Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural and magnetic properties of Co50Ni50 powder mixtures

Identifieur interne : 000067 ( PascalFrancis/Corpus ); précédent : 000066; suivant : 000068

Structural and magnetic properties of Co50Ni50 powder mixtures

Auteurs : N. Loudjani ; N. Bensebaa ; L. Dekhil ; S. Alleg ; J. J. Sunol

Source :

RBID : Pascal:11-0386997

Descripteurs français

English descriptors

Abstract

In the present work, morphological, structural, thermal and magnetic properties of nanocrystalline Co50Ni50 alloy prepared by high energy planetary ball milling have been studied by means of scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. The coercivity and the saturation magnetization of alloyed powders were measured at room temperature by a vibration sample magnetization. Morphological observations indicated a narrow distribution in the particle and homogeneous shape form with mean average particle size around 130 μm2. The results show that an allotropic Co transformation hcp→fcc occurs within the three first hours of milling and contrary to what expected, the Rietveld refinement method reveals the formation of two fcc solid solutions (SS): fcc Co(Ni) and Ni(Co) beside a small amount of the undissolved Co hcp. Thermal measurement, as a function of milling time was carried out to confirm the existence of the hcp phase and to estimate its amount. Magnetic measurement indicated that the 48 h milled powders with a steady state particles size have the highest saturation (105.3 emu/g) and the lowest coercivity (34.5 Oe).

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0304-8853
A02 01      @0 JMMMDC
A03   1    @0 J. magn. magn. mater.
A05       @2 323
A06       @2 23
A08 01  1  ENG  @1 Structural and magnetic properties of Co50Ni50 powder mixtures
A11 01  1    @1 LOUDJANI (N.)
A11 02  1    @1 BENSEBAA (N.)
A11 03  1    @1 DEKHIL (L.)
A11 04  1    @1 ALLEG (S.)
A11 05  1    @1 SUNOL (J. J.)
A14 01      @1 Laboratoire de Magnétisme et Spectroscopie des solides, Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12 @2 23000 Annaba @3 DZA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 Dep. de Fisica, Universitat de Girona, Campus Montilivi @2 Girona 17071 @3 ESP @Z 5 aut.
A20       @1 3063-3070
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 17230 @5 354000191167560260
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 38 ref.
A47 01  1    @0 11-0386997
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of magnetism and magnetic materials
A66 01      @0 NLD
C01 01    ENG  @0 In the present work, morphological, structural, thermal and magnetic properties of nanocrystalline Co50Ni50 alloy prepared by high energy planetary ball milling have been studied by means of scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. The coercivity and the saturation magnetization of alloyed powders were measured at room temperature by a vibration sample magnetization. Morphological observations indicated a narrow distribution in the particle and homogeneous shape form with mean average particle size around 130 μm2. The results show that an allotropic Co transformation hcp→fcc occurs within the three first hours of milling and contrary to what expected, the Rietveld refinement method reveals the formation of two fcc solid solutions (SS): fcc Co(Ni) and Ni(Co) beside a small amount of the undissolved Co hcp. Thermal measurement, as a function of milling time was carried out to confirm the existence of the hcp phase and to estimate its amount. Magnetic measurement indicated that the 48 h milled powders with a steady state particles size have the highest saturation (105.3 emu/g) and the lowest coercivity (34.5 Oe).
C02 01  3    @0 001B70E75
C02 02  3    @0 001B60A46
C03 01  3  FRE  @0 Paramètre cristallin @5 02
C03 01  3  ENG  @0 Lattice parameters @5 02
C03 02  3  FRE  @0 Alliage mécanique @5 03
C03 02  3  ENG  @0 Mechanical alloying @5 03
C03 03  X  FRE  @0 Broyeur satellite @5 04
C03 03  X  ENG  @0 Planetary mill @5 04
C03 03  X  SPA  @0 Molino rodillos satelite @5 04
C03 04  X  FRE  @0 Broyeur boulet @5 05
C03 04  X  ENG  @0 Ball mill @5 05
C03 04  X  SPA  @0 Molino bolas @5 05
C03 05  3  FRE  @0 Microscopie électronique balayage @5 06
C03 05  3  ENG  @0 Scanning electron microscopy @5 06
C03 06  3  FRE  @0 Diffraction RX @5 07
C03 06  3  ENG  @0 XRD @5 07
C03 07  3  FRE  @0 Calorimétrie différentielle balayage @5 08
C03 07  3  ENG  @0 Differential scanning calorimetry @5 08
C03 08  3  FRE  @0 Force coercitive @5 09
C03 08  3  ENG  @0 Coercive force @5 09
C03 09  X  FRE  @0 Aimantation saturation @5 10
C03 09  X  ENG  @0 Saturation magnetization @5 10
C03 09  X  SPA  @0 Imanación saturación @5 10
C03 10  3  FRE  @0 Dimension particule @5 11
C03 10  3  ENG  @0 Particle size @5 11
C03 11  X  FRE  @0 Transformation allotropique @5 12
C03 11  X  ENG  @0 Allotropic transformation @5 12
C03 11  X  SPA  @0 Transformación alotrópica @5 12
C03 12  X  FRE  @0 Relation fabrication propriété @5 13
C03 12  X  ENG  @0 Fabrication property relation @5 13
C03 12  X  SPA  @0 Relación fabricación propiedad @5 13
C03 13  3  FRE  @0 Hystérésis magnétique @5 14
C03 13  3  ENG  @0 Magnetic hysteresis @5 14
C03 14  X  FRE  @0 Nanocristal @5 15
C03 14  X  ENG  @0 Nanocrystal @5 15
C03 14  X  SPA  @0 Nanocristal @5 15
C03 15  3  FRE  @0 Réseau cubique face centrée @5 16
C03 15  3  ENG  @0 FCC lattices @5 16
C03 16  3  FRE  @0 Réseau hexagonal compact @5 18
C03 16  3  ENG  @0 HCP lattices @5 18
C03 17  3  FRE  @0 Nickel alliage @5 19
C03 17  3  ENG  @0 Nickel alloys @5 19
C03 18  3  FRE  @0 Cobalt alliage @5 20
C03 18  3  ENG  @0 Cobalt alloys @5 20
C03 19  3  FRE  @0 Métal transition alliage @5 48
C03 19  3  ENG  @0 Transition element alloys @5 48
N21       @1 262

Format Inist (serveur)

NO : PASCAL 11-0386997 INIST
ET : Structural and magnetic properties of Co50Ni50 powder mixtures
AU : LOUDJANI (N.); BENSEBAA (N.); DEKHIL (L.); ALLEG (S.); SUNOL (J. J.)
AF : Laboratoire de Magnétisme et Spectroscopie des solides, Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12/23000 Annaba/Algérie (1 aut., 2 aut., 3 aut., 4 aut.); Dep. de Fisica, Universitat de Girona, Campus Montilivi/Girona 17071/Espagne (5 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of magnetism and magnetic materials; ISSN 0304-8853; Coden JMMMDC; Pays-Bas; Da. 2011; Vol. 323; No. 23; Pp. 3063-3070; Bibl. 38 ref.
LA : Anglais
EA : In the present work, morphological, structural, thermal and magnetic properties of nanocrystalline Co50Ni50 alloy prepared by high energy planetary ball milling have been studied by means of scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. The coercivity and the saturation magnetization of alloyed powders were measured at room temperature by a vibration sample magnetization. Morphological observations indicated a narrow distribution in the particle and homogeneous shape form with mean average particle size around 130 μm2. The results show that an allotropic Co transformation hcp→fcc occurs within the three first hours of milling and contrary to what expected, the Rietveld refinement method reveals the formation of two fcc solid solutions (SS): fcc Co(Ni) and Ni(Co) beside a small amount of the undissolved Co hcp. Thermal measurement, as a function of milling time was carried out to confirm the existence of the hcp phase and to estimate its amount. Magnetic measurement indicated that the 48 h milled powders with a steady state particles size have the highest saturation (105.3 emu/g) and the lowest coercivity (34.5 Oe).
CC : 001B70E75; 001B60A46
FD : Paramètre cristallin; Alliage mécanique; Broyeur satellite; Broyeur boulet; Microscopie électronique balayage; Diffraction RX; Calorimétrie différentielle balayage; Force coercitive; Aimantation saturation; Dimension particule; Transformation allotropique; Relation fabrication propriété; Hystérésis magnétique; Nanocristal; Réseau cubique face centrée; Réseau hexagonal compact; Nickel alliage; Cobalt alliage; Métal transition alliage
ED : Lattice parameters; Mechanical alloying; Planetary mill; Ball mill; Scanning electron microscopy; XRD; Differential scanning calorimetry; Coercive force; Saturation magnetization; Particle size; Allotropic transformation; Fabrication property relation; Magnetic hysteresis; Nanocrystal; FCC lattices; HCP lattices; Nickel alloys; Cobalt alloys; Transition element alloys
SD : Molino rodillos satelite; Molino bolas; Imanación saturación; Transformación alotrópica; Relación fabricación propiedad; Nanocristal
LO : INIST-17230.354000191167560260
ID : 11-0386997

Links to Exploration step

Pascal:11-0386997

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structural and magnetic properties of Co
<sub>50</sub>
Ni
<sub>50</sub>
powder mixtures</title>
<author>
<name sortKey="Loudjani, N" sort="Loudjani, N" uniqKey="Loudjani N" first="N." last="Loudjani">N. Loudjani</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Magnétisme et Spectroscopie des solides, Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12</s1>
<s2>23000 Annaba</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bensebaa, N" sort="Bensebaa, N" uniqKey="Bensebaa N" first="N." last="Bensebaa">N. Bensebaa</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Magnétisme et Spectroscopie des solides, Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12</s1>
<s2>23000 Annaba</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dekhil, L" sort="Dekhil, L" uniqKey="Dekhil L" first="L." last="Dekhil">L. Dekhil</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Magnétisme et Spectroscopie des solides, Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12</s1>
<s2>23000 Annaba</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Alleg, S" sort="Alleg, S" uniqKey="Alleg S" first="S." last="Alleg">S. Alleg</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Magnétisme et Spectroscopie des solides, Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12</s1>
<s2>23000 Annaba</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sunol, J J" sort="Sunol, J J" uniqKey="Sunol J" first="J. J." last="Sunol">J. J. Sunol</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Dep. de Fisica, Universitat de Girona, Campus Montilivi</s1>
<s2>Girona 17071</s2>
<s3>ESP</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0386997</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0386997 INIST</idno>
<idno type="RBID">Pascal:11-0386997</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000067</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Structural and magnetic properties of Co
<sub>50</sub>
Ni
<sub>50</sub>
powder mixtures</title>
<author>
<name sortKey="Loudjani, N" sort="Loudjani, N" uniqKey="Loudjani N" first="N." last="Loudjani">N. Loudjani</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Magnétisme et Spectroscopie des solides, Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12</s1>
<s2>23000 Annaba</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bensebaa, N" sort="Bensebaa, N" uniqKey="Bensebaa N" first="N." last="Bensebaa">N. Bensebaa</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Magnétisme et Spectroscopie des solides, Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12</s1>
<s2>23000 Annaba</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dekhil, L" sort="Dekhil, L" uniqKey="Dekhil L" first="L." last="Dekhil">L. Dekhil</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Magnétisme et Spectroscopie des solides, Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12</s1>
<s2>23000 Annaba</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Alleg, S" sort="Alleg, S" uniqKey="Alleg S" first="S." last="Alleg">S. Alleg</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire de Magnétisme et Spectroscopie des solides, Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12</s1>
<s2>23000 Annaba</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sunol, J J" sort="Sunol, J J" uniqKey="Sunol J" first="J. J." last="Sunol">J. J. Sunol</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Dep. de Fisica, Universitat de Girona, Campus Montilivi</s1>
<s2>Girona 17071</s2>
<s3>ESP</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of magnetism and magnetic materials</title>
<title level="j" type="abbreviated">J. magn. magn. mater.</title>
<idno type="ISSN">0304-8853</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of magnetism and magnetic materials</title>
<title level="j" type="abbreviated">J. magn. magn. mater.</title>
<idno type="ISSN">0304-8853</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Allotropic transformation</term>
<term>Ball mill</term>
<term>Cobalt alloys</term>
<term>Coercive force</term>
<term>Differential scanning calorimetry</term>
<term>FCC lattices</term>
<term>Fabrication property relation</term>
<term>HCP lattices</term>
<term>Lattice parameters</term>
<term>Magnetic hysteresis</term>
<term>Mechanical alloying</term>
<term>Nanocrystal</term>
<term>Nickel alloys</term>
<term>Particle size</term>
<term>Planetary mill</term>
<term>Saturation magnetization</term>
<term>Scanning electron microscopy</term>
<term>Transition element alloys</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Paramètre cristallin</term>
<term>Alliage mécanique</term>
<term>Broyeur satellite</term>
<term>Broyeur boulet</term>
<term>Microscopie électronique balayage</term>
<term>Diffraction RX</term>
<term>Calorimétrie différentielle balayage</term>
<term>Force coercitive</term>
<term>Aimantation saturation</term>
<term>Dimension particule</term>
<term>Transformation allotropique</term>
<term>Relation fabrication propriété</term>
<term>Hystérésis magnétique</term>
<term>Nanocristal</term>
<term>Réseau cubique face centrée</term>
<term>Réseau hexagonal compact</term>
<term>Nickel alliage</term>
<term>Cobalt alliage</term>
<term>Métal transition alliage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the present work, morphological, structural, thermal and magnetic properties of nanocrystalline Co
<sub>50</sub>
Ni
<sub>50</sub>
alloy prepared by high energy planetary ball milling have been studied by means of scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. The coercivity and the saturation magnetization of alloyed powders were measured at room temperature by a vibration sample magnetization. Morphological observations indicated a narrow distribution in the particle and homogeneous shape form with mean average particle size around 130 μm
<sup>2</sup>
. The results show that an allotropic Co transformation hcp→fcc occurs within the three first hours of milling and contrary to what expected, the Rietveld refinement method reveals the formation of two fcc solid solutions (SS): fcc Co(Ni) and Ni(Co) beside a small amount of the undissolved Co hcp. Thermal measurement, as a function of milling time was carried out to confirm the existence of the hcp phase and to estimate its amount. Magnetic measurement indicated that the 48 h milled powders with a steady state particles size have the highest saturation (105.3 emu/g) and the lowest coercivity (34.5 Oe).</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0304-8853</s0>
</fA01>
<fA02 i1="01">
<s0>JMMMDC</s0>
</fA02>
<fA03 i2="1">
<s0>J. magn. magn. mater.</s0>
</fA03>
<fA05>
<s2>323</s2>
</fA05>
<fA06>
<s2>23</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structural and magnetic properties of Co
<sub>50</sub>
Ni
<sub>50</sub>
powder mixtures</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LOUDJANI (N.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BENSEBAA (N.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DEKHIL (L.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ALLEG (S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SUNOL (J. J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire de Magnétisme et Spectroscopie des solides, Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12</s1>
<s2>23000 Annaba</s2>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Dep. de Fisica, Universitat de Girona, Campus Montilivi</s1>
<s2>Girona 17071</s2>
<s3>ESP</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>3063-3070</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17230</s2>
<s5>354000191167560260</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>38 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0386997</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of magnetism and magnetic materials</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In the present work, morphological, structural, thermal and magnetic properties of nanocrystalline Co
<sub>50</sub>
Ni
<sub>50</sub>
alloy prepared by high energy planetary ball milling have been studied by means of scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. The coercivity and the saturation magnetization of alloyed powders were measured at room temperature by a vibration sample magnetization. Morphological observations indicated a narrow distribution in the particle and homogeneous shape form with mean average particle size around 130 μm
<sup>2</sup>
. The results show that an allotropic Co transformation hcp→fcc occurs within the three first hours of milling and contrary to what expected, the Rietveld refinement method reveals the formation of two fcc solid solutions (SS): fcc Co(Ni) and Ni(Co) beside a small amount of the undissolved Co hcp. Thermal measurement, as a function of milling time was carried out to confirm the existence of the hcp phase and to estimate its amount. Magnetic measurement indicated that the 48 h milled powders with a steady state particles size have the highest saturation (105.3 emu/g) and the lowest coercivity (34.5 Oe).</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70E75</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60A46</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Paramètre cristallin</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Lattice parameters</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Alliage mécanique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Mechanical alloying</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Broyeur satellite</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Planetary mill</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Molino rodillos satelite</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Broyeur boulet</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Ball mill</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Molino bolas</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>XRD</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Calorimétrie différentielle balayage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Differential scanning calorimetry</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Force coercitive</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Coercive force</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Aimantation saturation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Saturation magnetization</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Imanación saturación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Dimension particule</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Particle size</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Transformation allotropique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Allotropic transformation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Transformación alotrópica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Relation fabrication propriété</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Fabrication property relation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Relación fabricación propiedad</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Hystérésis magnétique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Magnetic hysteresis</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Réseau cubique face centrée</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>FCC lattices</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Réseau hexagonal compact</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>HCP lattices</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Nickel alliage</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Nickel alloys</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Cobalt alliage</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Cobalt alloys</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Métal transition alliage</s0>
<s5>48</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Transition element alloys</s0>
<s5>48</s5>
</fC03>
<fN21>
<s1>262</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 11-0386997 INIST</NO>
<ET>Structural and magnetic properties of Co
<sub>50</sub>
Ni
<sub>50</sub>
powder mixtures</ET>
<AU>LOUDJANI (N.); BENSEBAA (N.); DEKHIL (L.); ALLEG (S.); SUNOL (J. J.)</AU>
<AF>Laboratoire de Magnétisme et Spectroscopie des solides, Département de Physique, Faculté des Sciences, Université Badji Mokhtar, B.P. 12/23000 Annaba/Algérie (1 aut., 2 aut., 3 aut., 4 aut.); Dep. de Fisica, Universitat de Girona, Campus Montilivi/Girona 17071/Espagne (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of magnetism and magnetic materials; ISSN 0304-8853; Coden JMMMDC; Pays-Bas; Da. 2011; Vol. 323; No. 23; Pp. 3063-3070; Bibl. 38 ref.</SO>
<LA>Anglais</LA>
<EA>In the present work, morphological, structural, thermal and magnetic properties of nanocrystalline Co
<sub>50</sub>
Ni
<sub>50</sub>
alloy prepared by high energy planetary ball milling have been studied by means of scanning electron microscopy, X-ray diffraction, and differential scanning calorimetry. The coercivity and the saturation magnetization of alloyed powders were measured at room temperature by a vibration sample magnetization. Morphological observations indicated a narrow distribution in the particle and homogeneous shape form with mean average particle size around 130 μm
<sup>2</sup>
. The results show that an allotropic Co transformation hcp→fcc occurs within the three first hours of milling and contrary to what expected, the Rietveld refinement method reveals the formation of two fcc solid solutions (SS): fcc Co(Ni) and Ni(Co) beside a small amount of the undissolved Co hcp. Thermal measurement, as a function of milling time was carried out to confirm the existence of the hcp phase and to estimate its amount. Magnetic measurement indicated that the 48 h milled powders with a steady state particles size have the highest saturation (105.3 emu/g) and the lowest coercivity (34.5 Oe).</EA>
<CC>001B70E75; 001B60A46</CC>
<FD>Paramètre cristallin; Alliage mécanique; Broyeur satellite; Broyeur boulet; Microscopie électronique balayage; Diffraction RX; Calorimétrie différentielle balayage; Force coercitive; Aimantation saturation; Dimension particule; Transformation allotropique; Relation fabrication propriété; Hystérésis magnétique; Nanocristal; Réseau cubique face centrée; Réseau hexagonal compact; Nickel alliage; Cobalt alliage; Métal transition alliage</FD>
<ED>Lattice parameters; Mechanical alloying; Planetary mill; Ball mill; Scanning electron microscopy; XRD; Differential scanning calorimetry; Coercive force; Saturation magnetization; Particle size; Allotropic transformation; Fabrication property relation; Magnetic hysteresis; Nanocrystal; FCC lattices; HCP lattices; Nickel alloys; Cobalt alloys; Transition element alloys</ED>
<SD>Molino rodillos satelite; Molino bolas; Imanación saturación; Transformación alotrópica; Relación fabricación propiedad; Nanocristal</SD>
<LO>INIST-17230.354000191167560260</LO>
<ID>11-0386997</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000067 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000067 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0386997
   |texte=   Structural and magnetic properties of Co50Ni50 powder mixtures
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024