Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrochemical study of LaNi3.55Mn0.4Al0.3Fe0.75 as negative electrode in alkaline secondary batteries

Identifieur interne : 000045 ( PascalFrancis/Corpus ); précédent : 000044; suivant : 000046

Electrochemical study of LaNi3.55Mn0.4Al0.3Fe0.75 as negative electrode in alkaline secondary batteries

Auteurs : S. Boussami ; C. Khaldi ; J. Lamloumi ; H. Mathlouthi ; H. Takenouti

Source :

RBID : Pascal:12-0406949

Descripteurs français

English descriptors

Abstract

Cobalt-free AB5-type hydrogen storage alloys have been examined for the purpose of lowering metal hydride raw material costs. For this purpose, the electrochemical behaviour of cobalt-free LaNi3.55Mn0.4Ai0.3Fe0.75 alloy was investigated using chronopotentiometry and electrochemical impedance spectroscopy. It was shown that the discharge capacity decreases by 50% after fifty cycles. To investigate the capacity decrease, the impedance measurements were conducted during charging at different stages of life cycle. The experimental impedance spectroscopy reveals that the metal hydride electrode exhibits a porous behaviour. The results were then analyzed on the basis of equivalent circuit model involving the porous electrode behaviour according to de Levie's model, i.e. equivalent cylindrical pores connected in parallel. The pore texture of electrode material was then estimated namely by the pore number, mean values of cylinder radius and effective length. The loss of discharge capacity is due to that of the reactivity of the electrode material and not the collapsing of pore texture.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0013-4686
A02 01      @0 ELCAAV
A03   1    @0 Electrochim. acta
A05       @2 69
A08 01  1  ENG  @1 Electrochemical study of LaNi3.55Mn0.4Al0.3Fe0.75 as negative electrode in alkaline secondary batteries
A11 01  1    @1 BOUSSAMI (S.)
A11 02  1    @1 KHALDI (C.)
A11 03  1    @1 LAMLOUMI (J.)
A11 04  1    @1 MATHLOUTHI (H.)
A11 05  1    @1 TAKENOUTI (H.)
A14 01      @1 LMMP, ESSTT, 5 Avenue Taha Hussein @2 1008 Tunis @3 TUN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 LISE, CNRS, UPMC Univ Paris06, Case 133, 4 Place Jussieu @2 75252 Paris @3 FRA @Z 5 aut.
A20       @1 203-208
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 1516 @5 354000509856970290
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 35 ref.
A47 01  1    @0 12-0406949
A60       @1 P
A61       @0 A
A64 01  1    @0 Electrochimica acta
A66 01      @0 GBR
C01 01    ENG  @0 Cobalt-free AB5-type hydrogen storage alloys have been examined for the purpose of lowering metal hydride raw material costs. For this purpose, the electrochemical behaviour of cobalt-free LaNi3.55Mn0.4Ai0.3Fe0.75 alloy was investigated using chronopotentiometry and electrochemical impedance spectroscopy. It was shown that the discharge capacity decreases by 50% after fifty cycles. To investigate the capacity decrease, the impedance measurements were conducted during charging at different stages of life cycle. The experimental impedance spectroscopy reveals that the metal hydride electrode exhibits a porous behaviour. The results were then analyzed on the basis of equivalent circuit model involving the porous electrode behaviour according to de Levie's model, i.e. equivalent cylindrical pores connected in parallel. The pore texture of electrode material was then estimated namely by the pore number, mean values of cylinder radius and effective length. The loss of discharge capacity is due to that of the reactivity of the electrode material and not the collapsing of pore texture.
C02 01  X    @0 001D05I03E
C03 01  X  FRE  @0 Electrode poreuse @5 01
C03 01  X  ENG  @0 Porous electrode @5 01
C03 01  X  SPA  @0 Electrodo poroso @5 01
C03 02  X  FRE  @0 Accumulateur alcalin @5 02
C03 02  X  ENG  @0 Alkaline storage battery @5 02
C03 02  X  SPA  @0 Acumulador alcalino @5 02
C03 03  3  FRE  @0 Stockage hydrogène @5 03
C03 03  3  ENG  @0 Hydrogen storage @5 03
C03 04  X  FRE  @0 Diffusion @5 04
C03 04  X  ENG  @0 Diffusion @5 04
C03 04  X  SPA  @0 Difusión @5 04
C03 05  3  FRE  @0 Spectrométrie impédance électrochimique @5 05
C03 05  3  ENG  @0 Electrochemical impedance spectroscopy @5 05
C03 06  X  FRE  @0 Cyclage @5 06
C03 06  X  ENG  @0 Cycling @5 06
C03 06  X  SPA  @0 Ciclaje @5 06
C03 07  3  FRE  @0 Alliage base nickel @2 NK @5 07
C03 07  3  ENG  @0 Nickel base alloys @2 NK @5 07
C03 08  3  FRE  @0 Alliage n éléments @5 08
C03 08  3  ENG  @0 Multi-element alloys @5 08
C03 09  X  FRE  @0 Lanthane alliage @5 09
C03 09  X  ENG  @0 Lanthanum alloy @5 09
C03 09  X  SPA  @0 Lantano aleación @5 09
C03 10  X  FRE  @0 Manganèse alliage @5 10
C03 10  X  ENG  @0 Manganèse alloy @5 10
C03 10  X  SPA  @0 Manganeso aleación @5 10
C03 11  X  FRE  @0 Aluminium alliage @5 11
C03 11  X  ENG  @0 Aluminium alloy @5 11
C03 11  X  SPA  @0 Aluminio aleación @5 11
C03 12  X  FRE  @0 Fer alliage @5 12
C03 12  X  ENG  @0 Iron alloy @5 12
C03 12  X  SPA  @0 Hierro aleación @5 12
C03 13  X  FRE  @0 Microscopie électronique balayage @5 13
C03 13  X  ENG  @0 Scanning electron microscopy @5 13
C03 13  X  SPA  @0 Microscopía electrónica barrido @5 13
C03 14  X  FRE  @0 Dimension pore @5 14
C03 14  X  ENG  @0 Pore size @5 14
C03 14  X  SPA  @0 Dimensión poro @5 14
C03 15  X  FRE  @0 Accumulateur électrochimique @5 32
C03 15  X  ENG  @0 Secondary cell @5 32
C03 15  X  SPA  @0 Acumulador electroquímico @5 32
C03 16  X  FRE  @0 Phénomène transport @5 33
C03 16  X  ENG  @0 Transport process @5 33
C03 16  X  SPA  @0 Fenómeno transporte @5 33
C03 17  X  FRE  @0 Caractéristique électrique @5 34
C03 17  X  ENG  @0 Electrical characteristic @5 34
C03 17  X  SPA  @0 Característica eléctrica @5 34
C03 18  X  FRE  @0 Structure surface @5 35
C03 18  X  ENG  @0 Surface structure @5 35
C03 18  X  SPA  @0 Estructura superficie @5 35
C03 19  X  FRE  @0 Morphologie @5 36
C03 19  X  ENG  @0 Morphology @5 36
C03 19  X  SPA  @0 Morfología @5 36
C03 20  X  FRE  @0 Porosité @5 37
C03 20  X  ENG  @0 Porosity @5 37
C03 20  X  SPA  @0 Porosidad @5 37
N21       @1 317

Format Inist (serveur)

NO : PASCAL 12-0406949 INIST
ET : Electrochemical study of LaNi3.55Mn0.4Al0.3Fe0.75 as negative electrode in alkaline secondary batteries
AU : BOUSSAMI (S.); KHALDI (C.); LAMLOUMI (J.); MATHLOUTHI (H.); TAKENOUTI (H.)
AF : LMMP, ESSTT, 5 Avenue Taha Hussein/1008 Tunis/Tunisie (1 aut., 2 aut., 3 aut., 4 aut.); LISE, CNRS, UPMC Univ Paris06, Case 133, 4 Place Jussieu/75252 Paris/France (5 aut.)
DT : Publication en série; Niveau analytique
SO : Electrochimica acta; ISSN 0013-4686; Coden ELCAAV; Royaume-Uni; Da. 2012; Vol. 69; Pp. 203-208; Bibl. 35 ref.
LA : Anglais
EA : Cobalt-free AB5-type hydrogen storage alloys have been examined for the purpose of lowering metal hydride raw material costs. For this purpose, the electrochemical behaviour of cobalt-free LaNi3.55Mn0.4Ai0.3Fe0.75 alloy was investigated using chronopotentiometry and electrochemical impedance spectroscopy. It was shown that the discharge capacity decreases by 50% after fifty cycles. To investigate the capacity decrease, the impedance measurements were conducted during charging at different stages of life cycle. The experimental impedance spectroscopy reveals that the metal hydride electrode exhibits a porous behaviour. The results were then analyzed on the basis of equivalent circuit model involving the porous electrode behaviour according to de Levie's model, i.e. equivalent cylindrical pores connected in parallel. The pore texture of electrode material was then estimated namely by the pore number, mean values of cylinder radius and effective length. The loss of discharge capacity is due to that of the reactivity of the electrode material and not the collapsing of pore texture.
CC : 001D05I03E
FD : Electrode poreuse; Accumulateur alcalin; Stockage hydrogène; Diffusion; Spectrométrie impédance électrochimique; Cyclage; Alliage base nickel; Alliage n éléments; Lanthane alliage; Manganèse alliage; Aluminium alliage; Fer alliage; Microscopie électronique balayage; Dimension pore; Accumulateur électrochimique; Phénomène transport; Caractéristique électrique; Structure surface; Morphologie; Porosité
ED : Porous electrode; Alkaline storage battery; Hydrogen storage; Diffusion; Electrochemical impedance spectroscopy; Cycling; Nickel base alloys; Multi-element alloys; Lanthanum alloy; Manganèse alloy; Aluminium alloy; Iron alloy; Scanning electron microscopy; Pore size; Secondary cell; Transport process; Electrical characteristic; Surface structure; Morphology; Porosity
SD : Electrodo poroso; Acumulador alcalino; Difusión; Ciclaje; Lantano aleación; Manganeso aleación; Aluminio aleación; Hierro aleación; Microscopía electrónica barrido; Dimensión poro; Acumulador electroquímico; Fenómeno transporte; Característica eléctrica; Estructura superficie; Morfología; Porosidad
LO : INIST-1516.354000509856970290
ID : 12-0406949

Links to Exploration step

Pascal:12-0406949

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electrochemical study of LaNi
<sub>3.55</sub>
Mn
<sub>0.4</sub>
Al
<sub>0.3</sub>
Fe
<sub>0.75</sub>
as negative electrode in alkaline secondary batteries</title>
<author>
<name sortKey="Boussami, S" sort="Boussami, S" uniqKey="Boussami S" first="S." last="Boussami">S. Boussami</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LMMP, ESSTT, 5 Avenue Taha Hussein</s1>
<s2>1008 Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Khaldi, C" sort="Khaldi, C" uniqKey="Khaldi C" first="C." last="Khaldi">C. Khaldi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LMMP, ESSTT, 5 Avenue Taha Hussein</s1>
<s2>1008 Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lamloumi, J" sort="Lamloumi, J" uniqKey="Lamloumi J" first="J." last="Lamloumi">J. Lamloumi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LMMP, ESSTT, 5 Avenue Taha Hussein</s1>
<s2>1008 Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mathlouthi, H" sort="Mathlouthi, H" uniqKey="Mathlouthi H" first="H." last="Mathlouthi">H. Mathlouthi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LMMP, ESSTT, 5 Avenue Taha Hussein</s1>
<s2>1008 Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Takenouti, H" sort="Takenouti, H" uniqKey="Takenouti H" first="H." last="Takenouti">H. Takenouti</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LISE, CNRS, UPMC Univ Paris06, Case 133, 4 Place Jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0406949</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0406949 INIST</idno>
<idno type="RBID">Pascal:12-0406949</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000045</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Electrochemical study of LaNi
<sub>3.55</sub>
Mn
<sub>0.4</sub>
Al
<sub>0.3</sub>
Fe
<sub>0.75</sub>
as negative electrode in alkaline secondary batteries</title>
<author>
<name sortKey="Boussami, S" sort="Boussami, S" uniqKey="Boussami S" first="S." last="Boussami">S. Boussami</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LMMP, ESSTT, 5 Avenue Taha Hussein</s1>
<s2>1008 Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Khaldi, C" sort="Khaldi, C" uniqKey="Khaldi C" first="C." last="Khaldi">C. Khaldi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LMMP, ESSTT, 5 Avenue Taha Hussein</s1>
<s2>1008 Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lamloumi, J" sort="Lamloumi, J" uniqKey="Lamloumi J" first="J." last="Lamloumi">J. Lamloumi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LMMP, ESSTT, 5 Avenue Taha Hussein</s1>
<s2>1008 Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mathlouthi, H" sort="Mathlouthi, H" uniqKey="Mathlouthi H" first="H." last="Mathlouthi">H. Mathlouthi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LMMP, ESSTT, 5 Avenue Taha Hussein</s1>
<s2>1008 Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Takenouti, H" sort="Takenouti, H" uniqKey="Takenouti H" first="H." last="Takenouti">H. Takenouti</name>
<affiliation>
<inist:fA14 i1="02">
<s1>LISE, CNRS, UPMC Univ Paris06, Case 133, 4 Place Jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Electrochimica acta</title>
<title level="j" type="abbreviated">Electrochim. acta</title>
<idno type="ISSN">0013-4686</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Electrochimica acta</title>
<title level="j" type="abbreviated">Electrochim. acta</title>
<idno type="ISSN">0013-4686</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkaline storage battery</term>
<term>Aluminium alloy</term>
<term>Cycling</term>
<term>Diffusion</term>
<term>Electrical characteristic</term>
<term>Electrochemical impedance spectroscopy</term>
<term>Hydrogen storage</term>
<term>Iron alloy</term>
<term>Lanthanum alloy</term>
<term>Manganèse alloy</term>
<term>Morphology</term>
<term>Multi-element alloys</term>
<term>Nickel base alloys</term>
<term>Pore size</term>
<term>Porosity</term>
<term>Porous electrode</term>
<term>Scanning electron microscopy</term>
<term>Secondary cell</term>
<term>Surface structure</term>
<term>Transport process</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Electrode poreuse</term>
<term>Accumulateur alcalin</term>
<term>Stockage hydrogène</term>
<term>Diffusion</term>
<term>Spectrométrie impédance électrochimique</term>
<term>Cyclage</term>
<term>Alliage base nickel</term>
<term>Alliage n éléments</term>
<term>Lanthane alliage</term>
<term>Manganèse alliage</term>
<term>Aluminium alliage</term>
<term>Fer alliage</term>
<term>Microscopie électronique balayage</term>
<term>Dimension pore</term>
<term>Accumulateur électrochimique</term>
<term>Phénomène transport</term>
<term>Caractéristique électrique</term>
<term>Structure surface</term>
<term>Morphologie</term>
<term>Porosité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cobalt-free AB5-type hydrogen storage alloys have been examined for the purpose of lowering metal hydride raw material costs. For this purpose, the electrochemical behaviour of cobalt-free LaNi
<sub>3.55</sub>
Mn
<sub>0.4</sub>
Ai
<sub>0.3</sub>
Fe
<sub>0.75</sub>
alloy was investigated using chronopotentiometry and electrochemical impedance spectroscopy. It was shown that the discharge capacity decreases by 50% after fifty cycles. To investigate the capacity decrease, the impedance measurements were conducted during charging at different stages of life cycle. The experimental impedance spectroscopy reveals that the metal hydride electrode exhibits a porous behaviour. The results were then analyzed on the basis of equivalent circuit model involving the porous electrode behaviour according to de Levie's model, i.e. equivalent cylindrical pores connected in parallel. The pore texture of electrode material was then estimated namely by the pore number, mean values of cylinder radius and effective length. The loss of discharge capacity is due to that of the reactivity of the electrode material and not the collapsing of pore texture.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0013-4686</s0>
</fA01>
<fA02 i1="01">
<s0>ELCAAV</s0>
</fA02>
<fA03 i2="1">
<s0>Electrochim. acta</s0>
</fA03>
<fA05>
<s2>69</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electrochemical study of LaNi
<sub>3.55</sub>
Mn
<sub>0.4</sub>
Al
<sub>0.3</sub>
Fe
<sub>0.75</sub>
as negative electrode in alkaline secondary batteries</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BOUSSAMI (S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KHALDI (C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LAMLOUMI (J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MATHLOUTHI (H.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TAKENOUTI (H.)</s1>
</fA11>
<fA14 i1="01">
<s1>LMMP, ESSTT, 5 Avenue Taha Hussein</s1>
<s2>1008 Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>LISE, CNRS, UPMC Univ Paris06, Case 133, 4 Place Jussieu</s1>
<s2>75252 Paris</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>203-208</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1516</s2>
<s5>354000509856970290</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>35 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0406949</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Electrochimica acta</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Cobalt-free AB5-type hydrogen storage alloys have been examined for the purpose of lowering metal hydride raw material costs. For this purpose, the electrochemical behaviour of cobalt-free LaNi
<sub>3.55</sub>
Mn
<sub>0.4</sub>
Ai
<sub>0.3</sub>
Fe
<sub>0.75</sub>
alloy was investigated using chronopotentiometry and electrochemical impedance spectroscopy. It was shown that the discharge capacity decreases by 50% after fifty cycles. To investigate the capacity decrease, the impedance measurements were conducted during charging at different stages of life cycle. The experimental impedance spectroscopy reveals that the metal hydride electrode exhibits a porous behaviour. The results were then analyzed on the basis of equivalent circuit model involving the porous electrode behaviour according to de Levie's model, i.e. equivalent cylindrical pores connected in parallel. The pore texture of electrode material was then estimated namely by the pore number, mean values of cylinder radius and effective length. The loss of discharge capacity is due to that of the reactivity of the electrode material and not the collapsing of pore texture.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D05I03E</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Electrode poreuse</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Porous electrode</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Electrodo poroso</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Accumulateur alcalin</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Alkaline storage battery</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Acumulador alcalino</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Stockage hydrogène</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Hydrogen storage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Diffusion</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Diffusion</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Difusión</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Spectrométrie impédance électrochimique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Electrochemical impedance spectroscopy</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Cyclage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Cycling</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Ciclaje</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Alliage base nickel</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nickel base alloys</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Alliage n éléments</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Multi-element alloys</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Lanthane alliage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Lanthanum alloy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Lantano aleación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Manganèse alliage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Manganèse alloy</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Manganeso aleación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Aluminium alliage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Aluminium alloy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Aluminio aleación</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Fer alliage</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Iron alloy</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Hierro aleación</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Microscopía electrónica barrido</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Dimension pore</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Pore size</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Dimensión poro</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Accumulateur électrochimique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Secondary cell</s0>
<s5>32</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Acumulador electroquímico</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Phénomène transport</s0>
<s5>33</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Transport process</s0>
<s5>33</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Fenómeno transporte</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Caractéristique électrique</s0>
<s5>34</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Electrical characteristic</s0>
<s5>34</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Característica eléctrica</s0>
<s5>34</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Structure surface</s0>
<s5>35</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Surface structure</s0>
<s5>35</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Estructura superficie</s0>
<s5>35</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Morphologie</s0>
<s5>36</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Morphology</s0>
<s5>36</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Morfología</s0>
<s5>36</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Porosité</s0>
<s5>37</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Porosity</s0>
<s5>37</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Porosidad</s0>
<s5>37</s5>
</fC03>
<fN21>
<s1>317</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 12-0406949 INIST</NO>
<ET>Electrochemical study of LaNi
<sub>3.55</sub>
Mn
<sub>0.4</sub>
Al
<sub>0.3</sub>
Fe
<sub>0.75</sub>
as negative electrode in alkaline secondary batteries</ET>
<AU>BOUSSAMI (S.); KHALDI (C.); LAMLOUMI (J.); MATHLOUTHI (H.); TAKENOUTI (H.)</AU>
<AF>LMMP, ESSTT, 5 Avenue Taha Hussein/1008 Tunis/Tunisie (1 aut., 2 aut., 3 aut., 4 aut.); LISE, CNRS, UPMC Univ Paris06, Case 133, 4 Place Jussieu/75252 Paris/France (5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Electrochimica acta; ISSN 0013-4686; Coden ELCAAV; Royaume-Uni; Da. 2012; Vol. 69; Pp. 203-208; Bibl. 35 ref.</SO>
<LA>Anglais</LA>
<EA>Cobalt-free AB5-type hydrogen storage alloys have been examined for the purpose of lowering metal hydride raw material costs. For this purpose, the electrochemical behaviour of cobalt-free LaNi
<sub>3.55</sub>
Mn
<sub>0.4</sub>
Ai
<sub>0.3</sub>
Fe
<sub>0.75</sub>
alloy was investigated using chronopotentiometry and electrochemical impedance spectroscopy. It was shown that the discharge capacity decreases by 50% after fifty cycles. To investigate the capacity decrease, the impedance measurements were conducted during charging at different stages of life cycle. The experimental impedance spectroscopy reveals that the metal hydride electrode exhibits a porous behaviour. The results were then analyzed on the basis of equivalent circuit model involving the porous electrode behaviour according to de Levie's model, i.e. equivalent cylindrical pores connected in parallel. The pore texture of electrode material was then estimated namely by the pore number, mean values of cylinder radius and effective length. The loss of discharge capacity is due to that of the reactivity of the electrode material and not the collapsing of pore texture.</EA>
<CC>001D05I03E</CC>
<FD>Electrode poreuse; Accumulateur alcalin; Stockage hydrogène; Diffusion; Spectrométrie impédance électrochimique; Cyclage; Alliage base nickel; Alliage n éléments; Lanthane alliage; Manganèse alliage; Aluminium alliage; Fer alliage; Microscopie électronique balayage; Dimension pore; Accumulateur électrochimique; Phénomène transport; Caractéristique électrique; Structure surface; Morphologie; Porosité</FD>
<ED>Porous electrode; Alkaline storage battery; Hydrogen storage; Diffusion; Electrochemical impedance spectroscopy; Cycling; Nickel base alloys; Multi-element alloys; Lanthanum alloy; Manganèse alloy; Aluminium alloy; Iron alloy; Scanning electron microscopy; Pore size; Secondary cell; Transport process; Electrical characteristic; Surface structure; Morphology; Porosity</ED>
<SD>Electrodo poroso; Acumulador alcalino; Difusión; Ciclaje; Lantano aleación; Manganeso aleación; Aluminio aleación; Hierro aleación; Microscopía electrónica barrido; Dimensión poro; Acumulador electroquímico; Fenómeno transporte; Característica eléctrica; Estructura superficie; Morfología; Porosidad</SD>
<LO>INIST-1516.354000509856970290</LO>
<ID>12-0406949</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000045 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000045 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0406949
   |texte=   Electrochemical study of LaNi3.55Mn0.4Al0.3Fe0.75 as negative electrode in alkaline secondary batteries
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024