Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Is 3-methyl-2-oxazolidinone a suitable solvent for lithium-ion batteries?

Identifieur interne : 000167 ( PascalFrancis/Checkpoint ); précédent : 000166; suivant : 000168

Is 3-methyl-2-oxazolidinone a suitable solvent for lithium-ion batteries?

Auteurs : L. Gzara [Tunisie] ; A. Chagnes [France] ; B. Carre [France] ; M. Dhahbi [Tunisie] ; D. Lemordant [France]

Source :

RBID : Pascal:06-0331068

Descripteurs français

English descriptors

Abstract

3-Methyl-2-oxazolidinone (MeOx) has been mixed to ethylene carbonate (EC) or dimethyl carbonate (DMC) in presence of lithium tetrafluoroborate (LiBF4) or lithium hexafluorophosphate (LiPF6) for use as electrolyte in lithium batteries. The optimized electrolytes in term of conductivity and viscosity are MeOx:EC, x(MeOx)=0.5 and MeOx:DMC, x(MeOx)=0.4 in presence of LiBF4 (1 M) or LiPF6 (1 M). MeOx:EC electrolytes have a better thermal stability than MeOx:DMC electrolytes but the low wettability of the Celgard separator by MeOx:EC prevents its use in lithium batteries. No lithium insertion-deinsertion occurs when LiPF6 is used as salt in MeOx-based electrolytes. MeOx:DMC, x(MeOx) = 0.4 + LiBF4 (1 M) exhibits a good cycling ability at a graphite electrode but all the investigated electrolytes containing MeOx have a low stability in oxidation at a lithium cobalt oxide electrode (LixCoO2).


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:06-0331068

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Is 3-methyl-2-oxazolidinone a suitable solvent for lithium-ion batteries?</title>
<author>
<name sortKey="Gzara, L" sort="Gzara, L" uniqKey="Gzara L" first="L." last="Gzara">L. Gzara</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire Eau et Technologies Membranaires, INRST, BP 95</s1>
<s2>Hammam-Lif 2050</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>Hammam-Lif 2050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chagnes, A" sort="Chagnes, A" uniqKey="Chagnes A" first="A." last="Chagnes">A. Chagnes</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Laboratoire de Chimie-Physique des Interfaces et des Milieux Electrolytiques (EA2098), Université F. Rabelais, Parc de Grandmont</s1>
<s2>37200 Tours</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Centre-Val de Loire</region>
<region type="old region" nuts="2">Région Centre</region>
<settlement type="city">Tours</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Carre, B" sort="Carre, B" uniqKey="Carre B" first="B." last="Carre">B. Carre</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Laboratoire de Chimie-Physique des Interfaces et des Milieux Electrolytiques (EA2098), Université F. Rabelais, Parc de Grandmont</s1>
<s2>37200 Tours</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Centre-Val de Loire</region>
<region type="old region" nuts="2">Région Centre</region>
<settlement type="city">Tours</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dhahbi, M" sort="Dhahbi, M" uniqKey="Dhahbi M" first="M." last="Dhahbi">M. Dhahbi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire Eau et Technologies Membranaires, INRST, BP 95</s1>
<s2>Hammam-Lif 2050</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>Hammam-Lif 2050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lemordant, D" sort="Lemordant, D" uniqKey="Lemordant D" first="D." last="Lemordant">D. Lemordant</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Laboratoire de Chimie-Physique des Interfaces et des Milieux Electrolytiques (EA2098), Université F. Rabelais, Parc de Grandmont</s1>
<s2>37200 Tours</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Centre-Val de Loire</region>
<region type="old region" nuts="2">Région Centre</region>
<settlement type="city">Tours</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0331068</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0331068 INIST</idno>
<idno type="RBID">Pascal:06-0331068</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000170</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000125</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000167</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000167</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Is 3-methyl-2-oxazolidinone a suitable solvent for lithium-ion batteries?</title>
<author>
<name sortKey="Gzara, L" sort="Gzara, L" uniqKey="Gzara L" first="L." last="Gzara">L. Gzara</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire Eau et Technologies Membranaires, INRST, BP 95</s1>
<s2>Hammam-Lif 2050</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>Hammam-Lif 2050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chagnes, A" sort="Chagnes, A" uniqKey="Chagnes A" first="A." last="Chagnes">A. Chagnes</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Laboratoire de Chimie-Physique des Interfaces et des Milieux Electrolytiques (EA2098), Université F. Rabelais, Parc de Grandmont</s1>
<s2>37200 Tours</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Centre-Val de Loire</region>
<region type="old region" nuts="2">Région Centre</region>
<settlement type="city">Tours</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Carre, B" sort="Carre, B" uniqKey="Carre B" first="B." last="Carre">B. Carre</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Laboratoire de Chimie-Physique des Interfaces et des Milieux Electrolytiques (EA2098), Université F. Rabelais, Parc de Grandmont</s1>
<s2>37200 Tours</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Centre-Val de Loire</region>
<region type="old region" nuts="2">Région Centre</region>
<settlement type="city">Tours</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dhahbi, M" sort="Dhahbi, M" uniqKey="Dhahbi M" first="M." last="Dhahbi">M. Dhahbi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire Eau et Technologies Membranaires, INRST, BP 95</s1>
<s2>Hammam-Lif 2050</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>Hammam-Lif 2050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lemordant, D" sort="Lemordant, D" uniqKey="Lemordant D" first="D." last="Lemordant">D. Lemordant</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Laboratoire de Chimie-Physique des Interfaces et des Milieux Electrolytiques (EA2098), Université F. Rabelais, Parc de Grandmont</s1>
<s2>37200 Tours</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Centre-Val de Loire</region>
<region type="old region" nuts="2">Région Centre</region>
<settlement type="city">Tours</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of power sources</title>
<title level="j" type="abbreviated">J. power sources</title>
<idno type="ISSN">0378-7753</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of power sources</title>
<title level="j" type="abbreviated">J. power sources</title>
<idno type="ISSN">0378-7753</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Discharge charge cycle</term>
<term>Electrolyte</term>
<term>Lithium battery</term>
<term>Oxazolidinedione</term>
<term>Secondary cell</term>
<term>Solvent</term>
<term>Stability</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Batterie lithium</term>
<term>Accumulateur électrochimique</term>
<term>Oxazolidinedione</term>
<term>Solvant</term>
<term>Electrolyte</term>
<term>Cycle charge décharge</term>
<term>Stabilité</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Solvant</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">3-Methyl-2-oxazolidinone (MeOx) has been mixed to ethylene carbonate (EC) or dimethyl carbonate (DMC) in presence of lithium tetrafluoroborate (LiBF
<sub>4</sub>
) or lithium hexafluorophosphate (LiPF
<sub>6</sub>
) for use as electrolyte in lithium batteries. The optimized electrolytes in term of conductivity and viscosity are MeOx:EC, x(MeOx)=0.5 and MeOx:DMC, x(MeOx)=0.4 in presence of LiBF
<sub>4</sub>
(1 M) or LiPF
<sub>6</sub>
(1 M). MeOx:EC electrolytes have a better thermal stability than MeOx:DMC electrolytes but the low wettability of the Celgard separator by MeOx:EC prevents its use in lithium batteries. No lithium insertion-deinsertion occurs when LiPF
<sub>6</sub>
is used as salt in MeOx-based electrolytes. MeOx:DMC, x(MeOx) = 0.4 + LiBF4 (1 M) exhibits a good cycling ability at a graphite electrode but all the investigated electrolytes containing MeOx have a low stability in oxidation at a lithium cobalt oxide electrode (Li
<sub>x</sub>
CoO
<sub>2</sub>
).</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0378-7753</s0>
</fA01>
<fA02 i1="01">
<s0>JPSODZ</s0>
</fA02>
<fA03 i2="1">
<s0>J. power sources</s0>
</fA03>
<fA05>
<s2>156</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Is 3-methyl-2-oxazolidinone a suitable solvent for lithium-ion batteries?</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GZARA (L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHAGNES (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CARRE (B.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DHAHBI (M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LEMORDANT (D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire Eau et Technologies Membranaires, INRST, BP 95</s1>
<s2>Hammam-Lif 2050</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire de Chimie-Physique des Interfaces et des Milieux Electrolytiques (EA2098), Université F. Rabelais, Parc de Grandmont</s1>
<s2>37200 Tours</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>634-644</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17113</s2>
<s5>354000115571630640</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>46 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0331068</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of power sources</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>3-Methyl-2-oxazolidinone (MeOx) has been mixed to ethylene carbonate (EC) or dimethyl carbonate (DMC) in presence of lithium tetrafluoroborate (LiBF
<sub>4</sub>
) or lithium hexafluorophosphate (LiPF
<sub>6</sub>
) for use as electrolyte in lithium batteries. The optimized electrolytes in term of conductivity and viscosity are MeOx:EC, x(MeOx)=0.5 and MeOx:DMC, x(MeOx)=0.4 in presence of LiBF
<sub>4</sub>
(1 M) or LiPF
<sub>6</sub>
(1 M). MeOx:EC electrolytes have a better thermal stability than MeOx:DMC electrolytes but the low wettability of the Celgard separator by MeOx:EC prevents its use in lithium batteries. No lithium insertion-deinsertion occurs when LiPF
<sub>6</sub>
is used as salt in MeOx-based electrolytes. MeOx:DMC, x(MeOx) = 0.4 + LiBF4 (1 M) exhibits a good cycling ability at a graphite electrode but all the investigated electrolytes containing MeOx have a low stability in oxidation at a lithium cobalt oxide electrode (Li
<sub>x</sub>
CoO
<sub>2</sub>
).</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D05I03E</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Batterie lithium</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Lithium battery</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Accumulateur électrochimique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Secondary cell</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Acumulador electroquímico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Oxazolidinedione</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Oxazolidinedione</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Oxazolidinediona</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Solvant</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Solvent</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Solvente</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Electrolyte</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Electrolyte</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Electrolito</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Cycle charge décharge</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Discharge charge cycle</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Ciclo carga descarga</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Stabilité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Stability</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estabilidad</s0>
<s5>11</s5>
</fC03>
<fN21>
<s1>212</s1>
</fN21>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>France</li>
<li>Tunisie</li>
</country>
<region>
<li>Centre-Val de Loire</li>
<li>Région Centre</li>
</region>
<settlement>
<li>Tours</li>
</settlement>
</list>
<tree>
<country name="Tunisie">
<noRegion>
<name sortKey="Gzara, L" sort="Gzara, L" uniqKey="Gzara L" first="L." last="Gzara">L. Gzara</name>
</noRegion>
<name sortKey="Dhahbi, M" sort="Dhahbi, M" uniqKey="Dhahbi M" first="M." last="Dhahbi">M. Dhahbi</name>
</country>
<country name="France">
<region name="Centre-Val de Loire">
<name sortKey="Chagnes, A" sort="Chagnes, A" uniqKey="Chagnes A" first="A." last="Chagnes">A. Chagnes</name>
</region>
<name sortKey="Carre, B" sort="Carre, B" uniqKey="Carre B" first="B." last="Carre">B. Carre</name>
<name sortKey="Lemordant, D" sort="Lemordant, D" uniqKey="Lemordant D" first="D." last="Lemordant">D. Lemordant</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000167 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000167 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:06-0331068
   |texte=   Is 3-methyl-2-oxazolidinone a suitable solvent for lithium-ion batteries?
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024