Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural and magnetic properties of cobalt nanostructures on SiO2/Si(111) substrates

Identifieur interne : 000002 ( PascalFrancis/Corpus ); précédent : 000001; suivant : 000003

Structural and magnetic properties of cobalt nanostructures on SiO2/Si(111) substrates

Auteurs : W. Bounour-Bouzamouche ; S. M. Cherif ; S. Farhat ; Y. Roussigne ; A. Tallaire ; A. Gicquel ; C. P. Lungu ; M. Guerioune

Source :

RBID : Pascal:15-0015881

Descripteurs français

English descriptors

Abstract

2D architectures of cobalt onto silicon (111) surfaces were elaborated by patterning of magnetic cobalt in the nanometer scale. A continuous cobalt layer of 1, 3 and 10 nm thickness, respectively, was first deposited by means of thermoionic vacuum arc technique and then, thermally annealed in vacuum at temperatures ranging from 450 to 800°C. Surface structure was analyzed by atomic force and field emission-scanning electron microscopies. Above 750°C, regular triangular shape cobalt nanostructures are formed with pattern dimensions varying between 10 and 200 nm. Good control of shape and packing density could be achieved by adjusting the initial thickness and the thermal and hydrogen plasma treatments. Magnetic properties were investigated using vibrating sample magnetometer technique. The evolution of the coercive field versus packing density and dimensions of the nanostructures was studied and compared to micromagnetic calculations. The observed nanostructures have been modeled by a series of shapes tending to a fractal curve.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0169-4332
A03   1    @0 Appl. surf. sci.
A05       @2 320
A08 01  1  ENG  @1 Structural and magnetic properties of cobalt nanostructures on SiO2/Si(111) substrates
A11 01  1    @1 BOUNOUR-BOUZAMOUCHE (W.)
A11 02  1    @1 CHERIF (S. M.)
A11 03  1    @1 FARHAT (S.)
A11 04  1    @1 ROUSSIGNE (Y.)
A11 05  1    @1 TALLAIRE (A.)
A11 06  1    @1 GICQUEL (A.)
A11 07  1    @1 LUNGU (C. P.)
A11 08  1    @1 GUERIOUNE (M.)
A14 01      @1 LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément @2 93430 Villetaneuse @3 FRA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 6 aut.
A14 02      @1 NILPR, 409, Magurele @2 Judllfov, 077125 Bucharest @3 ROU @Z 7 aut.
A14 03      @1 LEREC, Université d'Annaba, BP12 - 23000 @3 DZA @Z 1 aut. @Z 8 aut.
A20       @1 858-862
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 16002 @5 354000504587111170
A44       @0 0000 @1 © 2015 INIST-CNRS. All rights reserved.
A45       @0 26 ref.
A47 01  1    @0 15-0015881
A60       @1 P
A61       @0 A
A64 01  1    @0 Applied surface science
A66 01      @0 NLD
C01 01    ENG  @0 2D architectures of cobalt onto silicon (111) surfaces were elaborated by patterning of magnetic cobalt in the nanometer scale. A continuous cobalt layer of 1, 3 and 10 nm thickness, respectively, was first deposited by means of thermoionic vacuum arc technique and then, thermally annealed in vacuum at temperatures ranging from 450 to 800°C. Surface structure was analyzed by atomic force and field emission-scanning electron microscopies. Above 750°C, regular triangular shape cobalt nanostructures are formed with pattern dimensions varying between 10 and 200 nm. Good control of shape and packing density could be achieved by adjusting the initial thickness and the thermal and hydrogen plasma treatments. Magnetic properties were investigated using vibrating sample magnetometer technique. The evolution of the coercive field versus packing density and dimensions of the nanostructures was studied and compared to micromagnetic calculations. The observed nanostructures have been modeled by a series of shapes tending to a fractal curve.
C02 01  3    @0 001B60
C02 02  3    @0 001B70
C02 03  3    @0 001B80
C03 01  3  FRE  @0 Cobalt @2 NC @5 01
C03 01  3  ENG  @0 Cobalt @2 NC @5 01
C03 02  3  FRE  @0 Métal transition @5 02
C03 02  3  ENG  @0 Transition elements @5 02
C03 03  3  FRE  @0 Nanostructure @5 03
C03 03  3  ENG  @0 Nanostructures @5 03
C03 04  3  FRE  @0 Silicium @2 NC @5 04
C03 04  3  ENG  @0 Silicon @2 NC @5 04
C03 05  3  FRE  @0 Autoassemblage @5 05
C03 05  3  ENG  @0 Self-assembly @5 05
C03 06  3  FRE  @0 Oxyde de silicium @2 NK @5 15
C03 06  3  ENG  @0 Silicon oxides @2 NK @5 15
C03 07  3  FRE  @0 Co @4 INC @5 32
C03 08  3  FRE  @0 O Si @4 INC @5 33
C03 09  3  FRE  @0 SiO2 @4 INC @5 34
C03 10  3  FRE  @0 Si @4 INC @5 35
C03 11  3  FRE  @0 Composé minéral @5 62
C03 11  3  ENG  @0 Inorganic compounds @5 62
N21       @1 019
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 15-0015881 INIST
ET : Structural and magnetic properties of cobalt nanostructures on SiO2/Si(111) substrates
AU : BOUNOUR-BOUZAMOUCHE (W.); CHERIF (S. M.); FARHAT (S.); ROUSSIGNE (Y.); TALLAIRE (A.); GICQUEL (A.); LUNGU (C. P.); GUERIOUNE (M.)
AF : LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément/93430 Villetaneuse/France (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut.); NILPR, 409, Magurele/Judllfov, 077125 Bucharest/Roumanie (7 aut.); LEREC, Université d'Annaba, BP12 - 23000/Algérie (1 aut., 8 aut.)
DT : Publication en série; Niveau analytique
SO : Applied surface science; ISSN 0169-4332; Pays-Bas; Da. 2014; Vol. 320; Pp. 858-862; Bibl. 26 ref.
LA : Anglais
EA : 2D architectures of cobalt onto silicon (111) surfaces were elaborated by patterning of magnetic cobalt in the nanometer scale. A continuous cobalt layer of 1, 3 and 10 nm thickness, respectively, was first deposited by means of thermoionic vacuum arc technique and then, thermally annealed in vacuum at temperatures ranging from 450 to 800°C. Surface structure was analyzed by atomic force and field emission-scanning electron microscopies. Above 750°C, regular triangular shape cobalt nanostructures are formed with pattern dimensions varying between 10 and 200 nm. Good control of shape and packing density could be achieved by adjusting the initial thickness and the thermal and hydrogen plasma treatments. Magnetic properties were investigated using vibrating sample magnetometer technique. The evolution of the coercive field versus packing density and dimensions of the nanostructures was studied and compared to micromagnetic calculations. The observed nanostructures have been modeled by a series of shapes tending to a fractal curve.
CC : 001B60; 001B70; 001B80
FD : Cobalt; Métal transition; Nanostructure; Silicium; Autoassemblage; Oxyde de silicium; Co; O Si; SiO2; Si; Composé minéral
ED : Cobalt; Transition elements; Nanostructures; Silicon; Self-assembly; Silicon oxides; Inorganic compounds
LO : INIST-16002.354000504587111170
ID : 15-0015881

Links to Exploration step

Pascal:15-0015881

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structural and magnetic properties of cobalt nanostructures on SiO
<sub>2</sub>
/Si(111) substrates</title>
<author>
<name sortKey="Bounour Bouzamouche, W" sort="Bounour Bouzamouche, W" uniqKey="Bounour Bouzamouche W" first="W." last="Bounour-Bouzamouche">W. Bounour-Bouzamouche</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>LEREC, Université d'Annaba, BP12 - 23000</s1>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cherif, S M" sort="Cherif, S M" uniqKey="Cherif S" first="S. M." last="Cherif">S. M. Cherif</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Farhat, S" sort="Farhat, S" uniqKey="Farhat S" first="S." last="Farhat">S. Farhat</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Roussigne, Y" sort="Roussigne, Y" uniqKey="Roussigne Y" first="Y." last="Roussigne">Y. Roussigne</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tallaire, A" sort="Tallaire, A" uniqKey="Tallaire A" first="A." last="Tallaire">A. Tallaire</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gicquel, A" sort="Gicquel, A" uniqKey="Gicquel A" first="A." last="Gicquel">A. Gicquel</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lungu, C P" sort="Lungu, C P" uniqKey="Lungu C" first="C. P." last="Lungu">C. P. Lungu</name>
<affiliation>
<inist:fA14 i1="02">
<s1>NILPR, 409, Magurele</s1>
<s2>Judllfov, 077125 Bucharest</s2>
<s3>ROU</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Guerioune, M" sort="Guerioune, M" uniqKey="Guerioune M" first="M." last="Guerioune">M. Guerioune</name>
<affiliation>
<inist:fA14 i1="03">
<s1>LEREC, Université d'Annaba, BP12 - 23000</s1>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">15-0015881</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 15-0015881 INIST</idno>
<idno type="RBID">Pascal:15-0015881</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000002</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Structural and magnetic properties of cobalt nanostructures on SiO
<sub>2</sub>
/Si(111) substrates</title>
<author>
<name sortKey="Bounour Bouzamouche, W" sort="Bounour Bouzamouche, W" uniqKey="Bounour Bouzamouche W" first="W." last="Bounour-Bouzamouche">W. Bounour-Bouzamouche</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>LEREC, Université d'Annaba, BP12 - 23000</s1>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cherif, S M" sort="Cherif, S M" uniqKey="Cherif S" first="S. M." last="Cherif">S. M. Cherif</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Farhat, S" sort="Farhat, S" uniqKey="Farhat S" first="S." last="Farhat">S. Farhat</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Roussigne, Y" sort="Roussigne, Y" uniqKey="Roussigne Y" first="Y." last="Roussigne">Y. Roussigne</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tallaire, A" sort="Tallaire, A" uniqKey="Tallaire A" first="A." last="Tallaire">A. Tallaire</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gicquel, A" sort="Gicquel, A" uniqKey="Gicquel A" first="A." last="Gicquel">A. Gicquel</name>
<affiliation>
<inist:fA14 i1="01">
<s1>LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lungu, C P" sort="Lungu, C P" uniqKey="Lungu C" first="C. P." last="Lungu">C. P. Lungu</name>
<affiliation>
<inist:fA14 i1="02">
<s1>NILPR, 409, Magurele</s1>
<s2>Judllfov, 077125 Bucharest</s2>
<s3>ROU</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Guerioune, M" sort="Guerioune, M" uniqKey="Guerioune M" first="M." last="Guerioune">M. Guerioune</name>
<affiliation>
<inist:fA14 i1="03">
<s1>LEREC, Université d'Annaba, BP12 - 23000</s1>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Applied surface science</title>
<title level="j" type="abbreviated">Appl. surf. sci.</title>
<idno type="ISSN">0169-4332</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Applied surface science</title>
<title level="j" type="abbreviated">Appl. surf. sci.</title>
<idno type="ISSN">0169-4332</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cobalt</term>
<term>Inorganic compounds</term>
<term>Nanostructures</term>
<term>Self-assembly</term>
<term>Silicon</term>
<term>Silicon oxides</term>
<term>Transition elements</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cobalt</term>
<term>Métal transition</term>
<term>Nanostructure</term>
<term>Silicium</term>
<term>Autoassemblage</term>
<term>Oxyde de silicium</term>
<term>Co</term>
<term>O Si</term>
<term>SiO2</term>
<term>Si</term>
<term>Composé minéral</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">2D architectures of cobalt onto silicon (111) surfaces were elaborated by patterning of magnetic cobalt in the nanometer scale. A continuous cobalt layer of 1, 3 and 10 nm thickness, respectively, was first deposited by means of thermoionic vacuum arc technique and then, thermally annealed in vacuum at temperatures ranging from 450 to 800°C. Surface structure was analyzed by atomic force and field emission-scanning electron microscopies. Above 750°C, regular triangular shape cobalt nanostructures are formed with pattern dimensions varying between 10 and 200 nm. Good control of shape and packing density could be achieved by adjusting the initial thickness and the thermal and hydrogen plasma treatments. Magnetic properties were investigated using vibrating sample magnetometer technique. The evolution of the coercive field versus packing density and dimensions of the nanostructures was studied and compared to micromagnetic calculations. The observed nanostructures have been modeled by a series of shapes tending to a fractal curve.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0169-4332</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. surf. sci.</s0>
</fA03>
<fA05>
<s2>320</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structural and magnetic properties of cobalt nanostructures on SiO
<sub>2</sub>
/Si(111) substrates</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BOUNOUR-BOUZAMOUCHE (W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHERIF (S. M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FARHAT (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ROUSSIGNE (Y.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TALLAIRE (A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GICQUEL (A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>LUNGU (C. P.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>GUERIOUNE (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément</s1>
<s2>93430 Villetaneuse</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>NILPR, 409, Magurele</s1>
<s2>Judllfov, 077125 Bucharest</s2>
<s3>ROU</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>LEREC, Université d'Annaba, BP12 - 23000</s1>
<s3>DZA</s3>
<sZ>1 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>858-862</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16002</s2>
<s5>354000504587111170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2015 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>26 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>15-0015881</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied surface science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>2D architectures of cobalt onto silicon (111) surfaces were elaborated by patterning of magnetic cobalt in the nanometer scale. A continuous cobalt layer of 1, 3 and 10 nm thickness, respectively, was first deposited by means of thermoionic vacuum arc technique and then, thermally annealed in vacuum at temperatures ranging from 450 to 800°C. Surface structure was analyzed by atomic force and field emission-scanning electron microscopies. Above 750°C, regular triangular shape cobalt nanostructures are formed with pattern dimensions varying between 10 and 200 nm. Good control of shape and packing density could be achieved by adjusting the initial thickness and the thermal and hydrogen plasma treatments. Magnetic properties were investigated using vibrating sample magnetometer technique. The evolution of the coercive field versus packing density and dimensions of the nanostructures was studied and compared to micromagnetic calculations. The observed nanostructures have been modeled by a series of shapes tending to a fractal curve.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Cobalt</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Métal transition</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Transition elements</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Autoassemblage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Self-assembly</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Oxyde de silicium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Silicon oxides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Co</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>O Si</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>SiO2</s0>
<s4>INC</s4>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Si</s0>
<s4>INC</s4>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>62</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>62</s5>
</fC03>
<fN21>
<s1>019</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 15-0015881 INIST</NO>
<ET>Structural and magnetic properties of cobalt nanostructures on SiO
<sub>2</sub>
/Si(111) substrates</ET>
<AU>BOUNOUR-BOUZAMOUCHE (W.); CHERIF (S. M.); FARHAT (S.); ROUSSIGNE (Y.); TALLAIRE (A.); GICQUEL (A.); LUNGU (C. P.); GUERIOUNE (M.)</AU>
<AF>LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément/93430 Villetaneuse/France (1 aut., 2 aut., 3 aut., 4 aut., 5 aut., 6 aut.); NILPR, 409, Magurele/Judllfov, 077125 Bucharest/Roumanie (7 aut.); LEREC, Université d'Annaba, BP12 - 23000/Algérie (1 aut., 8 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Applied surface science; ISSN 0169-4332; Pays-Bas; Da. 2014; Vol. 320; Pp. 858-862; Bibl. 26 ref.</SO>
<LA>Anglais</LA>
<EA>2D architectures of cobalt onto silicon (111) surfaces were elaborated by patterning of magnetic cobalt in the nanometer scale. A continuous cobalt layer of 1, 3 and 10 nm thickness, respectively, was first deposited by means of thermoionic vacuum arc technique and then, thermally annealed in vacuum at temperatures ranging from 450 to 800°C. Surface structure was analyzed by atomic force and field emission-scanning electron microscopies. Above 750°C, regular triangular shape cobalt nanostructures are formed with pattern dimensions varying between 10 and 200 nm. Good control of shape and packing density could be achieved by adjusting the initial thickness and the thermal and hydrogen plasma treatments. Magnetic properties were investigated using vibrating sample magnetometer technique. The evolution of the coercive field versus packing density and dimensions of the nanostructures was studied and compared to micromagnetic calculations. The observed nanostructures have been modeled by a series of shapes tending to a fractal curve.</EA>
<CC>001B60; 001B70; 001B80</CC>
<FD>Cobalt; Métal transition; Nanostructure; Silicium; Autoassemblage; Oxyde de silicium; Co; O Si; SiO2; Si; Composé minéral</FD>
<ED>Cobalt; Transition elements; Nanostructures; Silicon; Self-assembly; Silicon oxides; Inorganic compounds</ED>
<LO>INIST-16002.354000504587111170</LO>
<ID>15-0015881</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000002 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000002 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:15-0015881
   |texte=   Structural and magnetic properties of cobalt nanostructures on SiO2/Si(111) substrates
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024