Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electronic and magnetic properties of Co-doped ZnO: First principles study

Identifieur interne : 000088 ( PascalFrancis/Corpus ); précédent : 000087; suivant : 000089

Electronic and magnetic properties of Co-doped ZnO: First principles study

Auteurs : H. Rozale ; A. Lakdja ; A. Lazreg ; P. Ruterana

Source :

RBID : Pascal:10-0362570

Descripteurs français

English descriptors

Abstract

In order to investigate the electronic and magnetic properties of Co-ZnO alloys, we used a full potential linearized augmented plane wave (FPLAPW) method within the density functional theory (DFT), as implement in the WIEN2K package. This work is carried out within the LSDA approximation as the exchange-correlation potential. We have modeled ZnO doped with 6.25, 12.5, and 18.75% of Co. It pointed out that the band gap decrease and the magnetic moments increase with the atomic fraction of Cobalt. The ZnxCo1-xO is found to be a semiconductor, where the filled-states are located in the valence bands and the empty ones above the conduction band edge. The filled and empty d-states are also shown to shift downwards and upwards in the valence and the conduction bands, respectively, with increase in the U potential. The analysis of the partial density of states reveals that the reduction of the ZnO band gap is due principally to the strong p-d interaction of O and Co.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0370-1972
A02 01      @0 PSSBBD
A03   1    @0 Phys. status solidi, B, Basic res.
A05       @2 247
A06       @2 7
A08 01  1  ENG  @1 Electronic and magnetic properties of Co-doped ZnO: First principles study
A11 01  1    @1 ROZALE (H.)
A11 02  1    @1 LAKDJA (A.)
A11 03  1    @1 LAZREG (A.)
A11 04  1    @1 RUTERANA (P.)
A14 01      @1 Modelling and Simulation in Materials Science Laboratory (MSMSL), University of Sidi Bel-Abbes @2 Sidi Bel-Abbes 22000 @3 DZA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 CIMAP, CNRS-ENSICAEN-CEA-UCBN, 6 Boulevard Maréchal Juin @2 Caen 14050 @3 FRA @Z 4 aut.
A20       @1 1641-1644
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 10183B @5 354000191661650090
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 32 ref.
A47 01  1    @0 10-0362570
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Physica status solidi. B. Basic research
A66 01      @0 DEU
C01 01    ENG  @0 In order to investigate the electronic and magnetic properties of Co-ZnO alloys, we used a full potential linearized augmented plane wave (FPLAPW) method within the density functional theory (DFT), as implement in the WIEN2K package. This work is carried out within the LSDA approximation as the exchange-correlation potential. We have modeled ZnO doped with 6.25, 12.5, and 18.75% of Co. It pointed out that the band gap decrease and the magnetic moments increase with the atomic fraction of Cobalt. The ZnxCo1-xO is found to be a semiconductor, where the filled-states are located in the valence bands and the empty ones above the conduction band edge. The filled and empty d-states are also shown to shift downwards and upwards in the valence and the conduction bands, respectively, with increase in the U potential. The analysis of the partial density of states reveals that the reduction of the ZnO band gap is due principally to the strong p-d interaction of O and Co.
C02 01  3    @0 001B70A20N
C03 01  3  FRE  @0 Structure électronique @5 02
C03 01  3  ENG  @0 Electronic structure @5 02
C03 02  3  FRE  @0 Propriété magnétique @5 03
C03 02  3  ENG  @0 Magnetic properties @5 03
C03 03  3  FRE  @0 Addition cobalt @5 04
C03 03  3  ENG  @0 Cobalt additions @5 04
C03 04  3  FRE  @0 Méthode fonctionnelle densité @5 05
C03 04  3  ENG  @0 Density functional method @5 05
C03 05  3  FRE  @0 Calcul APW @5 06
C03 05  3  ENG  @0 APW calculations @5 06
C03 06  X  FRE  @0 Approximation densité spin locale @5 07
C03 06  X  ENG  @0 Local spin density approximation @5 07
C03 06  X  SPA  @0 Aproximación densidad espin local @5 07
C03 07  3  FRE  @0 Interaction échange @5 08
C03 07  3  ENG  @0 Exchange interactions @5 08
C03 08  X  FRE  @0 Dopage @5 09
C03 08  X  ENG  @0 Doping @5 09
C03 08  X  SPA  @0 Doping @5 09
C03 09  3  FRE  @0 Bande interdite @5 10
C03 09  3  ENG  @0 Energy gap @5 10
C03 10  3  FRE  @0 Moment magnétique @5 11
C03 10  3  ENG  @0 Magnetic moments @5 11
C03 11  3  FRE  @0 Bande valence @5 12
C03 11  3  ENG  @0 Valence bands @5 12
C03 12  3  FRE  @0 Densité état électron @5 14
C03 12  3  ENG  @0 Electronic density of states @5 14
C03 13  X  FRE  @0 Oxyde de zinc @5 15
C03 13  X  ENG  @0 Zinc oxide @5 15
C03 13  X  SPA  @0 Zinc óxido @5 15
C03 14  3  FRE  @0 Semiconducteur @5 17
C03 14  3  ENG  @0 Semiconductor materials @5 17
C03 15  3  FRE  @0 ZnO @4 INC @5 52
N21       @1 235
pR  
A30 01  1  ENG  @1 Wide band gap II-VI and III-V semiconductors. 2009 E-MRS Fall Meeting @3 Warsaw POL @4 2009-09-14

Format Inist (serveur)

NO : PASCAL 10-0362570 INIST
ET : Electronic and magnetic properties of Co-doped ZnO: First principles study
AU : ROZALE (H.); LAKDJA (A.); LAZREG (A.); RUTERANA (P.)
AF : Modelling and Simulation in Materials Science Laboratory (MSMSL), University of Sidi Bel-Abbes/Sidi Bel-Abbes 22000/Algérie (1 aut., 2 aut., 3 aut.); CIMAP, CNRS-ENSICAEN-CEA-UCBN, 6 Boulevard Maréchal Juin/Caen 14050/France (4 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Physica status solidi. B. Basic research; ISSN 0370-1972; Coden PSSBBD; Allemagne; Da. 2010; Vol. 247; No. 7; Pp. 1641-1644; Bibl. 32 ref.
LA : Anglais
EA : In order to investigate the electronic and magnetic properties of Co-ZnO alloys, we used a full potential linearized augmented plane wave (FPLAPW) method within the density functional theory (DFT), as implement in the WIEN2K package. This work is carried out within the LSDA approximation as the exchange-correlation potential. We have modeled ZnO doped with 6.25, 12.5, and 18.75% of Co. It pointed out that the band gap decrease and the magnetic moments increase with the atomic fraction of Cobalt. The ZnxCo1-xO is found to be a semiconductor, where the filled-states are located in the valence bands and the empty ones above the conduction band edge. The filled and empty d-states are also shown to shift downwards and upwards in the valence and the conduction bands, respectively, with increase in the U potential. The analysis of the partial density of states reveals that the reduction of the ZnO band gap is due principally to the strong p-d interaction of O and Co.
CC : 001B70A20N
FD : Structure électronique; Propriété magnétique; Addition cobalt; Méthode fonctionnelle densité; Calcul APW; Approximation densité spin locale; Interaction échange; Dopage; Bande interdite; Moment magnétique; Bande valence; Densité état électron; Oxyde de zinc; Semiconducteur; ZnO
ED : Electronic structure; Magnetic properties; Cobalt additions; Density functional method; APW calculations; Local spin density approximation; Exchange interactions; Doping; Energy gap; Magnetic moments; Valence bands; Electronic density of states; Zinc oxide; Semiconductor materials
SD : Aproximación densidad espin local; Doping; Zinc óxido
LO : INIST-10183B.354000191661650090
ID : 10-0362570

Links to Exploration step

Pascal:10-0362570

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electronic and magnetic properties of Co-doped ZnO: First principles study</title>
<author>
<name sortKey="Rozale, H" sort="Rozale, H" uniqKey="Rozale H" first="H." last="Rozale">H. Rozale</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Modelling and Simulation in Materials Science Laboratory (MSMSL), University of Sidi Bel-Abbes</s1>
<s2>Sidi Bel-Abbes 22000</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lakdja, A" sort="Lakdja, A" uniqKey="Lakdja A" first="A." last="Lakdja">A. Lakdja</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Modelling and Simulation in Materials Science Laboratory (MSMSL), University of Sidi Bel-Abbes</s1>
<s2>Sidi Bel-Abbes 22000</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lazreg, A" sort="Lazreg, A" uniqKey="Lazreg A" first="A." last="Lazreg">A. Lazreg</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Modelling and Simulation in Materials Science Laboratory (MSMSL), University of Sidi Bel-Abbes</s1>
<s2>Sidi Bel-Abbes 22000</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ruterana, P" sort="Ruterana, P" uniqKey="Ruterana P" first="P." last="Ruterana">P. Ruterana</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CIMAP, CNRS-ENSICAEN-CEA-UCBN, 6 Boulevard Maréchal Juin</s1>
<s2>Caen 14050</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0362570</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0362570 INIST</idno>
<idno type="RBID">Pascal:10-0362570</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000088</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Electronic and magnetic properties of Co-doped ZnO: First principles study</title>
<author>
<name sortKey="Rozale, H" sort="Rozale, H" uniqKey="Rozale H" first="H." last="Rozale">H. Rozale</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Modelling and Simulation in Materials Science Laboratory (MSMSL), University of Sidi Bel-Abbes</s1>
<s2>Sidi Bel-Abbes 22000</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lakdja, A" sort="Lakdja, A" uniqKey="Lakdja A" first="A." last="Lakdja">A. Lakdja</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Modelling and Simulation in Materials Science Laboratory (MSMSL), University of Sidi Bel-Abbes</s1>
<s2>Sidi Bel-Abbes 22000</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lazreg, A" sort="Lazreg, A" uniqKey="Lazreg A" first="A." last="Lazreg">A. Lazreg</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Modelling and Simulation in Materials Science Laboratory (MSMSL), University of Sidi Bel-Abbes</s1>
<s2>Sidi Bel-Abbes 22000</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ruterana, P" sort="Ruterana, P" uniqKey="Ruterana P" first="P." last="Ruterana">P. Ruterana</name>
<affiliation>
<inist:fA14 i1="02">
<s1>CIMAP, CNRS-ENSICAEN-CEA-UCBN, 6 Boulevard Maréchal Juin</s1>
<s2>Caen 14050</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Physica status solidi. B. Basic research</title>
<title level="j" type="abbreviated">Phys. status solidi, B, Basic res.</title>
<idno type="ISSN">0370-1972</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Physica status solidi. B. Basic research</title>
<title level="j" type="abbreviated">Phys. status solidi, B, Basic res.</title>
<idno type="ISSN">0370-1972</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>APW calculations</term>
<term>Cobalt additions</term>
<term>Density functional method</term>
<term>Doping</term>
<term>Electronic density of states</term>
<term>Electronic structure</term>
<term>Energy gap</term>
<term>Exchange interactions</term>
<term>Local spin density approximation</term>
<term>Magnetic moments</term>
<term>Magnetic properties</term>
<term>Semiconductor materials</term>
<term>Valence bands</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Structure électronique</term>
<term>Propriété magnétique</term>
<term>Addition cobalt</term>
<term>Méthode fonctionnelle densité</term>
<term>Calcul APW</term>
<term>Approximation densité spin locale</term>
<term>Interaction échange</term>
<term>Dopage</term>
<term>Bande interdite</term>
<term>Moment magnétique</term>
<term>Bande valence</term>
<term>Densité état électron</term>
<term>Oxyde de zinc</term>
<term>Semiconducteur</term>
<term>ZnO</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In order to investigate the electronic and magnetic properties of Co-ZnO alloys, we used a full potential linearized augmented plane wave (FPLAPW) method within the density functional theory (DFT), as implement in the WIEN2K package. This work is carried out within the LSDA approximation as the exchange-correlation potential. We have modeled ZnO doped with 6.25, 12.5, and 18.75% of Co. It pointed out that the band gap decrease and the magnetic moments increase with the atomic fraction of Cobalt. The Zn
<sub>x</sub>
Co
<sub>1-x</sub>
O is found to be a semiconductor, where the filled-states are located in the valence bands and the empty ones above the conduction band edge. The filled and empty d-states are also shown to shift downwards and upwards in the valence and the conduction bands, respectively, with increase in the U potential. The analysis of the partial density of states reveals that the reduction of the ZnO band gap is due principally to the strong p-d interaction of O and Co.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0370-1972</s0>
</fA01>
<fA02 i1="01">
<s0>PSSBBD</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. status solidi, B, Basic res.</s0>
</fA03>
<fA05>
<s2>247</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electronic and magnetic properties of Co-doped ZnO: First principles study</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ROZALE (H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LAKDJA (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LAZREG (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RUTERANA (P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Modelling and Simulation in Materials Science Laboratory (MSMSL), University of Sidi Bel-Abbes</s1>
<s2>Sidi Bel-Abbes 22000</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CIMAP, CNRS-ENSICAEN-CEA-UCBN, 6 Boulevard Maréchal Juin</s1>
<s2>Caen 14050</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1641-1644</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10183B</s2>
<s5>354000191661650090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>32 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0362570</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica status solidi. B. Basic research</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In order to investigate the electronic and magnetic properties of Co-ZnO alloys, we used a full potential linearized augmented plane wave (FPLAPW) method within the density functional theory (DFT), as implement in the WIEN2K package. This work is carried out within the LSDA approximation as the exchange-correlation potential. We have modeled ZnO doped with 6.25, 12.5, and 18.75% of Co. It pointed out that the band gap decrease and the magnetic moments increase with the atomic fraction of Cobalt. The Zn
<sub>x</sub>
Co
<sub>1-x</sub>
O is found to be a semiconductor, where the filled-states are located in the valence bands and the empty ones above the conduction band edge. The filled and empty d-states are also shown to shift downwards and upwards in the valence and the conduction bands, respectively, with increase in the U potential. The analysis of the partial density of states reveals that the reduction of the ZnO band gap is due principally to the strong p-d interaction of O and Co.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70A20N</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Propriété magnétique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Magnetic properties</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Addition cobalt</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Cobalt additions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Calcul APW</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>APW calculations</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Approximation densité spin locale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Local spin density approximation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Aproximación densidad espin local</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Interaction échange</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Exchange interactions</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Doping</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Doping</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Moment magnétique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Magnetic moments</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Bande valence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Valence bands</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Densité état électron</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Electronic density of states</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>235</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Wide band gap II-VI and III-V semiconductors. 2009 E-MRS Fall Meeting</s1>
<s3>Warsaw POL</s3>
<s4>2009-09-14</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 10-0362570 INIST</NO>
<ET>Electronic and magnetic properties of Co-doped ZnO: First principles study</ET>
<AU>ROZALE (H.); LAKDJA (A.); LAZREG (A.); RUTERANA (P.)</AU>
<AF>Modelling and Simulation in Materials Science Laboratory (MSMSL), University of Sidi Bel-Abbes/Sidi Bel-Abbes 22000/Algérie (1 aut., 2 aut., 3 aut.); CIMAP, CNRS-ENSICAEN-CEA-UCBN, 6 Boulevard Maréchal Juin/Caen 14050/France (4 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Physica status solidi. B. Basic research; ISSN 0370-1972; Coden PSSBBD; Allemagne; Da. 2010; Vol. 247; No. 7; Pp. 1641-1644; Bibl. 32 ref.</SO>
<LA>Anglais</LA>
<EA>In order to investigate the electronic and magnetic properties of Co-ZnO alloys, we used a full potential linearized augmented plane wave (FPLAPW) method within the density functional theory (DFT), as implement in the WIEN2K package. This work is carried out within the LSDA approximation as the exchange-correlation potential. We have modeled ZnO doped with 6.25, 12.5, and 18.75% of Co. It pointed out that the band gap decrease and the magnetic moments increase with the atomic fraction of Cobalt. The Zn
<sub>x</sub>
Co
<sub>1-x</sub>
O is found to be a semiconductor, where the filled-states are located in the valence bands and the empty ones above the conduction band edge. The filled and empty d-states are also shown to shift downwards and upwards in the valence and the conduction bands, respectively, with increase in the U potential. The analysis of the partial density of states reveals that the reduction of the ZnO band gap is due principally to the strong p-d interaction of O and Co.</EA>
<CC>001B70A20N</CC>
<FD>Structure électronique; Propriété magnétique; Addition cobalt; Méthode fonctionnelle densité; Calcul APW; Approximation densité spin locale; Interaction échange; Dopage; Bande interdite; Moment magnétique; Bande valence; Densité état électron; Oxyde de zinc; Semiconducteur; ZnO</FD>
<ED>Electronic structure; Magnetic properties; Cobalt additions; Density functional method; APW calculations; Local spin density approximation; Exchange interactions; Doping; Energy gap; Magnetic moments; Valence bands; Electronic density of states; Zinc oxide; Semiconductor materials</ED>
<SD>Aproximación densidad espin local; Doping; Zinc óxido</SD>
<LO>INIST-10183B.354000191661650090</LO>
<ID>10-0362570</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000088 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000088 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:10-0362570
   |texte=   Electronic and magnetic properties of Co-doped ZnO: First principles study
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024