the chromium atoms into the cobalt matrix. Disordered hcp-Co(Cr) and fcc-Co(Cr) solid solutions were formed after 24 h of milling. The hcp solid solution has a lower value of the crystallite size and a higher degree of microstrains and dislocation density than the fcc solid solution. For prolonged milling (48 h), plastic deformations introduce large amounts of stacking faults in the hcp structure leading to the reverse hcp-fcc transformation of the Co(Cr) solid solution. The kinetic parameters n = 0.81 and k = 0.11, obtained using the Johnson-Mehl-Avrami formalism, correspond to diffusion mechanisms through interfaces and dislocations.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0925-8388
A03   1    @0 J. alloys compd.
A05       @2 493
A06       @2 1-2
A08 01  1  ENG  @1 Formation study of the ball-milled Cr20Co80 alloy
A11 01  1    @1 LOUIDI (S.)
A11 02  1    @1 BENTAYEB (F.-Z.)
A11 03  1    @1 SUNOL (J. J.)
A11 04  1    @1 ESCODA (L.)
A14 01      @1 Laboratoire de Magnétisme et de Spectroscopie des Solides (LM2S), Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12 @2 23000 Annaba @3 DZA @Z 1 aut. @Z 2 aut.
A14 02      @1 Département de Fisica, Universitat de Girona, Campus Montilivi @2 Girona 17071 @3 ESP @Z 3 aut. @Z 4 aut.
A20       @1 110-115
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 1151 @5 354000181884260320
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 33 ref.
A47 01  1    @0 10-0176842
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of alloys and compounds
A66 01      @0 CHE
C01 01    ENG  @0 The ball milling of blended chromium and cobalt powders was carried out in a planetary mill in order to obtain a nanostructured Cr20Co80 alloy. The structural modifications at different stages of the ball milling are investigated with X-ray diffraction. Several microstructure parameters such as the crystallite size, microstrains, stacking faults, dislocation density and phase fractions are determined. As the milling proceeded, the chromium peaks disappeared progressively indicating the dissolution of the chromium atoms into the cobalt matrix. Disordered hcp-Co(Cr) and fcc-Co(Cr) solid solutions were formed after 24 h of milling. The hcp solid solution has a lower value of the crystallite size and a higher degree of microstrains and dislocation density than the fcc solid solution. For prolonged milling (48 h), plastic deformations introduce large amounts of stacking faults in the hcp structure leading to the reverse hcp-fcc transformation of the Co(Cr) solid solution. The kinetic parameters n = 0.81 and k = 0.11, obtained using the Johnson-Mehl-Avrami formalism, correspond to diffusion mechanisms through interfaces and dislocations.
C02 01  X    @0 001D11C03B
C02 02  X    @0 240
C03 01  X  FRE  @0 Broyeur boulet @5 02
C03 01  X  ENG  @0 Ball mill @5 02
C03 01  X  GER  @0 Kugelmuehle @5 02
C03 01  X  SPA  @0 Molino bolas @5 02
C03 02  X  FRE  @0 Broyeur satellite @5 03
C03 02  X  ENG  @0 Planetary mill @5 03
C03 02  X  SPA  @0 Molino rodillos satelite @5 03
C03 03  X  FRE  @0 Modification structure @5 04
C03 03  X  ENG  @0 Structure modification @5 04
C03 03  X  SPA  @0 Modificación estructural @5 04
C03 04  X  FRE  @0 Diffraction RX @5 05
C03 04  X  ENG  @0 X ray diffraction @5 05
C03 04  X  GER  @0 Roentgenbeugung @5 05
C03 04  X  SPA  @0 Difracción RX @5 05
C03 05  X  FRE  @0 Microstructure @5 06
C03 05  X  ENG  @0 Microstructure @5 06
C03 05  X  GER  @0 Mikrogefuege @5 06
C03 05  X  SPA  @0 Microestructura @5 06
C03 06  X  FRE  @0 Densité défaut empilement @5 07
C03 06  X  ENG  @0 Stacking fault density @5 07
C03 06  X  SPA  @0 Densidad defecto apilamiento @5 07
C03 07  X  FRE  @0 Métallurgie poudre @5 08
C03 07  X  ENG  @0 Powder metallurgy @5 08
C03 07  X  GER  @0 Pulvermetallurgie @5 08
C03 07  X  SPA  @0 Metalurgia polvo @5 08
C03 08  X  FRE  @0 Densité dislocation @5 09
C03 08  X  ENG  @0 Dislocation density @5 09
C03 08  X  GER  @0 Versetzungsdichte @5 09
C03 08  X  SPA  @0 Densidad dislocación @5 09
C03 09  X  FRE  @0 Défaut empilement @5 12
C03 09  X  ENG  @0 Stacking fault @5 12
C03 09  X  GER  @0 Stapelfehler @5 12
C03 09  X  SPA  @0 Defecto apilado @5 12
C03 10  X  FRE  @0 Cinétique @5 13
C03 10  X  ENG  @0 Kinetics @5 13
C03 10  X  GER  @0 Kinetik @5 13
C03 10  X  SPA  @0 Cinética @5 13
C03 11  X  FRE  @0 Cobalt alliage @5 15
C03 11  X  ENG  @0 Cobalt alloy @5 15
C03 11  X  GER  @0 Cobaltlegierung @5 15
C03 11  X  SPA  @0 Cobalto aleación @5 15
C03 12  3  FRE  @0 Réseau cubique face centrée @5 19
C03 12  3  ENG  @0 FCC lattices @5 19
C03 13  3  FRE  @0 Réseau hexagonal compact @5 20
C03 13  3  ENG  @0 HCP lattices @5 20
C03 14  X  FRE  @0 Chrome alliage @5 21
C03 14  X  ENG  @0 Chromium alloy @5 21
C03 14  X  GER  @0 Chromlegierung @5 21
C03 14  X  SPA  @0 Cromo aleación @5 21
C03 15  X  FRE  @0 Métal transition alliage @5 48
C03 15  X  ENG  @0 Transition metal alloy @5 48
C03 15  X  GER  @0 Uebergangsmetallegierung @5 48
C03 15  X  SPA  @0 Metal transición aleación @5 48
N21       @1 116

Format Inist (serveur)

NO : PASCAL 10-0176842 INIST
ET : Formation study of the ball-milled Cr20Co80 alloy
AU : LOUIDI (S.); BENTAYEB (F.-Z.); SUNOL (J. J.); ESCODA (L.)
AF : Laboratoire de Magnétisme et de Spectroscopie des Solides (LM2S), Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12/23000 Annaba/Algérie (1 aut., 2 aut.); Département de Fisica, Universitat de Girona, Campus Montilivi/Girona 17071/Espagne (3 aut., 4 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of alloys and compounds; ISSN 0925-8388; Suisse; Da. 2010; Vol. 493; No. 1-2; Pp. 110-115; Bibl. 33 ref.
LA : Anglais
EA : The ball milling of blended chromium and cobalt powders was carried out in a planetary mill in order to obtain a nanostructured Cr20Co80 alloy. The structural modifications at different stages of the ball milling are investigated with X-ray diffraction. Several microstructure parameters such as the crystallite size, microstrains, stacking faults, dislocation density and phase fractions are determined. As the milling proceeded, the chromium peaks disappeared progressively indicating the dissolution of the chromium atoms into the cobalt matrix. Disordered hcp-Co(Cr) and fcc-Co(Cr) solid solutions were formed after 24 h of milling. The hcp solid solution has a lower value of the crystallite size and a higher degree of microstrains and dislocation density than the fcc solid solution. For prolonged milling (48 h), plastic deformations introduce large amounts of stacking faults in the hcp structure leading to the reverse hcp-fcc transformation of the Co(Cr) solid solution. The kinetic parameters n = 0.81 and k = 0.11, obtained using the Johnson-Mehl-Avrami formalism, correspond to diffusion mechanisms through interfaces and dislocations.
CC : 001D11C03B; 240
FD : Broyeur boulet; Broyeur satellite; Modification structure; Diffraction RX; Microstructure; Densité défaut empilement; Métallurgie poudre; Densité dislocation; Défaut empilement; Cinétique; Cobalt alliage; Réseau cubique face centrée; Réseau hexagonal compact; Chrome alliage; Métal transition alliage
ED : Ball mill; Planetary mill; Structure modification; X ray diffraction; Microstructure; Stacking fault density; Powder metallurgy; Dislocation density; Stacking fault; Kinetics; Cobalt alloy; FCC lattices; HCP lattices; Chromium alloy; Transition metal alloy
GD : Kugelmuehle; Roentgenbeugung; Mikrogefuege; Pulvermetallurgie; Versetzungsdichte; Stapelfehler; Kinetik; Cobaltlegierung; Chromlegierung; Uebergangsmetallegierung
SD : Molino bolas; Molino rodillos satelite; Modificación estructural; Difracción RX; Microestructura; Densidad defecto apilamiento; Metalurgia polvo; Densidad dislocación; Defecto apilado; Cinética; Cobalto aleación; Cromo aleación; Metal transición aleación
LO : INIST-1151.354000181884260320
ID : 10-0176842

Links to Exploration step

Pascal:10-0176842

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Formation study of the ball-milled Cr
<sub>20</sub>
Co
<sub>80</sub>
alloy</title>
<author>
<name sortKey="Louidi, S" sort="Louidi, S" uniqKey="Louidi S" first="S." last="Louidi">S. Louidi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Magnétisme et de Spectroscopie des Solides (LM2S), Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12</s1>
<s2>23000 Annaba</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bentayeb, F Z" sort="Bentayeb, F Z" uniqKey="Bentayeb F" first="F.-Z." last="Bentayeb">F.-Z. Bentayeb</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Magnétisme et de Spectroscopie des Solides (LM2S), Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12</s1>
<s2>23000 Annaba</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sunol, J J" sort="Sunol, J J" uniqKey="Sunol J" first="J. J." last="Sunol">J. J. Sunol</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Département de Fisica, Universitat de Girona, Campus Montilivi</s1>
<s2>Girona 17071</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Escoda, L" sort="Escoda, L" uniqKey="Escoda L" first="L." last="Escoda">L. Escoda</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Département de Fisica, Universitat de Girona, Campus Montilivi</s1>
<s2>Girona 17071</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0176842</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0176842 INIST</idno>
<idno type="RBID">Pascal:10-0176842</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000098</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Formation study of the ball-milled Cr
<sub>20</sub>
Co
<sub>80</sub>
alloy</title>
<author>
<name sortKey="Louidi, S" sort="Louidi, S" uniqKey="Louidi S" first="S." last="Louidi">S. Louidi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Magnétisme et de Spectroscopie des Solides (LM2S), Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12</s1>
<s2>23000 Annaba</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bentayeb, F Z" sort="Bentayeb, F Z" uniqKey="Bentayeb F" first="F.-Z." last="Bentayeb">F.-Z. Bentayeb</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Magnétisme et de Spectroscopie des Solides (LM2S), Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12</s1>
<s2>23000 Annaba</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sunol, J J" sort="Sunol, J J" uniqKey="Sunol J" first="J. J." last="Sunol">J. J. Sunol</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Département de Fisica, Universitat de Girona, Campus Montilivi</s1>
<s2>Girona 17071</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Escoda, L" sort="Escoda, L" uniqKey="Escoda L" first="L." last="Escoda">L. Escoda</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Département de Fisica, Universitat de Girona, Campus Montilivi</s1>
<s2>Girona 17071</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of alloys and compounds</title>
<title level="j" type="abbreviated">J. alloys compd.</title>
<idno type="ISSN">0925-8388</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of alloys and compounds</title>
<title level="j" type="abbreviated">J. alloys compd.</title>
<idno type="ISSN">0925-8388</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ball mill</term>
<term>Chromium alloy</term>
<term>Cobalt alloy</term>
<term>Dislocation density</term>
<term>FCC lattices</term>
<term>HCP lattices</term>
<term>Kinetics</term>
<term>Microstructure</term>
<term>Planetary mill</term>
<term>Powder metallurgy</term>
<term>Stacking fault</term>
<term>Stacking fault density</term>
<term>Structure modification</term>
<term>Transition metal alloy</term>
<term>X ray diffraction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Broyeur boulet</term>
<term>Broyeur satellite</term>
<term>Modification structure</term>
<term>Diffraction RX</term>
<term>Microstructure</term>
<term>Densité défaut empilement</term>
<term>Métallurgie poudre</term>
<term>Densité dislocation</term>
<term>Défaut empilement</term>
<term>Cinétique</term>
<term>Cobalt alliage</term>
<term>Réseau cubique face centrée</term>
<term>Réseau hexagonal compact</term>
<term>Chrome alliage</term>
<term>Métal transition alliage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ball milling of blended chromium and cobalt powders was carried out in a planetary mill in order to obtain a nanostructured Cr
<sub>20</sub>
Co
<sub>80</sub>
alloy. The structural modifications at different stages of the ball milling are investigated with X-ray diffraction. Several microstructure parameters such as the crystallite size, microstrains, stacking faults, dislocation density and phase fractions are determined. As the milling proceeded, the chromium peaks disappeared progressively indicating the dissolution of the chromium atoms into the cobalt matrix. Disordered hcp-Co(Cr) and fcc-Co(Cr) solid solutions were formed after 24 h of milling. The hcp solid solution has a lower value of the crystallite size and a higher degree of microstrains and dislocation density than the fcc solid solution. For prolonged milling (48 h), plastic deformations introduce large amounts of stacking faults in the hcp structure leading to the reverse hcp-fcc transformation of the Co(Cr) solid solution. The kinetic parameters n = 0.81 and k = 0.11, obtained using the Johnson-Mehl-Avrami formalism, correspond to diffusion mechanisms through interfaces and dislocations.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>493</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Formation study of the ball-milled Cr
<sub>20</sub>
Co
<sub>80</sub>
alloy</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LOUIDI (S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BENTAYEB (F.-Z.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SUNOL (J. J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ESCODA (L.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire de Magnétisme et de Spectroscopie des Solides (LM2S), Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12</s1>
<s2>23000 Annaba</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Département de Fisica, Universitat de Girona, Campus Montilivi</s1>
<s2>Girona 17071</s2>
<s3>ESP</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>110-115</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000181884260320</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0176842</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The ball milling of blended chromium and cobalt powders was carried out in a planetary mill in order to obtain a nanostructured Cr
<sub>20</sub>
Co
<sub>80</sub>
alloy. The structural modifications at different stages of the ball milling are investigated with X-ray diffraction. Several microstructure parameters such as the crystallite size, microstrains, stacking faults, dislocation density and phase fractions are determined. As the milling proceeded, the chromium peaks disappeared progressively indicating the dissolution of the chromium atoms into the cobalt matrix. Disordered hcp-Co(Cr) and fcc-Co(Cr) solid solutions were formed after 24 h of milling. The hcp solid solution has a lower value of the crystallite size and a higher degree of microstrains and dislocation density than the fcc solid solution. For prolonged milling (48 h), plastic deformations introduce large amounts of stacking faults in the hcp structure leading to the reverse hcp-fcc transformation of the Co(Cr) solid solution. The kinetic parameters n = 0.81 and k = 0.11, obtained using the Johnson-Mehl-Avrami formalism, correspond to diffusion mechanisms through interfaces and dislocations.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D11C03B</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>240</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Broyeur boulet</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Ball mill</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="GER">
<s0>Kugelmuehle</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Molino bolas</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Broyeur satellite</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Planetary mill</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Molino rodillos satelite</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Modification structure</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Structure modification</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Modificación estructural</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="GER">
<s0>Roentgenbeugung</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Microstructure</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Microstructure</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="GER">
<s0>Mikrogefuege</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Microestructura</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Densité défaut empilement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Stacking fault density</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Densidad defecto apilamiento</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Métallurgie poudre</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Powder metallurgy</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="GER">
<s0>Pulvermetallurgie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Metalurgia polvo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Densité dislocation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Dislocation density</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="GER">
<s0>Versetzungsdichte</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Densidad dislocación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Défaut empilement</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Stacking fault</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="GER">
<s0>Stapelfehler</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Defecto apilado</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cinétique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Kinetics</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="GER">
<s0>Kinetik</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Cinética</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Cobalt alliage</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Cobalt alloy</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="GER">
<s0>Cobaltlegierung</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Cobalto aleación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Réseau cubique face centrée</s0>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>FCC lattices</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Réseau hexagonal compact</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>HCP lattices</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Chrome alliage</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Chromium alloy</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="X" l="GER">
<s0>Chromlegierung</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Cromo aleación</s0>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Métal transition alliage</s0>
<s5>48</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Transition metal alloy</s0>
<s5>48</s5>
</fC03>
<fC03 i1="15" i2="X" l="GER">
<s0>Uebergangsmetallegierung</s0>
<s5>48</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Metal transición aleación</s0>
<s5>48</s5>
</fC03>
<fN21>
<s1>116</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 10-0176842 INIST</NO>
<ET>Formation study of the ball-milled Cr
<sub>20</sub>
Co
<sub>80</sub>
alloy</ET>
<AU>LOUIDI (S.); BENTAYEB (F.-Z.); SUNOL (J. J.); ESCODA (L.)</AU>
<AF>Laboratoire de Magnétisme et de Spectroscopie des Solides (LM2S), Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12/23000 Annaba/Algérie (1 aut., 2 aut.); Département de Fisica, Universitat de Girona, Campus Montilivi/Girona 17071/Espagne (3 aut., 4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of alloys and compounds; ISSN 0925-8388; Suisse; Da. 2010; Vol. 493; No. 1-2; Pp. 110-115; Bibl. 33 ref.</SO>
<LA>Anglais</LA>
<EA>The ball milling of blended chromium and cobalt powders was carried out in a planetary mill in order to obtain a nanostructured Cr
<sub>20</sub>
Co
<sub>80</sub>
alloy. The structural modifications at different stages of the ball milling are investigated with X-ray diffraction. Several microstructure parameters such as the crystallite size, microstrains, stacking faults, dislocation density and phase fractions are determined. As the milling proceeded, the chromium peaks disappeared progressively indicating the dissolution of the chromium atoms into the cobalt matrix. Disordered hcp-Co(Cr) and fcc-Co(Cr) solid solutions were formed after 24 h of milling. The hcp solid solution has a lower value of the crystallite size and a higher degree of microstrains and dislocation density than the fcc solid solution. For prolonged milling (48 h), plastic deformations introduce large amounts of stacking faults in the hcp structure leading to the reverse hcp-fcc transformation of the Co(Cr) solid solution. The kinetic parameters n = 0.81 and k = 0.11, obtained using the Johnson-Mehl-Avrami formalism, correspond to diffusion mechanisms through interfaces and dislocations.</EA>
<CC>001D11C03B; 240</CC>
<FD>Broyeur boulet; Broyeur satellite; Modification structure; Diffraction RX; Microstructure; Densité défaut empilement; Métallurgie poudre; Densité dislocation; Défaut empilement; Cinétique; Cobalt alliage; Réseau cubique face centrée; Réseau hexagonal compact; Chrome alliage; Métal transition alliage</FD>
<ED>Ball mill; Planetary mill; Structure modification; X ray diffraction; Microstructure; Stacking fault density; Powder metallurgy; Dislocation density; Stacking fault; Kinetics; Cobalt alloy; FCC lattices; HCP lattices; Chromium alloy; Transition metal alloy</ED>
<GD>Kugelmuehle; Roentgenbeugung; Mikrogefuege; Pulvermetallurgie; Versetzungsdichte; Stapelfehler; Kinetik; Cobaltlegierung; Chromlegierung; Uebergangsmetallegierung</GD>
<SD>Molino bolas; Molino rodillos satelite; Modificación estructural; Difracción RX; Microestructura; Densidad defecto apilamiento; Metalurgia polvo; Densidad dislocación; Defecto apilado; Cinética; Cobalto aleación; Cromo aleación; Metal transición aleación</SD>
<LO>INIST-1151.354000181884260320</LO>
<ID>10-0176842</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000098 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000098 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0176842
   |texte=   Formation study of the ball-milled Cr20Co80 alloy
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024