Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ab initio study of ZnCoO diluted magnetic semiconductor and its magnetic properties

Identifieur interne : 000028 ( PascalFrancis/Corpus ); précédent : 000027; suivant : 000029

Ab initio study of ZnCoO diluted magnetic semiconductor and its magnetic properties

Auteurs : S. Lardjane ; G. Merad ; N. Fenineche ; A. Billard ; H. I. Faraoun

Source :

RBID : Pascal:13-0230165

Descripteurs français

English descriptors

Abstract

Transition metal-doped wide band gap semiconductors, such as ZnO, attract much attention due to the theoretical prediction that ZnO is a room temperature ferromagnetic semiconductor [1,2]. Very controversial experimental and theoretical papers have been published to discuss the origin of ferromagnetic ordering and the relevance of the Curie temperature (Tc) of Co-doped ZnO [3-5]. In order to get better insight, electronic structure of CoxZn1-xO magnetic semiconductor was investigated via first principle calculations. The generalised gradient approximations (GGA) and the GGA with Hubbard U correction (GGA + U) in the framework of density functional theory (DFT) have been used. Calculations are done for different doping concentrations to discuss the contribution of different atoms in magnetic moments and magnetic coupling.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0925-8388
A03   1    @0 J. alloys compd.
A05       @2 551
A08 01  1  ENG  @1 Ab initio study of ZnCoO diluted magnetic semiconductor and its magnetic properties
A11 01  1    @1 LARDJANE (S.)
A11 02  1    @1 MERAD (G.)
A11 03  1    @1 FENINECHE (N.)
A11 04  1    @1 BILLARD (A.)
A11 05  1    @1 FARAOUN (H. I.)
A14 01      @1 Laboratoire d'Etudes et de Recherches, les Procedes et les Surfaces, IRTES-LERMPS, UTBM, Site de Montbéliard @2 90010 Belfort @3 FRA @Z 1 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 Laboratoire d'Etude et Prédiction des Matériaux, Unité de Recherche Matériaux et Energies Renouvelables, LEPM-URMER, Université de Tlemcen @3 DZA @Z 1 aut. @Z 2 aut. @Z 5 aut.
A20       @1 306-311
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 1151 @5 354000502447070520
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 52 ref.
A47 01  1    @0 13-0230165
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of alloys and compounds
A66 01      @0 GBR
C01 01    ENG  @0 Transition metal-doped wide band gap semiconductors, such as ZnO, attract much attention due to the theoretical prediction that ZnO is a room temperature ferromagnetic semiconductor [1,2]. Very controversial experimental and theoretical papers have been published to discuss the origin of ferromagnetic ordering and the relevance of the Curie temperature (Tc) of Co-doped ZnO [3-5]. In order to get better insight, electronic structure of CoxZn1-xO magnetic semiconductor was investigated via first principle calculations. The generalised gradient approximations (GGA) and the GGA with Hubbard U correction (GGA + U) in the framework of density functional theory (DFT) have been used. Calculations are done for different doping concentrations to discuss the contribution of different atoms in magnetic moments and magnetic coupling.
C02 01  3    @0 001B70E25
C02 02  3    @0 001B70E50P
C03 01  3  FRE  @0 Calcul ab initio @5 02
C03 01  3  ENG  @0 Ab initio calculations @5 02
C03 02  X  FRE  @0 Dopage @5 03
C03 02  X  ENG  @0 Doping @5 03
C03 02  X  SPA  @0 Doping @5 03
C03 03  3  FRE  @0 Addition métal transition @5 04
C03 03  3  ENG  @0 Transition element additions @5 04
C03 04  3  FRE  @0 Ferromagnétisme @5 05
C03 04  3  ENG  @0 Ferromagnetism @5 05
C03 05  3  FRE  @0 Point Curie @5 06
C03 05  3  ENG  @0 Curie point @5 06
C03 06  3  FRE  @0 Addition cobalt @5 07
C03 06  3  ENG  @0 Cobalt additions @5 07
C03 07  3  FRE  @0 Structure électronique @5 09
C03 07  3  ENG  @0 Electronic structure @5 09
C03 08  3  FRE  @0 Méthode fonctionnelle densité @5 10
C03 08  3  ENG  @0 Density functional method @5 10
C03 09  3  FRE  @0 Approximation gradient généralisé @5 11
C03 09  3  ENG  @0 Generalized gradient approximation @5 11
C03 10  3  FRE  @0 Modèle Hubbard @5 12
C03 10  3  ENG  @0 Hubbard model @5 12
C03 11  X  FRE  @0 Concentration impureté @5 13
C03 11  X  ENG  @0 Impurity density @5 13
C03 11  X  SPA  @0 Concentración impureza @5 13
C03 12  3  FRE  @0 Moment magnétique @5 14
C03 12  3  ENG  @0 Magnetic moments @5 14
C03 13  3  FRE  @0 Semiconducteur semimagnétique @5 15
C03 13  3  ENG  @0 Semimagnetic semiconductors @5 15
C03 14  3  FRE  @0 Semiconducteur bande interdite large @5 16
C03 14  3  ENG  @0 Wide band gap semiconductors @5 16
C03 15  X  FRE  @0 Oxyde de zinc @5 17
C03 15  X  ENG  @0 Zinc oxide @5 17
C03 15  X  SPA  @0 Zinc óxido @5 17
C03 16  3  FRE  @0 ZnO @4 INC @5 52
N21       @1 217

Format Inist (serveur)

NO : PASCAL 13-0230165 INIST
ET : Ab initio study of ZnCoO diluted magnetic semiconductor and its magnetic properties
AU : LARDJANE (S.); MERAD (G.); FENINECHE (N.); BILLARD (A.); FARAOUN (H. I.)
AF : Laboratoire d'Etudes et de Recherches, les Procedes et les Surfaces, IRTES-LERMPS, UTBM, Site de Montbéliard/90010 Belfort/France (1 aut., 3 aut., 4 aut.); Laboratoire d'Etude et Prédiction des Matériaux, Unité de Recherche Matériaux et Energies Renouvelables, LEPM-URMER, Université de Tlemcen/Algérie (1 aut., 2 aut., 5 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of alloys and compounds; ISSN 0925-8388; Royaume-Uni; Da. 2013; Vol. 551; Pp. 306-311; Bibl. 52 ref.
LA : Anglais
EA : Transition metal-doped wide band gap semiconductors, such as ZnO, attract much attention due to the theoretical prediction that ZnO is a room temperature ferromagnetic semiconductor [1,2]. Very controversial experimental and theoretical papers have been published to discuss the origin of ferromagnetic ordering and the relevance of the Curie temperature (Tc) of Co-doped ZnO [3-5]. In order to get better insight, electronic structure of CoxZn1-xO magnetic semiconductor was investigated via first principle calculations. The generalised gradient approximations (GGA) and the GGA with Hubbard U correction (GGA + U) in the framework of density functional theory (DFT) have been used. Calculations are done for different doping concentrations to discuss the contribution of different atoms in magnetic moments and magnetic coupling.
CC : 001B70E25; 001B70E50P
FD : Calcul ab initio; Dopage; Addition métal transition; Ferromagnétisme; Point Curie; Addition cobalt; Structure électronique; Méthode fonctionnelle densité; Approximation gradient généralisé; Modèle Hubbard; Concentration impureté; Moment magnétique; Semiconducteur semimagnétique; Semiconducteur bande interdite large; Oxyde de zinc; ZnO
ED : Ab initio calculations; Doping; Transition element additions; Ferromagnetism; Curie point; Cobalt additions; Electronic structure; Density functional method; Generalized gradient approximation; Hubbard model; Impurity density; Magnetic moments; Semimagnetic semiconductors; Wide band gap semiconductors; Zinc oxide
SD : Doping; Concentración impureza; Zinc óxido
LO : INIST-1151.354000502447070520
ID : 13-0230165

Links to Exploration step

Pascal:13-0230165

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Ab initio study of ZnCoO diluted magnetic semiconductor and its magnetic properties</title>
<author>
<name sortKey="Lardjane, S" sort="Lardjane, S" uniqKey="Lardjane S" first="S." last="Lardjane">S. Lardjane</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire d'Etudes et de Recherches, les Procedes et les Surfaces, IRTES-LERMPS, UTBM, Site de Montbéliard</s1>
<s2>90010 Belfort</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Etude et Prédiction des Matériaux, Unité de Recherche Matériaux et Energies Renouvelables, LEPM-URMER, Université de Tlemcen</s1>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Merad, G" sort="Merad, G" uniqKey="Merad G" first="G." last="Merad">G. Merad</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Etude et Prédiction des Matériaux, Unité de Recherche Matériaux et Energies Renouvelables, LEPM-URMER, Université de Tlemcen</s1>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fenineche, N" sort="Fenineche, N" uniqKey="Fenineche N" first="N." last="Fenineche">N. Fenineche</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire d'Etudes et de Recherches, les Procedes et les Surfaces, IRTES-LERMPS, UTBM, Site de Montbéliard</s1>
<s2>90010 Belfort</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Billard, A" sort="Billard, A" uniqKey="Billard A" first="A." last="Billard">A. Billard</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire d'Etudes et de Recherches, les Procedes et les Surfaces, IRTES-LERMPS, UTBM, Site de Montbéliard</s1>
<s2>90010 Belfort</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Faraoun, H I" sort="Faraoun, H I" uniqKey="Faraoun H" first="H. I." last="Faraoun">H. I. Faraoun</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Etude et Prédiction des Matériaux, Unité de Recherche Matériaux et Energies Renouvelables, LEPM-URMER, Université de Tlemcen</s1>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0230165</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0230165 INIST</idno>
<idno type="RBID">Pascal:13-0230165</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000028</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Ab initio study of ZnCoO diluted magnetic semiconductor and its magnetic properties</title>
<author>
<name sortKey="Lardjane, S" sort="Lardjane, S" uniqKey="Lardjane S" first="S." last="Lardjane">S. Lardjane</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire d'Etudes et de Recherches, les Procedes et les Surfaces, IRTES-LERMPS, UTBM, Site de Montbéliard</s1>
<s2>90010 Belfort</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Etude et Prédiction des Matériaux, Unité de Recherche Matériaux et Energies Renouvelables, LEPM-URMER, Université de Tlemcen</s1>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Merad, G" sort="Merad, G" uniqKey="Merad G" first="G." last="Merad">G. Merad</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Etude et Prédiction des Matériaux, Unité de Recherche Matériaux et Energies Renouvelables, LEPM-URMER, Université de Tlemcen</s1>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fenineche, N" sort="Fenineche, N" uniqKey="Fenineche N" first="N." last="Fenineche">N. Fenineche</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire d'Etudes et de Recherches, les Procedes et les Surfaces, IRTES-LERMPS, UTBM, Site de Montbéliard</s1>
<s2>90010 Belfort</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Billard, A" sort="Billard, A" uniqKey="Billard A" first="A." last="Billard">A. Billard</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratoire d'Etudes et de Recherches, les Procedes et les Surfaces, IRTES-LERMPS, UTBM, Site de Montbéliard</s1>
<s2>90010 Belfort</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Faraoun, H I" sort="Faraoun, H I" uniqKey="Faraoun H" first="H. I." last="Faraoun">H. I. Faraoun</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Laboratoire d'Etude et Prédiction des Matériaux, Unité de Recherche Matériaux et Energies Renouvelables, LEPM-URMER, Université de Tlemcen</s1>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of alloys and compounds</title>
<title level="j" type="abbreviated">J. alloys compd.</title>
<idno type="ISSN">0925-8388</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of alloys and compounds</title>
<title level="j" type="abbreviated">J. alloys compd.</title>
<idno type="ISSN">0925-8388</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ab initio calculations</term>
<term>Cobalt additions</term>
<term>Curie point</term>
<term>Density functional method</term>
<term>Doping</term>
<term>Electronic structure</term>
<term>Ferromagnetism</term>
<term>Generalized gradient approximation</term>
<term>Hubbard model</term>
<term>Impurity density</term>
<term>Magnetic moments</term>
<term>Semimagnetic semiconductors</term>
<term>Transition element additions</term>
<term>Wide band gap semiconductors</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Calcul ab initio</term>
<term>Dopage</term>
<term>Addition métal transition</term>
<term>Ferromagnétisme</term>
<term>Point Curie</term>
<term>Addition cobalt</term>
<term>Structure électronique</term>
<term>Méthode fonctionnelle densité</term>
<term>Approximation gradient généralisé</term>
<term>Modèle Hubbard</term>
<term>Concentration impureté</term>
<term>Moment magnétique</term>
<term>Semiconducteur semimagnétique</term>
<term>Semiconducteur bande interdite large</term>
<term>Oxyde de zinc</term>
<term>ZnO</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transition metal-doped wide band gap semiconductors, such as ZnO, attract much attention due to the theoretical prediction that ZnO is a room temperature ferromagnetic semiconductor [1,2]. Very controversial experimental and theoretical papers have been published to discuss the origin of ferromagnetic ordering and the relevance of the Curie temperature (T
<sub>c</sub>
) of Co-doped ZnO [3-5]. In order to get better insight, electronic structure of Co
<sub>x</sub>
Zn
<sub>1-x</sub>
O magnetic semiconductor was investigated via first principle calculations. The generalised gradient approximations (GGA) and the GGA with Hubbard U correction (GGA + U) in the framework of density functional theory (DFT) have been used. Calculations are done for different doping concentrations to discuss the contribution of different atoms in magnetic moments and magnetic coupling.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>551</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Ab initio study of ZnCoO diluted magnetic semiconductor and its magnetic properties</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LARDJANE (S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MERAD (G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FENINECHE (N.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BILLARD (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FARAOUN (H. I.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire d'Etudes et de Recherches, les Procedes et les Surfaces, IRTES-LERMPS, UTBM, Site de Montbéliard</s1>
<s2>90010 Belfort</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire d'Etude et Prédiction des Matériaux, Unité de Recherche Matériaux et Energies Renouvelables, LEPM-URMER, Université de Tlemcen</s1>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>306-311</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000502447070520</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>52 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0230165</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Transition metal-doped wide band gap semiconductors, such as ZnO, attract much attention due to the theoretical prediction that ZnO is a room temperature ferromagnetic semiconductor [1,2]. Very controversial experimental and theoretical papers have been published to discuss the origin of ferromagnetic ordering and the relevance of the Curie temperature (T
<sub>c</sub>
) of Co-doped ZnO [3-5]. In order to get better insight, electronic structure of Co
<sub>x</sub>
Zn
<sub>1-x</sub>
O magnetic semiconductor was investigated via first principle calculations. The generalised gradient approximations (GGA) and the GGA with Hubbard U correction (GGA + U) in the framework of density functional theory (DFT) have been used. Calculations are done for different doping concentrations to discuss the contribution of different atoms in magnetic moments and magnetic coupling.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70E25</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70E50P</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Calcul ab initio</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Ab initio calculations</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Doping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Doping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Addition métal transition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Transition element additions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Ferromagnétisme</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Ferromagnetism</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Point Curie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Curie point</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Addition cobalt</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Cobalt additions</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Approximation gradient généralisé</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Generalized gradient approximation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Modèle Hubbard</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Hubbard model</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Concentration impureté</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Impurity density</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Concentración impureza</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Moment magnétique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Magnetic moments</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Semiconducteur semimagnétique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Semimagnetic semiconductors</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>217</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 13-0230165 INIST</NO>
<ET>Ab initio study of ZnCoO diluted magnetic semiconductor and its magnetic properties</ET>
<AU>LARDJANE (S.); MERAD (G.); FENINECHE (N.); BILLARD (A.); FARAOUN (H. I.)</AU>
<AF>Laboratoire d'Etudes et de Recherches, les Procedes et les Surfaces, IRTES-LERMPS, UTBM, Site de Montbéliard/90010 Belfort/France (1 aut., 3 aut., 4 aut.); Laboratoire d'Etude et Prédiction des Matériaux, Unité de Recherche Matériaux et Energies Renouvelables, LEPM-URMER, Université de Tlemcen/Algérie (1 aut., 2 aut., 5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of alloys and compounds; ISSN 0925-8388; Royaume-Uni; Da. 2013; Vol. 551; Pp. 306-311; Bibl. 52 ref.</SO>
<LA>Anglais</LA>
<EA>Transition metal-doped wide band gap semiconductors, such as ZnO, attract much attention due to the theoretical prediction that ZnO is a room temperature ferromagnetic semiconductor [1,2]. Very controversial experimental and theoretical papers have been published to discuss the origin of ferromagnetic ordering and the relevance of the Curie temperature (T
<sub>c</sub>
) of Co-doped ZnO [3-5]. In order to get better insight, electronic structure of Co
<sub>x</sub>
Zn
<sub>1-x</sub>
O magnetic semiconductor was investigated via first principle calculations. The generalised gradient approximations (GGA) and the GGA with Hubbard U correction (GGA + U) in the framework of density functional theory (DFT) have been used. Calculations are done for different doping concentrations to discuss the contribution of different atoms in magnetic moments and magnetic coupling.</EA>
<CC>001B70E25; 001B70E50P</CC>
<FD>Calcul ab initio; Dopage; Addition métal transition; Ferromagnétisme; Point Curie; Addition cobalt; Structure électronique; Méthode fonctionnelle densité; Approximation gradient généralisé; Modèle Hubbard; Concentration impureté; Moment magnétique; Semiconducteur semimagnétique; Semiconducteur bande interdite large; Oxyde de zinc; ZnO</FD>
<ED>Ab initio calculations; Doping; Transition element additions; Ferromagnetism; Curie point; Cobalt additions; Electronic structure; Density functional method; Generalized gradient approximation; Hubbard model; Impurity density; Magnetic moments; Semimagnetic semiconductors; Wide band gap semiconductors; Zinc oxide</ED>
<SD>Doping; Concentración impureza; Zinc óxido</SD>
<LO>INIST-1151.354000502447070520</LO>
<ID>13-0230165</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000028 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000028 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0230165
   |texte=   Ab initio study of ZnCoO diluted magnetic semiconductor and its magnetic properties
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024