Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quasiparticle spin resonance and coherence in superconducting aluminium

Identifieur interne : 000412 ( Ncbi/Merge ); précédent : 000411; suivant : 000413

Quasiparticle spin resonance and coherence in superconducting aluminium

Auteurs : C. H. L. Quay [France] ; M. Weideneder [France] ; Y. Chiffaudel [France] ; C. Strunk [France, Allemagne] ; M. Aprili [France]

Source :

RBID : PMC:4639902

Abstract

Conventional superconductors were long thought to be spin inert; however, there is now increasing interest in both (the manipulation of) the internal spin structure of the ground-state condensate, as well as recently observed long-lived, spin-polarized excitations (quasiparticles). We demonstrate spin resonance in the quasiparticle population of a mesoscopic superconductor (aluminium) using novel on-chip microwave detection techniques. The spin decoherence time obtained (∼100 ps), and its dependence on the sample thickness are consistent with Elliott–Yafet spin–orbit scattering as the main decoherence mechanism. The striking divergence between the spin coherence time and the previously measured spin imbalance relaxation time (∼10 ns) suggests that the latter is limited instead by inelastic processes. This work stakes out new ground for the nascent field of spin-based electronics with superconductors or superconducting spintronics.


Url:
DOI: 10.1038/ncomms9660
PubMed: 26497744
PubMed Central: 4639902

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4639902

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quasiparticle spin resonance and coherence in superconducting aluminium</title>
<author>
<name sortKey="Quay, C H L" sort="Quay, C H L" uniqKey="Quay C" first="C. H. L." last="Quay">C. H. L. Quay</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Laboratoire de Physique des Solides (CNRS UMR 8502), Bâtiment 510, Université Paris-Sud</institution>
91405 Orsay,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Weideneder, M" sort="Weideneder, M" uniqKey="Weideneder M" first="M." last="Weideneder">M. Weideneder</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Laboratoire de Physique des Solides (CNRS UMR 8502), Bâtiment 510, Université Paris-Sud</institution>
91405 Orsay,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chiffaudel, Y" sort="Chiffaudel, Y" uniqKey="Chiffaudel Y" first="Y." last="Chiffaudel">Y. Chiffaudel</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Laboratoire de Physique des Solides (CNRS UMR 8502), Bâtiment 510, Université Paris-Sud</institution>
91405 Orsay,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Strunk, C" sort="Strunk, C" uniqKey="Strunk C" first="C." last="Strunk">C. Strunk</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Laboratoire de Physique des Solides (CNRS UMR 8502), Bâtiment 510, Université Paris-Sud</institution>
91405 Orsay,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Institute for Experimental and Applied Physics, University of Regensburg</institution>
93040 Regensburg,
<country>Germany</country>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Aprili, M" sort="Aprili, M" uniqKey="Aprili M" first="M." last="Aprili">M. Aprili</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Laboratoire de Physique des Solides (CNRS UMR 8502), Bâtiment 510, Université Paris-Sud</institution>
91405 Orsay,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26497744</idno>
<idno type="pmc">4639902</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4639902</idno>
<idno type="RBID">PMC:4639902</idno>
<idno type="doi">10.1038/ncomms9660</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000076</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000076</idno>
<idno type="wicri:Area/Pmc/Curation">000076</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000076</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000063</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000063</idno>
<idno type="wicri:Area/Ncbi/Merge">000412</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Quasiparticle spin resonance and coherence in superconducting aluminium</title>
<author>
<name sortKey="Quay, C H L" sort="Quay, C H L" uniqKey="Quay C" first="C. H. L." last="Quay">C. H. L. Quay</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Laboratoire de Physique des Solides (CNRS UMR 8502), Bâtiment 510, Université Paris-Sud</institution>
91405 Orsay,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Weideneder, M" sort="Weideneder, M" uniqKey="Weideneder M" first="M." last="Weideneder">M. Weideneder</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Laboratoire de Physique des Solides (CNRS UMR 8502), Bâtiment 510, Université Paris-Sud</institution>
91405 Orsay,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chiffaudel, Y" sort="Chiffaudel, Y" uniqKey="Chiffaudel Y" first="Y." last="Chiffaudel">Y. Chiffaudel</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Laboratoire de Physique des Solides (CNRS UMR 8502), Bâtiment 510, Université Paris-Sud</institution>
91405 Orsay,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Strunk, C" sort="Strunk, C" uniqKey="Strunk C" first="C." last="Strunk">C. Strunk</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Laboratoire de Physique des Solides (CNRS UMR 8502), Bâtiment 510, Université Paris-Sud</institution>
91405 Orsay,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="a2">
<institution>Institute for Experimental and Applied Physics, University of Regensburg</institution>
93040 Regensburg,
<country>Germany</country>
</nlm:aff>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Aprili, M" sort="Aprili, M" uniqKey="Aprili M" first="M." last="Aprili">M. Aprili</name>
<affiliation wicri:level="1">
<nlm:aff id="a1">
<institution>Laboratoire de Physique des Solides (CNRS UMR 8502), Bâtiment 510, Université Paris-Sud</institution>
91405 Orsay,
<country>France</country>
</nlm:aff>
<country xml:lang="fr">France</country>
<wicri:regionArea># see nlm:aff country strict</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature Communications</title>
<idno type="eISSN">2041-1723</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Conventional superconductors were long thought to be spin inert; however, there is now increasing interest in both (the manipulation of) the internal spin structure of the ground-state condensate, as well as recently observed long-lived, spin-polarized excitations (quasiparticles). We demonstrate spin resonance in the quasiparticle population of a mesoscopic superconductor (aluminium) using novel on-chip microwave detection techniques. The spin decoherence time obtained (∼100 ps), and its dependence on the sample thickness are consistent with Elliott–Yafet spin–orbit scattering as the main decoherence mechanism. The striking divergence between the spin coherence time and the previously measured spin imbalance relaxation time (∼10 ns) suggests that the latter is limited instead by inelastic processes. This work stakes out new ground for the nascent field of spin-based electronics with superconductors or superconducting spintronics.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Abragam, A" uniqKey="Abragam A">A. Abragam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kittel, C" uniqKey="Kittel C">C. Kittel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yafet, Y" uniqKey="Yafet Y">Y. Yafet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koppens, F H L" uniqKey="Koppens F">F. H. L. Koppens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zutic, I" uniqKey="Zutic I">I. Žutic</name>
</author>
<author>
<name sortKey="Fabian, J" uniqKey="Fabian J">J. Fabian</name>
</author>
<author>
<name sortKey="Das Sarma, S" uniqKey="Das Sarma S">S. Das Sarma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schumacher, R T" uniqKey="Schumacher R">R. T. Schumacher</name>
</author>
<author>
<name sortKey="Slichter, C P" uniqKey="Slichter C">C. P. Slichter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pines, D" uniqKey="Pines D">D. Pines</name>
</author>
<author>
<name sortKey="Slichter, C P" uniqKey="Slichter C">C. P. Slichter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pottier, N" uniqKey="Pottier N">N. Pottier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schrieffer, J R" uniqKey="Schrieffer J">J. R. Schrieffer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quay, C H L" uniqKey="Quay C">C. H. L. Quay</name>
</author>
<author>
<name sortKey="Dutreix, C" uniqKey="Dutreix C">C. Dutreix</name>
</author>
<author>
<name sortKey="Chevallier, D" uniqKey="Chevallier D">D. Chevallier</name>
</author>
<author>
<name sortKey="Bena, C" uniqKey="Bena C">C. Bena</name>
</author>
<author>
<name sortKey="Aprili, M" uniqKey="Aprili M">M. Aprili</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chevallier, D" uniqKey="Chevallier D">D. Chevallier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quay, C H L" uniqKey="Quay C">C. H. L. Quay</name>
</author>
<author>
<name sortKey="Chevallier, D" uniqKey="Chevallier D">D. Chevallier</name>
</author>
<author>
<name sortKey="Bena, C" uniqKey="Bena C">C. Bena</name>
</author>
<author>
<name sortKey="Aprili, M" uniqKey="Aprili M">M. Aprili</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hubler, F" uniqKey="Hubler F">F. Hübler</name>
</author>
<author>
<name sortKey="Wolf, M J" uniqKey="Wolf M">M. J. Wolf</name>
</author>
<author>
<name sortKey="Beckmann, D" uniqKey="Beckmann D">D. Beckmann</name>
</author>
<author>
<name sortKey="V Loehneysen, H" uniqKey="V Loehneysen H">H. v. Loehneysen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolf, M J" uniqKey="Wolf M">M. J. Wolf</name>
</author>
<author>
<name sortKey="Hubler, F" uniqKey="Hubler F">F. Hübler</name>
</author>
<author>
<name sortKey="Kolenda, S" uniqKey="Kolenda S">S. Kolenda</name>
</author>
<author>
<name sortKey="V Loehneysen, H" uniqKey="V Loehneysen H">H. v. Loehneysen</name>
</author>
<author>
<name sortKey="Beckmann, D" uniqKey="Beckmann D">D. Beckmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beuneu, F" uniqKey="Beuneu F">F. Beuneu</name>
</author>
<author>
<name sortKey="Monod, P" uniqKey="Monod P">P. Monod</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tinkham, M" uniqKey="Tinkham M">M. Tinkham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meservey, R" uniqKey="Meservey R">R. Meservey</name>
</author>
<author>
<name sortKey="Tedrow, P M" uniqKey="Tedrow P">P. M. Tedrow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anthore, A" uniqKey="Anthore A">A. Anthore</name>
</author>
<author>
<name sortKey="Pothier, H" uniqKey="Pothier H">H. Pothier</name>
</author>
<author>
<name sortKey="Esteve, D" uniqKey="Esteve D">D. Esteve</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meservey, R" uniqKey="Meservey R">R. Meservey</name>
</author>
<author>
<name sortKey="Tedrow, P M" uniqKey="Tedrow P">P. M. Tedrow</name>
</author>
<author>
<name sortKey="Fulde, P" uniqKey="Fulde P">P. Fulde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fulde, P" uniqKey="Fulde P">P. Fulde</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Griswold, T W" uniqKey="Griswold T">T. W. Griswold</name>
</author>
<author>
<name sortKey="Kip, A F" uniqKey="Kip A">A. F. Kip</name>
</author>
<author>
<name sortKey="Kittel, C" uniqKey="Kittel C">C. Kittel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aoi, K" uniqKey="Aoi K">K. Aoi</name>
</author>
<author>
<name sortKey="Swihart, J C" uniqKey="Swihart J">J. C. Swihart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vier, D C" uniqKey="Vier D">D. C. Vier</name>
</author>
<author>
<name sortKey="Schultz, S" uniqKey="Schultz S">S. Schultz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yafet, Y" uniqKey="Yafet Y">Y. Yafet</name>
</author>
<author>
<name sortKey="Vier, D C" uniqKey="Vier D">D. C. Vier</name>
</author>
<author>
<name sortKey="Schultz, S" uniqKey="Schultz S">S. Schultz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yafet, Y" uniqKey="Yafet Y">Y. Yafet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beuneu, F" uniqKey="Beuneu F">F. Beuneu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nishida, A" uniqKey="Nishida A">A. Nishida</name>
</author>
<author>
<name sortKey="Horai, K" uniqKey="Horai K">K. Horai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elliott, R J" uniqKey="Elliott R">R. J. Elliott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fabian, J" uniqKey="Fabian J">J. Fabian</name>
</author>
<author>
<name sortKey="Sarma, S D" uniqKey="Sarma S">S. D. Sarma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fabian, J" uniqKey="Fabian J">J. Fabian</name>
</author>
<author>
<name sortKey="Das Sarma, S" uniqKey="Das Sarma S">S. Das Sarma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tedrow, P M" uniqKey="Tedrow P">P. M. Tedrow</name>
</author>
<author>
<name sortKey="Meservey, R" uniqKey="Meservey R">R. Meservey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poli, N" uniqKey="Poli N">N. Poli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jedema, F J" uniqKey="Jedema F">F. J. Jedema</name>
</author>
<author>
<name sortKey="Heersche, H B" uniqKey="Heersche H">H. B. Heersche</name>
</author>
<author>
<name sortKey="Filip, A T" uniqKey="Filip A">A. T. Filip</name>
</author>
<author>
<name sortKey="Baselmans, J J A" uniqKey="Baselmans J">J. J. A. Baselmans</name>
</author>
<author>
<name sortKey="Wees, B J V" uniqKey="Wees B">B. J. v. Wees</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaffalon, M" uniqKey="Zaffalon M">M. Zaffalon</name>
</author>
<author>
<name sortKey="Van Wees, B J" uniqKey="Van Wees B">B. J. van Wees</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Staa, A" uniqKey="Van Staa A">A. van Staa</name>
</author>
<author>
<name sortKey="Wulfhorst, J" uniqKey="Wulfhorst J">J. Wulfhorst</name>
</author>
<author>
<name sortKey="Vogel, A" uniqKey="Vogel A">A. Vogel</name>
</author>
<author>
<name sortKey="Merkt, U" uniqKey="Merkt U">U. Merkt</name>
</author>
<author>
<name sortKey="Meier, G" uniqKey="Meier G">G. Meier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Valenzuela, S O" uniqKey="Valenzuela S">S. O. Valenzuela</name>
</author>
<author>
<name sortKey="Tinkham, M" uniqKey="Tinkham M">M. Tinkham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Visser, P J" uniqKey="De Visser P">P. J. de Visser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maki, K" uniqKey="Maki K">K. Maki</name>
</author>
<author>
<name sortKey="Tsuneto, T" uniqKey="Tsuneto T">T. Tsuneto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krishtop, T" uniqKey="Krishtop T">T. Krishtop</name>
</author>
<author>
<name sortKey="Houzet, M" uniqKey="Houzet M">M. Houzet</name>
</author>
<author>
<name sortKey="Meyer, J S" uniqKey="Meyer J">J. S. Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silaev, M" uniqKey="Silaev M">M. Silaev</name>
</author>
<author>
<name sortKey="Virtanen, P" uniqKey="Virtanen P">P. Virtanen</name>
</author>
<author>
<name sortKey="Bergeret, F S" uniqKey="Bergeret F">F. S. Bergeret</name>
</author>
<author>
<name sortKey="Heikkil, T T" uniqKey="Heikkil T">T. T. Heikkilä</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Son, P C" uniqKey="Van Son P">P. C. van Son</name>
</author>
<author>
<name sortKey="Romijn, J" uniqKey="Romijn J">J. Romijn</name>
</author>
<author>
<name sortKey="Klapwijk, T M" uniqKey="Klapwijk T">T. M. Klapwijk</name>
</author>
<author>
<name sortKey="Mooij, J E" uniqKey="Mooij J">J. E. Mooij</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Santhanam, P" uniqKey="Santhanam P">P. Santhanam</name>
</author>
<author>
<name sortKey="Prober, D E" uniqKey="Prober D">D. E. Prober</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinsolle, E" uniqKey="Pinsolle E">E. Pinsolle</name>
</author>
<author>
<name sortKey="Reulet, B" uniqKey="Reulet B">B. Reulet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Linder, J" uniqKey="Linder J">J. Linder</name>
</author>
<author>
<name sortKey="Robinson, J W A" uniqKey="Robinson J">J. W. A. Robinson</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Nat Commun</journal-id>
<journal-id journal-id-type="iso-abbrev">Nat Commun</journal-id>
<journal-title-group>
<journal-title>Nature Communications</journal-title>
</journal-title-group>
<issn pub-type="epub">2041-1723</issn>
<publisher>
<publisher-name>Nature Pub. Group</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26497744</article-id>
<article-id pub-id-type="pmc">4639902</article-id>
<article-id pub-id-type="pii">ncomms9660</article-id>
<article-id pub-id-type="doi">10.1038/ncomms9660</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Quasiparticle spin resonance and coherence in superconducting aluminium</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Quay</surname>
<given-names>C. H. L.</given-names>
</name>
<xref ref-type="corresp" rid="c1">a</xref>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Weideneder</surname>
<given-names>M.</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chiffaudel</surname>
<given-names>Y.</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Strunk</surname>
<given-names>C.</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
<xref ref-type="aff" rid="a2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Aprili</surname>
<given-names>M.</given-names>
</name>
<xref ref-type="aff" rid="a1">1</xref>
</contrib>
<aff id="a1">
<label>1</label>
<institution>Laboratoire de Physique des Solides (CNRS UMR 8502), Bâtiment 510, Université Paris-Sud</institution>
91405 Orsay,
<country>France</country>
</aff>
<aff id="a2">
<label>2</label>
<institution>Institute for Experimental and Applied Physics, University of Regensburg</institution>
93040 Regensburg,
<country>Germany</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="c1">
<label>a</label>
<email>charis.quay@u-psud.fr</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>26</day>
<month>10</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>6</volume>
<elocation-id>8660</elocation-id>
<history>
<date date-type="received">
<day>21</day>
<month>04</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>17</day>
<month>09</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.</copyright-holder>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/4.0/">
<pmc-comment>author-paid</pmc-comment>
<license-p>This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
</license-p>
</license>
</permissions>
<abstract>
<p>Conventional superconductors were long thought to be spin inert; however, there is now increasing interest in both (the manipulation of) the internal spin structure of the ground-state condensate, as well as recently observed long-lived, spin-polarized excitations (quasiparticles). We demonstrate spin resonance in the quasiparticle population of a mesoscopic superconductor (aluminium) using novel on-chip microwave detection techniques. The spin decoherence time obtained (∼100 ps), and its dependence on the sample thickness are consistent with Elliott–Yafet spin–orbit scattering as the main decoherence mechanism. The striking divergence between the spin coherence time and the previously measured spin imbalance relaxation time (∼10 ns) suggests that the latter is limited instead by inelastic processes. This work stakes out new ground for the nascent field of spin-based electronics with superconductors or superconducting spintronics.</p>
</abstract>
<abstract abstract-type="web-summary">
<p>
<inline-graphic id="i1" xlink:href="ncomms9660-i1.jpg"></inline-graphic>
Conventional superconductors were thought to be spin inert, but long-lived, spin-polarized excitations, or quasiparticles, have recently been observed. Here, the authors demonstrate quasiparticle spin resonance in the mesoscopic superconductor aluminium and estimate the spin coherence time.</p>
</abstract>
</article-meta>
</front>
<floats-group>
<fig id="f1">
<label>Figure 1</label>
<caption>
<title>Two on-chip microwave power detection schemes for superconducting (hybrid) devices.</title>
<p>(
<bold>a</bold>
,
<bold>c</bold>
) Scanning electron micrograph of a device nominally identical to Device A (scale bar, 1 μm) and schematic drawings of the two measurement set-ups. (Data shown are from Device A unless otherwise stated.) In both cases, a static magnetic field,
<italic>H</italic>
is applied parallel to a superconducting bar (S, Al) and a sinusoidal signal of root mean squared amplitude
<italic>V</italic>
<sub>RF</sub>
and frequency
<italic>f</italic>
<sub>RF</sub>
in the microwave range applied across the length of S (with a lossy coaxial cable in series), resulting in a high-frequency field perpendicular to
<italic>H</italic>
. To detect the spin precession of the quasiparticles in S, two on-chip detection methods are used. (
<bold>a</bold>
) Detection scheme 1: a voltage
<italic>V</italic>
<sub>d.c.</sub>
is applied between S and a normal electrode (N1, thick Al) with which it is in contact via an insulating tunnel barrier (I, Al
<sub>2</sub>
O
<sub>3</sub>
). The differential conductance
<italic>G</italic>
=d
<italic>I</italic>
/d
<italic>V</italic>
<sub>d.c.</sub>
is measured, where
<italic>I</italic>
is the current between N1 and S. (
<bold>b</bold>
)
<italic>G</italic>
as a function of
<italic>V</italic>
<sub>d.c.</sub>
and nominal
<italic>V</italic>
<sub>RF</sub>
(at the output of the generator and not accounting for attenuation in the lines). The red dot indicates the operation point of the detector for the data in
<xref ref-type="fig" rid="f2">Fig. 2</xref>
:
<inline-formula id="d33e1303">
<inline-graphic id="d33e1304" xlink:href="ncomms9660-m48.jpg"></inline-graphic>
</inline-formula>
,
<italic>V</italic>
<sub>d.c.</sub>
=−288 μV. For any given frequency, we define
<inline-formula id="d33e1311">
<inline-graphic id="d33e1312" xlink:href="ncomms9660-m49.jpg"></inline-graphic>
</inline-formula>
as the
<italic>V</italic>
<sub>RF</sub>
(at the output of the generator) at which the effective voltage at the device is the same as that for
<italic>f</italic>
<sub>RF</sub>
=7.14 GHz and
<italic>V</italic>
<sub>RF</sub>
=16.81 mV. (See
<xref ref-type="supplementary-material" rid="S1">Supplementary Note 2</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 2</xref>
). (
<bold>c</bold>
) A slice of
<bold>b</bold>
at
<italic>V</italic>
<sub>d.c.</sub>
=−288 μV (blue dashed line in
<bold>b</bold>
) with the operation point indicated. (
<bold>d</bold>
) Detection scheme 2: a current
<italic>I</italic>
<sub>d.c.</sub>
is injected along the length of S. We measure either the voltage
<italic>V</italic>
between the ends of the S bar or the differential resistance
<italic>R</italic>
=d
<italic>V</italic>
/d
<italic>I</italic>
<sub>d.c.</sub>
. We record in particular the switching current
<italic>I</italic>
<sub>S</sub>
at which S first becomes resistive. (
<bold>e</bold>
)
<italic>R</italic>
as a function of
<italic>I</italic>
<sub>d.c.</sub>
and nominal
<italic>V</italic>
<sub>RF</sub>
(not accounting for attenuation in the lines). The switching current
<italic>I</italic>
<sub>S</sub>
at which S become resistive appears here as a peak in
<italic>R</italic>
.
<italic>I</italic>
<sub>S</sub>
can be seen to decrease monotonically with
<italic>V</italic>
<sub>RF</sub>
. The red dashed line indicates the operation point of the detector for the data in
<xref ref-type="fig" rid="f3">Fig. 3</xref>
:
<italic>V</italic>
<sub>RF</sub>
=0.8
<inline-formula id="d33e1424">
<inline-graphic id="d33e1425" xlink:href="ncomms9660-m50.jpg"></inline-graphic>
</inline-formula>
. (
<bold>f</bold>
) The blue trace is the first slice of
<bold>e</bold>
(blue dashed line in
<bold>e</bold>
) at
<italic>V</italic>
<sub>RF</sub>
=0.1 mV. The black trace is a two terminal measurement of the S bar, in the absence of microwaves, with a constant corresponding to the resistance of the lines subtracted. The difference in
<italic>I</italic>
<sub>S</sub>
between the two indicates that the S bar is strongly out of equilibrium in our second (switching current) detection scheme. (See
<xref ref-type="supplementary-material" rid="S1">Supplementary Note 4</xref>
).</p>
</caption>
<graphic xlink:href="ncomms9660-f1"></graphic>
</fig>
<fig id="f2">
<label>Figure 2</label>
<caption>
<title>Spin resonance in conductance across tunnel junction.</title>
<p>(
<bold>a</bold>
) NIS junction conductance
<italic>G</italic>
as a function of
<italic>H</italic>
at
<italic>V</italic>
<sub>d.c.</sub>
=−288 μV and
<inline-formula id="d33e1470">
<inline-graphic id="d33e1471" xlink:href="ncomms9660-m51.jpg"></inline-graphic>
</inline-formula>
for different
<italic>f</italic>
<sub>RF</sub>
. The black vertical line indicates the critical field of N.
<italic>H</italic>
<sub>res</sub>
and Δ
<italic>H</italic>
are obtained for each
<italic>f</italic>
<sub>RF</sub>
by fitting a Lorentzian with a linear background. The fit for
<italic>f</italic>
<sub>RF</sub>
=10.56 GHz is shown (thin red line) and
<italic>H</italic>
<sub>res</sub>
indicated with a red vertical line. (
<bold>b</bold>
)
<italic>H</italic>
<sub>res</sub>
and Δ
<italic>H</italic>
the resonance linewidth (full width at half maximum) as a function of
<italic>f</italic>
<sub>RF</sub>
(red and blue circles, respectively). A linear fit to
<italic>H</italic>
<sub>res</sub>
(
<italic>f</italic>
<sub>RF</sub>
) data gives a Landé
<italic>g</italic>
-factor of 1.95±0.2. The black dots indicate values obtained at different powers or with the second detection scheme. (See
<xref ref-type="supplementary-material" rid="S1">Supplementary Note 3</xref>
and
<xref ref-type="supplementary-material" rid="S1">Supplementary Fig. 3</xref>
). All dots and circles have been offset by 53 mT to account for a systematic shift in the applied magnetic field during the associated cooldown. The squares indicate values obtained from Device B, in which S is 6-nm thick.</p>
</caption>
<graphic xlink:href="ncomms9660-f2"></graphic>
</fig>
<fig id="f3">
<label>Figure 3</label>
<caption>
<title>Spin resonance in supercurrent, comparison of detection schemes.</title>
<p>(
<bold>a</bold>
) Differential resistance
<italic>R</italic>
of the S bar as a function of
<italic>H</italic>
and
<italic>I</italic>
<sub>d.c.</sub>
with
<italic>f</italic>
<sub>RF</sub>
=6.05 GHz,
<italic>V</italic>
<sub>RF</sub>
=0.8 
<inline-formula id="d33e1571">
<inline-graphic id="d33e1572" xlink:href="ncomms9660-m52.jpg"></inline-graphic>
</inline-formula>
. At
<italic>H</italic>
<sub>res</sub>
∼0.17 T, the resonant field, the switching current
<italic>I</italic>
<sub>S</sub>
can be seen to increase, indicating that less microwave power is being transmitted to the superconducting condensate as more power is absorbed by the quasiparticles in S. (
<bold>b</bold>
) Switching current
<italic>I</italic>
<sub>S</sub>
as a function of static magnetic field
<italic>H</italic>
for two different
<italic>f</italic>
<sub>RF</sub>
. (Here a slight change was made to the measurement circuit: With reference to
<xref ref-type="fig" rid="f1">Fig. 1d</xref>
, the current is applied between N2 and F instead of between N1 and N2, hence the slightly higher
<italic>I</italic>
<sub>S</sub>
: the current injection electrodes are closer together.) Superimposed on these traces are the conductance traces from
<xref ref-type="fig" rid="f2">Fig. 2a</xref>
at the same fields.
<italic>H</italic>
<sub>res</sub>
and Δ
<italic>H</italic>
can be seen to be similar for both measurement methods. The bold red trace has been offset downwards by 19 nA. (
<bold>c</bold>
) The switching currents in
<bold>b</bold>
are averages of ∼200 measurements, with a s.d. of ∼3 nA. Here we show a histogram of 250 switching currents corresponding to the first point in the bold red trace in
<bold>b</bold>
. Current was driven long the length of the S bar and the voltage measured between N1 and N2. (Voltage and current leads are thus switched with respect to
<bold>b</bold>
). (
<bold>d</bold>
) Device B: switching current
<italic>I</italic>
<sub>S</sub>
as a function of static magnetic field
<italic>H</italic>
for three different
<italic>f</italic>
<sub>RF</sub>
, with a linear background subtracted (thick lines).
<italic>H</italic>
<sub>res</sub>
and Δ
<italic>H</italic>
obtained from the fits (thin red lines) are shown in
<xref ref-type="fig" rid="f2">Fig. 2b</xref>
. These
<italic>I</italic>
<sub>S</sub>
values are averages of ∼500 measurements.</p>
</caption>
<graphic xlink:href="ncomms9660-f3"></graphic>
</fig>
<fig id="f4">
<label>Figure 4</label>
<caption>
<title>Independent measurement of spin mixing due to the spin–orbit interaction.</title>
<p>Device B: conductance
<italic>G</italic>
as a function of voltage
<italic>V</italic>
<sub>d.c.</sub>
across an SIS′ junction, at different magnetic fields
<italic>H</italic>
(offset by 2.2 μS). Apart from the principal, outer peak (OP) at
<italic>V</italic>
<sub>d.c.</sub>
=(Δ+Δ′)/
<italic>e</italic>
, with Δ (Δ′) the superconducting energy gap of S (S′), a smaller, inner peak (IP) can be seen at ∼
<italic>V</italic>
<sub>d.c.</sub>
=(Δ+Δ′−2
<italic>E</italic>
<sub>Z</sub>
)/
<italic>e</italic>
, with
<italic>E</italic>
<sub>Z</sub>
the Zeeman energy. Fitting the data at
<italic>H</italic>
=1.28 T to numerical calculations based on refs
<xref ref-type="bibr" rid="b20">20</xref>
,
<xref ref-type="bibr" rid="b38">38</xref>
(red dotted line) yields a spin–orbit time
<inline-formula id="d33e1722">
<inline-graphic id="d33e1723" xlink:href="ncomms9660-m53.jpg"></inline-graphic>
</inline-formula>
of 45±5 ps. Numerical results for
<inline-formula id="d33e1725">
<inline-graphic id="d33e1726" xlink:href="ncomms9660-m54.jpg"></inline-graphic>
</inline-formula>
=23 and 69 ps are also shown (blue and black dotted lines, respectively). Lower inset: full-conductance trace at
<italic>H</italic>
=1.28 T, showing all peaks. Upper inset: distance in
<italic>V</italic>
<sub>d.c.</sub>
between outer and inner peaks at positive (red dots) and negative (blue dots) energies. The black dotted line, which has a slope of 2
<italic>E</italic>
<sub>Z</sub>
/
<italic>e</italic>
, is a guide to the eye.</p>
</caption>
<graphic xlink:href="ncomms9660-f4"></graphic>
</fig>
</floats-group>
</pmc>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>France</li>
</country>
</list>
<tree>
<country name="France">
<noRegion>
<name sortKey="Quay, C H L" sort="Quay, C H L" uniqKey="Quay C" first="C. H. L." last="Quay">C. H. L. Quay</name>
</noRegion>
<name sortKey="Aprili, M" sort="Aprili, M" uniqKey="Aprili M" first="M." last="Aprili">M. Aprili</name>
<name sortKey="Chiffaudel, Y" sort="Chiffaudel, Y" uniqKey="Chiffaudel Y" first="Y." last="Chiffaudel">Y. Chiffaudel</name>
<name sortKey="Strunk, C" sort="Strunk, C" uniqKey="Strunk C" first="C." last="Strunk">C. Strunk</name>
<name sortKey="Weideneder, M" sort="Weideneder, M" uniqKey="Weideneder M" first="M." last="Weideneder">M. Weideneder</name>
</country>
<country name="Allemagne">
<noRegion>
<name sortKey="Strunk, C" sort="Strunk, C" uniqKey="Strunk C" first="C." last="Strunk">C. Strunk</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000412 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000412 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:4639902
   |texte=   Quasiparticle spin resonance and coherence in superconducting aluminium
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:26497744" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a CobaltMaghrebV1 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024