Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optical study of annealed cobalt-porous silicon nanocomposites

Identifieur interne : 000024 ( PascalFrancis/Corpus ); précédent : 000023; suivant : 000025

Optical study of annealed cobalt-porous silicon nanocomposites

Auteurs : M.-B. Bouzouraa ; M. Rahmani ; M.-A. Zaïbi ; N. Lorrain ; L. Hajji ; M. Oueslati

Source :

RBID : Pascal:13-0285949

Descripteurs français

English descriptors

Abstract

We report Raman and photoluminescence studies of cobalt-porous silicon nanocomposites (PS/Co). Cobalt was introduced in porous silicon (PS) by immersion method using CoCl2 aqueous solution. The presence of cobalt in PS matrix was identified by FTIR spectroscopy and EDX analyses. The Raman spectroscopy revealed the presence of Si bonded to cobalt oxide in PS/Co. We discuss also the Raman spectra of PS and PS/Co samples under different annealing temperatures ranging from room temperature (RT) to 600 °C. The optical properties of PS and PS/Co were studied by photoluminescence (PL). The highest PL intensity was observed for an immersion time of 60 min. For long duration, the deposited cobalt quantity acts as energy trap and promotes the non-radiative energy transfer; it is the autoextinction phenomenon. We have studied also the effect of the annealing temperature on the PL of both PS and PS/Co samples. For PS, the annealing process leads to a rapid oxidation of the Si nanocrystallites (nc-Si). In the case of PS/Co sample, two different mechanisms are proposed; one is the desorption of Si-Hx(x=2.3) with the formation of cobalt oxide for annealing temperature less than 450 C which causes the increasing of PL intensity and the stability of PL energy, the other mechanism is the transformation of the porous silicon to silica at high temperatures (>450 C) which leads to the decreasing of the PL intensity and the blue shift of the PL curve.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0022-2313
A02 01      @0 JLUMA8
A03   1    @0 J. lumin.
A05       @2 143
A08 01  1  ENG  @1 Optical study of annealed cobalt-porous silicon nanocomposites
A11 01  1    @1 BOUZOURAA (M.-B.)
A11 02  1    @1 RAHMANI (M.)
A11 03  1    @1 ZAÏBI (M.-A.)
A11 04  1    @1 LORRAIN (N.)
A11 05  1    @1 HAJJI (L.)
A11 06  1    @1 OUESLATI (M.)
A14 01      @1 Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar @2 Tunis @3 TUN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 6 aut.
A14 02      @1 Ecole Supérieure des Sciences et Techniques de Tunis, 5 Avenue Taha Hussein @2 1008 Tunis @3 TUN @Z 3 aut.
A14 03      @1 Université Européenne de Bretagne, CNRS FOTON-UMR 6082, 6 rue de Kérampont, BP 80518 @2 22305 Lannion @3 FRA @Z 4 aut. @Z 5 aut.
A20       @1 521-525
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 14666 @5 354000506590370840
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 27 ref.
A47 01  1    @0 13-0285949
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of luminescence
A66 01      @0 NLD
C01 01    ENG  @0 We report Raman and photoluminescence studies of cobalt-porous silicon nanocomposites (PS/Co). Cobalt was introduced in porous silicon (PS) by immersion method using CoCl2 aqueous solution. The presence of cobalt in PS matrix was identified by FTIR spectroscopy and EDX analyses. The Raman spectroscopy revealed the presence of Si bonded to cobalt oxide in PS/Co. We discuss also the Raman spectra of PS and PS/Co samples under different annealing temperatures ranging from room temperature (RT) to 600 °C. The optical properties of PS and PS/Co were studied by photoluminescence (PL). The highest PL intensity was observed for an immersion time of 60 min. For long duration, the deposited cobalt quantity acts as energy trap and promotes the non-radiative energy transfer; it is the autoextinction phenomenon. We have studied also the effect of the annealing temperature on the PL of both PS and PS/Co samples. For PS, the annealing process leads to a rapid oxidation of the Si nanocrystallites (nc-Si). In the case of PS/Co sample, two different mechanisms are proposed; one is the desorption of Si-Hx(x=2.3) with the formation of cobalt oxide for annealing temperature less than 450 C which causes the increasing of PL intensity and the stability of PL energy, the other mechanism is the transformation of the porous silicon to silica at high temperatures (>450 C) which leads to the decreasing of the PL intensity and the blue shift of the PL curve.
C02 01  3    @0 001B70H67
C02 02  3    @0 001B80A07B
C03 01  X  FRE  @0 Transfert énergie excitation @5 03
C03 01  X  ENG  @0 Excitation energy transfer @5 03
C03 01  X  SPA  @0 Transferencia energía excitación @5 03
C03 02  3  FRE  @0 Propriété optique @5 41
C03 02  3  ENG  @0 Optical properties @5 41
C03 03  3  FRE  @0 Photoluminescence @5 43
C03 03  3  ENG  @0 Photoluminescence @5 43
C03 04  3  FRE  @0 Solution aqueuse @5 45
C03 04  3  ENG  @0 Aqueous solutions @5 45
C03 05  X  FRE  @0 Spectrométrie FTIR @5 46
C03 05  X  ENG  @0 Fourier-transformed infrared spectrometry @5 46
C03 05  X  SPA  @0 Espectrometría FTIR @5 46
C03 06  3  FRE  @0 Matériau poreux @5 47
C03 06  3  ENG  @0 Porous materials @5 47
C03 07  3  FRE  @0 Nanomatériau @5 50
C03 07  3  ENG  @0 Nanostructured materials @5 50
C03 08  3  FRE  @0 Nanocomposite @5 62
C03 08  3  ENG  @0 Nanocomposites @5 62
C03 09  3  FRE  @0 Cobalt Chlorure @2 NC @2 NA @5 63
C03 09  3  ENG  @0 Cobalt Chlorides @2 NC @2 NA @5 63
C03 10  3  FRE  @0 Spectre RX @5 64
C03 10  3  ENG  @0 X-ray spectra @5 64
C03 11  X  FRE  @0 Spectrométrie dispersive @5 65
C03 11  X  ENG  @0 Dispersive spectrometry @5 65
C03 11  X  SPA  @0 Espectrometría dispersiva @5 65
C03 12  3  FRE  @0 Spectre Raman @5 66
C03 12  3  ENG  @0 Raman spectra @5 66
C03 13  3  FRE  @0 Silicium @2 NC @5 67
C03 13  3  ENG  @0 Silicon @2 NC @5 67
C03 14  X  FRE  @0 Oxyde de cobalt @5 68
C03 14  X  ENG  @0 Cobalt oxide @5 68
C03 14  X  SPA  @0 Cobalto óxido @5 68
C03 15  3  FRE  @0 Transfert radiatif @5 69
C03 15  3  ENG  @0 Radiative transfer @5 69
C03 16  3  FRE  @0 Si @4 INC @5 71
C03 17  3  FRE  @0 8107 @4 INC @5 83
C03 18  3  FRE  @0 7867 @4 INC @5 84
N21       @1 273

Format Inist (serveur)

NO : PASCAL 13-0285949 INIST
ET : Optical study of annealed cobalt-porous silicon nanocomposites
AU : BOUZOURAA (M.-B.); RAHMANI (M.); ZAÏBI (M.-A.); LORRAIN (N.); HAJJI (L.); OUESLATI (M.)
AF : Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar/Tunis/Tunisie (1 aut., 2 aut., 3 aut., 6 aut.); Ecole Supérieure des Sciences et Techniques de Tunis, 5 Avenue Taha Hussein/1008 Tunis/Tunisie (3 aut.); Université Européenne de Bretagne, CNRS FOTON-UMR 6082, 6 rue de Kérampont, BP 80518/22305 Lannion/France (4 aut., 5 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of luminescence; ISSN 0022-2313; Coden JLUMA8; Pays-Bas; Da. 2013; Vol. 143; Pp. 521-525; Bibl. 27 ref.
LA : Anglais
EA : We report Raman and photoluminescence studies of cobalt-porous silicon nanocomposites (PS/Co). Cobalt was introduced in porous silicon (PS) by immersion method using CoCl2 aqueous solution. The presence of cobalt in PS matrix was identified by FTIR spectroscopy and EDX analyses. The Raman spectroscopy revealed the presence of Si bonded to cobalt oxide in PS/Co. We discuss also the Raman spectra of PS and PS/Co samples under different annealing temperatures ranging from room temperature (RT) to 600 °C. The optical properties of PS and PS/Co were studied by photoluminescence (PL). The highest PL intensity was observed for an immersion time of 60 min. For long duration, the deposited cobalt quantity acts as energy trap and promotes the non-radiative energy transfer; it is the autoextinction phenomenon. We have studied also the effect of the annealing temperature on the PL of both PS and PS/Co samples. For PS, the annealing process leads to a rapid oxidation of the Si nanocrystallites (nc-Si). In the case of PS/Co sample, two different mechanisms are proposed; one is the desorption of Si-Hx(x=2.3) with the formation of cobalt oxide for annealing temperature less than 450 C which causes the increasing of PL intensity and the stability of PL energy, the other mechanism is the transformation of the porous silicon to silica at high temperatures (>450 C) which leads to the decreasing of the PL intensity and the blue shift of the PL curve.
CC : 001B70H67; 001B80A07B
FD : Transfert énergie excitation; Propriété optique; Photoluminescence; Solution aqueuse; Spectrométrie FTIR; Matériau poreux; Nanomatériau; Nanocomposite; Cobalt Chlorure; Spectre RX; Spectrométrie dispersive; Spectre Raman; Silicium; Oxyde de cobalt; Transfert radiatif; Si; 8107; 7867
ED : Excitation energy transfer; Optical properties; Photoluminescence; Aqueous solutions; Fourier-transformed infrared spectrometry; Porous materials; Nanostructured materials; Nanocomposites; Cobalt Chlorides; X-ray spectra; Dispersive spectrometry; Raman spectra; Silicon; Cobalt oxide; Radiative transfer
SD : Transferencia energía excitación; Espectrometría FTIR; Espectrometría dispersiva; Cobalto óxido
LO : INIST-14666.354000506590370840
ID : 13-0285949

Links to Exploration step

Pascal:13-0285949

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optical study of annealed cobalt-porous silicon nanocomposites</title>
<author>
<name sortKey="Bouzouraa, M B" sort="Bouzouraa, M B" uniqKey="Bouzouraa M" first="M.-B." last="Bouzouraa">M.-B. Bouzouraa</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rahmani, M" sort="Rahmani, M" uniqKey="Rahmani M" first="M." last="Rahmani">M. Rahmani</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zaibi, M A" sort="Zaibi, M A" uniqKey="Zaibi M" first="M.-A." last="Zaïbi">M.-A. Zaïbi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Ecole Supérieure des Sciences et Techniques de Tunis, 5 Avenue Taha Hussein</s1>
<s2>1008 Tunis</s2>
<s3>TUN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lorrain, N" sort="Lorrain, N" uniqKey="Lorrain N" first="N." last="Lorrain">N. Lorrain</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Université Européenne de Bretagne, CNRS FOTON-UMR 6082, 6 rue de Kérampont, BP 80518</s1>
<s2>22305 Lannion</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hajji, L" sort="Hajji, L" uniqKey="Hajji L" first="L." last="Hajji">L. Hajji</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Université Européenne de Bretagne, CNRS FOTON-UMR 6082, 6 rue de Kérampont, BP 80518</s1>
<s2>22305 Lannion</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Oueslati, M" sort="Oueslati, M" uniqKey="Oueslati M" first="M." last="Oueslati">M. Oueslati</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0285949</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0285949 INIST</idno>
<idno type="RBID">Pascal:13-0285949</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000024</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Optical study of annealed cobalt-porous silicon nanocomposites</title>
<author>
<name sortKey="Bouzouraa, M B" sort="Bouzouraa, M B" uniqKey="Bouzouraa M" first="M.-B." last="Bouzouraa">M.-B. Bouzouraa</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rahmani, M" sort="Rahmani, M" uniqKey="Rahmani M" first="M." last="Rahmani">M. Rahmani</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zaibi, M A" sort="Zaibi, M A" uniqKey="Zaibi M" first="M.-A." last="Zaïbi">M.-A. Zaïbi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Ecole Supérieure des Sciences et Techniques de Tunis, 5 Avenue Taha Hussein</s1>
<s2>1008 Tunis</s2>
<s3>TUN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lorrain, N" sort="Lorrain, N" uniqKey="Lorrain N" first="N." last="Lorrain">N. Lorrain</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Université Européenne de Bretagne, CNRS FOTON-UMR 6082, 6 rue de Kérampont, BP 80518</s1>
<s2>22305 Lannion</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hajji, L" sort="Hajji, L" uniqKey="Hajji L" first="L." last="Hajji">L. Hajji</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Université Européenne de Bretagne, CNRS FOTON-UMR 6082, 6 rue de Kérampont, BP 80518</s1>
<s2>22305 Lannion</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Oueslati, M" sort="Oueslati, M" uniqKey="Oueslati M" first="M." last="Oueslati">M. Oueslati</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of luminescence</title>
<title level="j" type="abbreviated">J. lumin.</title>
<idno type="ISSN">0022-2313</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of luminescence</title>
<title level="j" type="abbreviated">J. lumin.</title>
<idno type="ISSN">0022-2313</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aqueous solutions</term>
<term>Cobalt Chlorides</term>
<term>Cobalt oxide</term>
<term>Dispersive spectrometry</term>
<term>Excitation energy transfer</term>
<term>Fourier-transformed infrared spectrometry</term>
<term>Nanocomposites</term>
<term>Nanostructured materials</term>
<term>Optical properties</term>
<term>Photoluminescence</term>
<term>Porous materials</term>
<term>Radiative transfer</term>
<term>Raman spectra</term>
<term>Silicon</term>
<term>X-ray spectra</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transfert énergie excitation</term>
<term>Propriété optique</term>
<term>Photoluminescence</term>
<term>Solution aqueuse</term>
<term>Spectrométrie FTIR</term>
<term>Matériau poreux</term>
<term>Nanomatériau</term>
<term>Nanocomposite</term>
<term>Cobalt Chlorure</term>
<term>Spectre RX</term>
<term>Spectrométrie dispersive</term>
<term>Spectre Raman</term>
<term>Silicium</term>
<term>Oxyde de cobalt</term>
<term>Transfert radiatif</term>
<term>Si</term>
<term>8107</term>
<term>7867</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report Raman and photoluminescence studies of cobalt-porous silicon nanocomposites (PS/Co). Cobalt was introduced in porous silicon (PS) by immersion method using CoCl
<sub>2</sub>
aqueous solution. The presence of cobalt in PS matrix was identified by FTIR spectroscopy and EDX analyses. The Raman spectroscopy revealed the presence of Si bonded to cobalt oxide in PS/Co. We discuss also the Raman spectra of PS and PS/Co samples under different annealing temperatures ranging from room temperature (RT) to 600 °C. The optical properties of PS and PS/Co were studied by photoluminescence (PL). The highest PL intensity was observed for an immersion time of 60 min. For long duration, the deposited cobalt quantity acts as energy trap and promotes the non-radiative energy transfer; it is the autoextinction phenomenon. We have studied also the effect of the annealing temperature on the PL of both PS and PS/Co samples. For PS, the annealing process leads to a rapid oxidation of the Si nanocrystallites (nc-Si). In the case of PS/Co sample, two different mechanisms are proposed; one is the desorption of Si-H
<sub>x(x=2.3)</sub>
with the formation of cobalt oxide for annealing temperature less than 450 C which causes the increasing of PL intensity and the stability of PL energy, the other mechanism is the transformation of the porous silicon to silica at high temperatures (>450 C) which leads to the decreasing of the PL intensity and the blue shift of the PL curve.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-2313</s0>
</fA01>
<fA02 i1="01">
<s0>JLUMA8</s0>
</fA02>
<fA03 i2="1">
<s0>J. lumin.</s0>
</fA03>
<fA05>
<s2>143</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optical study of annealed cobalt-porous silicon nanocomposites</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BOUZOURAA (M.-B.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RAHMANI (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZAÏBI (M.-A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LORRAIN (N.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HAJJI (L.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>OUESLATI (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar</s1>
<s2>Tunis</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Ecole Supérieure des Sciences et Techniques de Tunis, 5 Avenue Taha Hussein</s1>
<s2>1008 Tunis</s2>
<s3>TUN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Université Européenne de Bretagne, CNRS FOTON-UMR 6082, 6 rue de Kérampont, BP 80518</s1>
<s2>22305 Lannion</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>521-525</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14666</s2>
<s5>354000506590370840</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0285949</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of luminescence</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report Raman and photoluminescence studies of cobalt-porous silicon nanocomposites (PS/Co). Cobalt was introduced in porous silicon (PS) by immersion method using CoCl
<sub>2</sub>
aqueous solution. The presence of cobalt in PS matrix was identified by FTIR spectroscopy and EDX analyses. The Raman spectroscopy revealed the presence of Si bonded to cobalt oxide in PS/Co. We discuss also the Raman spectra of PS and PS/Co samples under different annealing temperatures ranging from room temperature (RT) to 600 °C. The optical properties of PS and PS/Co were studied by photoluminescence (PL). The highest PL intensity was observed for an immersion time of 60 min. For long duration, the deposited cobalt quantity acts as energy trap and promotes the non-radiative energy transfer; it is the autoextinction phenomenon. We have studied also the effect of the annealing temperature on the PL of both PS and PS/Co samples. For PS, the annealing process leads to a rapid oxidation of the Si nanocrystallites (nc-Si). In the case of PS/Co sample, two different mechanisms are proposed; one is the desorption of Si-H
<sub>x(x=2.3)</sub>
with the formation of cobalt oxide for annealing temperature less than 450 C which causes the increasing of PL intensity and the stability of PL energy, the other mechanism is the transformation of the porous silicon to silica at high temperatures (>450 C) which leads to the decreasing of the PL intensity and the blue shift of the PL curve.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Transfert énergie excitation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Excitation energy transfer</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Transferencia energía excitación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>41</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>41</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>43</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>43</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Solution aqueuse</s0>
<s5>45</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Aqueous solutions</s0>
<s5>45</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Spectrométrie FTIR</s0>
<s5>46</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Fourier-transformed infrared spectrometry</s0>
<s5>46</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Espectrometría FTIR</s0>
<s5>46</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Matériau poreux</s0>
<s5>47</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Porous materials</s0>
<s5>47</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>50</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>50</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Nanocomposite</s0>
<s5>62</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Nanocomposites</s0>
<s5>62</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Cobalt Chlorure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>63</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Cobalt Chlorides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>63</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Spectre RX</s0>
<s5>64</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>X-ray spectra</s0>
<s5>64</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Spectrométrie dispersive</s0>
<s5>65</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Dispersive spectrometry</s0>
<s5>65</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Espectrometría dispersiva</s0>
<s5>65</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Spectre Raman</s0>
<s5>66</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Raman spectra</s0>
<s5>66</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>67</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>67</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Oxyde de cobalt</s0>
<s5>68</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Cobalt oxide</s0>
<s5>68</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Cobalto óxido</s0>
<s5>68</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Transfert radiatif</s0>
<s5>69</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Radiative transfer</s0>
<s5>69</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Si</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>7867</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fN21>
<s1>273</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 13-0285949 INIST</NO>
<ET>Optical study of annealed cobalt-porous silicon nanocomposites</ET>
<AU>BOUZOURAA (M.-B.); RAHMANI (M.); ZAÏBI (M.-A.); LORRAIN (N.); HAJJI (L.); OUESLATI (M.)</AU>
<AF>Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar/Tunis/Tunisie (1 aut., 2 aut., 3 aut., 6 aut.); Ecole Supérieure des Sciences et Techniques de Tunis, 5 Avenue Taha Hussein/1008 Tunis/Tunisie (3 aut.); Université Européenne de Bretagne, CNRS FOTON-UMR 6082, 6 rue de Kérampont, BP 80518/22305 Lannion/France (4 aut., 5 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of luminescence; ISSN 0022-2313; Coden JLUMA8; Pays-Bas; Da. 2013; Vol. 143; Pp. 521-525; Bibl. 27 ref.</SO>
<LA>Anglais</LA>
<EA>We report Raman and photoluminescence studies of cobalt-porous silicon nanocomposites (PS/Co). Cobalt was introduced in porous silicon (PS) by immersion method using CoCl
<sub>2</sub>
aqueous solution. The presence of cobalt in PS matrix was identified by FTIR spectroscopy and EDX analyses. The Raman spectroscopy revealed the presence of Si bonded to cobalt oxide in PS/Co. We discuss also the Raman spectra of PS and PS/Co samples under different annealing temperatures ranging from room temperature (RT) to 600 °C. The optical properties of PS and PS/Co were studied by photoluminescence (PL). The highest PL intensity was observed for an immersion time of 60 min. For long duration, the deposited cobalt quantity acts as energy trap and promotes the non-radiative energy transfer; it is the autoextinction phenomenon. We have studied also the effect of the annealing temperature on the PL of both PS and PS/Co samples. For PS, the annealing process leads to a rapid oxidation of the Si nanocrystallites (nc-Si). In the case of PS/Co sample, two different mechanisms are proposed; one is the desorption of Si-H
<sub>x(x=2.3)</sub>
with the formation of cobalt oxide for annealing temperature less than 450 C which causes the increasing of PL intensity and the stability of PL energy, the other mechanism is the transformation of the porous silicon to silica at high temperatures (>450 C) which leads to the decreasing of the PL intensity and the blue shift of the PL curve.</EA>
<CC>001B70H67; 001B80A07B</CC>
<FD>Transfert énergie excitation; Propriété optique; Photoluminescence; Solution aqueuse; Spectrométrie FTIR; Matériau poreux; Nanomatériau; Nanocomposite; Cobalt Chlorure; Spectre RX; Spectrométrie dispersive; Spectre Raman; Silicium; Oxyde de cobalt; Transfert radiatif; Si; 8107; 7867</FD>
<ED>Excitation energy transfer; Optical properties; Photoluminescence; Aqueous solutions; Fourier-transformed infrared spectrometry; Porous materials; Nanostructured materials; Nanocomposites; Cobalt Chlorides; X-ray spectra; Dispersive spectrometry; Raman spectra; Silicon; Cobalt oxide; Radiative transfer</ED>
<SD>Transferencia energía excitación; Espectrometría FTIR; Espectrometría dispersiva; Cobalto óxido</SD>
<LO>INIST-14666.354000506590370840</LO>
<ID>13-0285949</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000024 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000024 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0285949
   |texte=   Optical study of annealed cobalt-porous silicon nanocomposites
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024