Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Measurement techniques in fluidized beds

Identifieur interne : 001C71 ( Istex/Corpus ); précédent : 001C70; suivant : 001C72

Measurement techniques in fluidized beds

Auteurs : Joachim Werther

Source :

RBID : ISTEX:2419EAE55FCC3F57C56838D265D05D6FF8DD5199

Abstract

Quantities that need to be measured in gas fluidized-bed systems include solids volume concentrations, solids velocities and solids mass flows, the vertical and horizontal distribution of solids inside the system, the lateral distribution of the fluidizing gas, temperatures and gas concentrations. In the present paper an overview is given on available measuring techniques. In the first section techniques for industrial routine measurements are discussed. These are mainly temperature and pressure drop measurements. Practical applications and also the limitations of these techniques are outlined. In the second section more sophisticated techniques for local measurements inside fluidized bed systems, which have already proven their suitability in large-scale industrial reactors, are dealt with. Examples include suction probes for measurements of local solids mass flows, heat transfer probes for the detection of defluidized zones and solids flows inside fluidized-bed reactors and capacitance probes for solids concentration and velocity measurements under high-temperature conditions. The third section finally presents advanced techniques which are either still under development or which are particularly intended for academic investigations of basic fluidization phenomena. Examples include sensor techniques, imaging and tomographic methods.

Url:
DOI: 10.1016/S0032-5910(98)00202-2

Links to Exploration step

ISTEX:2419EAE55FCC3F57C56838D265D05D6FF8DD5199

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Measurement techniques in fluidized beds</title>
<author>
<name sortKey="Werther, Joachim" sort="Werther, Joachim" uniqKey="Werther J" first="Joachim" last="Werther">Joachim Werther</name>
<affiliation>
<mods:affiliation>Technical University Hamburg-Harburg, D 21071 Hamburg, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2419EAE55FCC3F57C56838D265D05D6FF8DD5199</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0032-5910(98)00202-2</idno>
<idno type="url">https://api.istex.fr/document/2419EAE55FCC3F57C56838D265D05D6FF8DD5199/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001C71</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001C71</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Measurement techniques in fluidized beds</title>
<author>
<name sortKey="Werther, Joachim" sort="Werther, Joachim" uniqKey="Werther J" first="Joachim" last="Werther">Joachim Werther</name>
<affiliation>
<mods:affiliation>Technical University Hamburg-Harburg, D 21071 Hamburg, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Powder Technology</title>
<title level="j" type="abbrev">PTEC</title>
<idno type="ISSN">0032-5910</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">102</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="15">15</biblScope>
<biblScope unit="page" to="36">36</biblScope>
</imprint>
<idno type="ISSN">0032-5910</idno>
</series>
<idno type="istex">2419EAE55FCC3F57C56838D265D05D6FF8DD5199</idno>
<idno type="DOI">10.1016/S0032-5910(98)00202-2</idno>
<idno type="PII">S0032-5910(98)00202-2</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0032-5910</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Quantities that need to be measured in gas fluidized-bed systems include solids volume concentrations, solids velocities and solids mass flows, the vertical and horizontal distribution of solids inside the system, the lateral distribution of the fluidizing gas, temperatures and gas concentrations. In the present paper an overview is given on available measuring techniques. In the first section techniques for industrial routine measurements are discussed. These are mainly temperature and pressure drop measurements. Practical applications and also the limitations of these techniques are outlined. In the second section more sophisticated techniques for local measurements inside fluidized bed systems, which have already proven their suitability in large-scale industrial reactors, are dealt with. Examples include suction probes for measurements of local solids mass flows, heat transfer probes for the detection of defluidized zones and solids flows inside fluidized-bed reactors and capacitance probes for solids concentration and velocity measurements under high-temperature conditions. The third section finally presents advanced techniques which are either still under development or which are particularly intended for academic investigations of basic fluidization phenomena. Examples include sensor techniques, imaging and tomographic methods.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>Joachim Werther</name>
<affiliations>
<json:string>Technical University Hamburg-Harburg, D 21071 Hamburg, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Fluidized bed</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Gas–solid flow</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Measurement technique</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Quantities that need to be measured in gas fluidized-bed systems include solids volume concentrations, solids velocities and solids mass flows, the vertical and horizontal distribution of solids inside the system, the lateral distribution of the fluidizing gas, temperatures and gas concentrations. In the present paper an overview is given on available measuring techniques. In the first section techniques for industrial routine measurements are discussed. These are mainly temperature and pressure drop measurements. Practical applications and also the limitations of these techniques are outlined. In the second section more sophisticated techniques for local measurements inside fluidized bed systems, which have already proven their suitability in large-scale industrial reactors, are dealt with. Examples include suction probes for measurements of local solids mass flows, heat transfer probes for the detection of defluidized zones and solids flows inside fluidized-bed reactors and capacitance probes for solids concentration and velocity measurements under high-temperature conditions. The third section finally presents advanced techniques which are either still under development or which are particularly intended for academic investigations of basic fluidization phenomena. Examples include sensor techniques, imaging and tomographic methods.</abstract>
<qualityIndicators>
<score>7.172</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>595 x 758 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>3</keywordCount>
<abstractCharCount>1356</abstractCharCount>
<pdfWordCount>12701</pdfWordCount>
<pdfCharCount>76814</pdfCharCount>
<pdfPageCount>22</pdfPageCount>
<abstractWordCount>181</abstractWordCount>
</qualityIndicators>
<title>Measurement techniques in fluidized beds</title>
<pii>
<json:string>S0032-5910(98)00202-2</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>102</volume>
<pii>
<json:string>S0032-5910(00)X0058-7</json:string>
</pii>
<pages>
<last>36</last>
<first>15</first>
</pages>
<issn>
<json:string>0032-5910</json:string>
</issn>
<issue>1</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Powder Technology</title>
<publicationDate>1999</publicationDate>
</host>
<categories>
<wos>
<json:string>ENGINEERING, CHEMICAL</json:string>
</wos>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1016/S0032-5910(98)00202-2</json:string>
</doi>
<id>2419EAE55FCC3F57C56838D265D05D6FF8DD5199</id>
<score>0.023037504</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/2419EAE55FCC3F57C56838D265D05D6FF8DD5199/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/2419EAE55FCC3F57C56838D265D05D6FF8DD5199/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/2419EAE55FCC3F57C56838D265D05D6FF8DD5199/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Measurement techniques in fluidized beds</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©1999 Elsevier Science S.A.</p>
</availability>
<date>1999</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Local flow structures in fluidized beds: bubble formation at low fluidization velocities (a) and formation of clusters or strands in high-velocity fluidization (b).</note>
<note type="content">Fig. 2: Determination of the expanded bed height in a bubbling fluidized bed.</note>
<note type="content">Fig. 3: Pressure measurements in a circulating fluidized bed system (po pressure at the outlet of the primary cyclone; riser 0.4 m diameter, quartz sand dp=298 μm, u=5 m/s, Gs=10 kg m−2 s−1).</note>
<note type="content">Fig. 4: Horizontal temperature profiles close to the membrane wall in a circulating fluidized bed combustor (the combustion chamber is square in its upper part and cylindrical in the bottom section, x is the distance from the south wall, measurements by Werdermann and Werther [16]).</note>
<note type="content">Fig. 5: Total Heat Flux Meter [18]used in Werdermann's investigation of bed-to-wall heat transfer in the Duisburg CFB combustor [19].</note>
<note type="content">Fig. 6: Relationship between the Nusselt number for convective heat transfer and the cross-sectional average solids volume concentration in circulating fluidized beds of different sizes [16].</note>
<note type="content">Fig. 7: Heat transfer probe [24].</note>
<note type="content">Fig. 8: Axial profiles of local heat transfer coefficient inside an FBHE (Werdermann and Werther 1993b [24]).</note>
<note type="content">Fig. 9: Polar heat transfer profiles measured in chamber 1 of the FBHE [24].</note>
<note type="content">Fig. 10: Suction probe for measurements under ambient conditions [12].</note>
<note type="content">Fig. 11: Influence of the suction velocity on the solids collection rate (700 mm wide cold model CFB, data taken 6 mm from the side wall, u=3.4 m/s, Gs=13 kg m−2 s−1, from Leckner et al. [29]).</note>
<note type="content">Fig. 12: Suction probe used in the Duisburg CFB combustor by Werdermann [19].</note>
<note type="content">Fig. 13: Head of the impeller probe [33].</note>
<note type="content">Fig. 14: The principle of the guarded capacitance probe [1].</note>
<note type="content">Fig. 15: Design of a water-cooled guarded capacitance probe [44].</note>
<note type="content">Fig. 16: `Trigger' sensor for particle size measurement in dust laden gas streams [49].</note>
<note type="content">Fig. 17: Particle frequencies and particle size distributions measured in a coal-fired circulating fluidized bed combustor [49].</note>
<note type="content">Fig. 18: Path layout for γ-ray measurements and reconstructed suspension density in a 518 mm ID riser [50].</note>
<note type="content">Fig. 19: Suspension density map in a 0.94 m ID industrial FCC riser obtained by γ-ray transmission tomography [52].</note>
<note type="content">Fig. 20: Measuring principle of a single-fiber optical probe [53].</note>
<note type="content">Fig. 21: Depth of measurement volume for a single-fiber optical probe (fiber diameter 0.6 mm, quartz spheres d=0.15 m in air, from Rensner and Werther [53]).</note>
<note type="content">Fig. 22: Optical probe with limited measurement volume [59].</note>
<note type="content">Fig. 23: LDA probe holder with DANTEC FibreFlow probe (dimensions in mm, [61]).</note>
<note type="content">Fig. 24: A comparison of local mean velocities measured by LDA with those obtained by cross-correlation of fiber-optical probe signals (riser 0.4 m diameter, u=4 m/s, h=6 m [61].</note>
<note type="content">Fig. 25: Backscattering of coherent light by a single, rough particle [49].</note>
<note type="content">Fig. 26: Capacitance flow imaging system (Huang et al. 1989 [66]).</note>
<note type="content">Fig. 27: Capacitance sensor arrangement used by Halow et al. [70].</note>
<note type="content">Fig. 28: Optic fiber micrograph probe [83].</note>
<note type="content">Fig. 29: X-ray imaging principle (Gamblin et al. 1993 [90]).</note>
<note type="content">Fig. 30: Flow visualization by laser sheet [94].</note>
<note type="content">Fig. 31: `Internal imaging' set-up used by Kuroki and Horio [97].</note>
<note type="content">Fig. 32: Endoscopic light sheet generation and observation [98].</note>
<note type="content">Fig. 33: Influence of solids volume concentration cv and distance aca between laser sheet and observation endoscope on the ratio of received light power Q̇ca to the power Q̇l of light emitted by the laser [98].</note>
<note type="content">Fig. 34: Image sequence taken in the core of the circulating fluidized bed riser (quartz sand particles, dp=180 μm, u=3 m/s, Gs=11.6 kg/m2 s, h=6.4 m, 0.5 ms time step between two pictures, window size 28.5×11.5 mm2, [98].</note>
<note type="content">Fig. 35: Two-dimensional flow patterns observed at the transparent wall of a 0.4 m ID circulating fluidized bed and corresponding velocity field (u=3 m/s, Gs=14 kg/m2 s, h=5.65 m, window size 10×12 cm2, [99].</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Measurement techniques in fluidized beds</title>
<author xml:id="author-1">
<persName>
<forename type="first">Joachim</forename>
<surname>Werther</surname>
</persName>
<affiliation>Technical University Hamburg-Harburg, D 21071 Hamburg, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Powder Technology</title>
<title level="j" type="abbrev">PTEC</title>
<idno type="pISSN">0032-5910</idno>
<idno type="PII">S0032-5910(00)X0058-7</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999"></date>
<biblScope unit="volume">102</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="15">15</biblScope>
<biblScope unit="page" to="36">36</biblScope>
</imprint>
</monogr>
<idno type="istex">2419EAE55FCC3F57C56838D265D05D6FF8DD5199</idno>
<idno type="DOI">10.1016/S0032-5910(98)00202-2</idno>
<idno type="PII">S0032-5910(98)00202-2</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Quantities that need to be measured in gas fluidized-bed systems include solids volume concentrations, solids velocities and solids mass flows, the vertical and horizontal distribution of solids inside the system, the lateral distribution of the fluidizing gas, temperatures and gas concentrations. In the present paper an overview is given on available measuring techniques. In the first section techniques for industrial routine measurements are discussed. These are mainly temperature and pressure drop measurements. Practical applications and also the limitations of these techniques are outlined. In the second section more sophisticated techniques for local measurements inside fluidized bed systems, which have already proven their suitability in large-scale industrial reactors, are dealt with. Examples include suction probes for measurements of local solids mass flows, heat transfer probes for the detection of defluidized zones and solids flows inside fluidized-bed reactors and capacitance probes for solids concentration and velocity measurements under high-temperature conditions. The third section finally presents advanced techniques which are either still under development or which are particularly intended for academic investigations of basic fluidization phenomena. Examples include sensor techniques, imaging and tomographic methods.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Fluidized bed</term>
</item>
<item>
<term>Gas–solid flow</term>
</item>
<item>
<term>Measurement technique</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1999">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/2419EAE55FCC3F57C56838D265D05D6FF8DD5199/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
<istex:entity SYSTEM="gr11" NDATA="IMAGE" name="gr11"></istex:entity>
<istex:entity SYSTEM="gr12" NDATA="IMAGE" name="gr12"></istex:entity>
<istex:entity SYSTEM="gr13" NDATA="IMAGE" name="gr13"></istex:entity>
<istex:entity SYSTEM="gr14" NDATA="IMAGE" name="gr14"></istex:entity>
<istex:entity SYSTEM="gr15" NDATA="IMAGE" name="gr15"></istex:entity>
<istex:entity SYSTEM="gr16" NDATA="IMAGE" name="gr16"></istex:entity>
<istex:entity SYSTEM="gr17" NDATA="IMAGE" name="gr17"></istex:entity>
<istex:entity SYSTEM="gr18" NDATA="IMAGE" name="gr18"></istex:entity>
<istex:entity SYSTEM="gr19" NDATA="IMAGE" name="gr19"></istex:entity>
<istex:entity SYSTEM="gr20" NDATA="IMAGE" name="gr20"></istex:entity>
<istex:entity SYSTEM="gr21" NDATA="IMAGE" name="gr21"></istex:entity>
<istex:entity SYSTEM="gr22" NDATA="IMAGE" name="gr22"></istex:entity>
<istex:entity SYSTEM="gr23" NDATA="IMAGE" name="gr23"></istex:entity>
<istex:entity SYSTEM="gr24" NDATA="IMAGE" name="gr24"></istex:entity>
<istex:entity SYSTEM="gr25" NDATA="IMAGE" name="gr25"></istex:entity>
<istex:entity SYSTEM="gr26" NDATA="IMAGE" name="gr26"></istex:entity>
<istex:entity SYSTEM="gr27" NDATA="IMAGE" name="gr27"></istex:entity>
<istex:entity SYSTEM="gr28" NDATA="IMAGE" name="gr28"></istex:entity>
<istex:entity SYSTEM="gr29" NDATA="IMAGE" name="gr29"></istex:entity>
<istex:entity SYSTEM="gr30" NDATA="IMAGE" name="gr30"></istex:entity>
<istex:entity SYSTEM="gr31" NDATA="IMAGE" name="gr31"></istex:entity>
<istex:entity SYSTEM="gr32" NDATA="IMAGE" name="gr32"></istex:entity>
<istex:entity SYSTEM="gr33" NDATA="IMAGE" name="gr33"></istex:entity>
<istex:entity SYSTEM="gr34" NDATA="IMAGE" name="gr34"></istex:entity>
<istex:entity SYSTEM="gr35" NDATA="IMAGE" name="gr35"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>PTEC</jid>
<aid>3703</aid>
<ce:pii>S0032-5910(98)00202-2</ce:pii>
<ce:doi>10.1016/S0032-5910(98)00202-2</ce:doi>
<ce:copyright year="1999" type="full-transfer">Elsevier Science S.A.</ce:copyright>
</item-info>
<head>
<ce:title>Measurement techniques in fluidized beds</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Joachim</ce:given-name>
<ce:surname>Werther</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>Technical University Hamburg-Harburg, D 21071 Hamburg, Germany</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:date-received day="26" month="11" year="1997"></ce:date-received>
<ce:date-accepted day="30" month="7" year="1998"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Quantities that need to be measured in gas fluidized-bed systems include solids volume concentrations, solids velocities and solids mass flows, the vertical and horizontal distribution of solids inside the system, the lateral distribution of the fluidizing gas, temperatures and gas concentrations. In the present paper an overview is given on available measuring techniques. In the first section techniques for industrial routine measurements are discussed. These are mainly temperature and pressure drop measurements. Practical applications and also the limitations of these techniques are outlined. In the second section more sophisticated techniques for local measurements inside fluidized bed systems, which have already proven their suitability in large-scale industrial reactors, are dealt with. Examples include suction probes for measurements of local solids mass flows, heat transfer probes for the detection of defluidized zones and solids flows inside fluidized-bed reactors and capacitance probes for solids concentration and velocity measurements under high-temperature conditions. The third section finally presents advanced techniques which are either still under development or which are particularly intended for academic investigations of basic fluidization phenomena. Examples include sensor techniques, imaging and tomographic methods.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Fluidized bed</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Gas–solid flow</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Measurement technique</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Measurement techniques in fluidized beds</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Measurement techniques in fluidized beds</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joachim</namePart>
<namePart type="family">Werther</namePart>
<affiliation>Technical University Hamburg-Harburg, D 21071 Hamburg, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Quantities that need to be measured in gas fluidized-bed systems include solids volume concentrations, solids velocities and solids mass flows, the vertical and horizontal distribution of solids inside the system, the lateral distribution of the fluidizing gas, temperatures and gas concentrations. In the present paper an overview is given on available measuring techniques. In the first section techniques for industrial routine measurements are discussed. These are mainly temperature and pressure drop measurements. Practical applications and also the limitations of these techniques are outlined. In the second section more sophisticated techniques for local measurements inside fluidized bed systems, which have already proven their suitability in large-scale industrial reactors, are dealt with. Examples include suction probes for measurements of local solids mass flows, heat transfer probes for the detection of defluidized zones and solids flows inside fluidized-bed reactors and capacitance probes for solids concentration and velocity measurements under high-temperature conditions. The third section finally presents advanced techniques which are either still under development or which are particularly intended for academic investigations of basic fluidization phenomena. Examples include sensor techniques, imaging and tomographic methods.</abstract>
<note type="content">Fig. 1: Local flow structures in fluidized beds: bubble formation at low fluidization velocities (a) and formation of clusters or strands in high-velocity fluidization (b).</note>
<note type="content">Fig. 2: Determination of the expanded bed height in a bubbling fluidized bed.</note>
<note type="content">Fig. 3: Pressure measurements in a circulating fluidized bed system (po pressure at the outlet of the primary cyclone; riser 0.4 m diameter, quartz sand dp=298 μm, u=5 m/s, Gs=10 kg m−2 s−1).</note>
<note type="content">Fig. 4: Horizontal temperature profiles close to the membrane wall in a circulating fluidized bed combustor (the combustion chamber is square in its upper part and cylindrical in the bottom section, x is the distance from the south wall, measurements by Werdermann and Werther [16]).</note>
<note type="content">Fig. 5: Total Heat Flux Meter [18]used in Werdermann's investigation of bed-to-wall heat transfer in the Duisburg CFB combustor [19].</note>
<note type="content">Fig. 6: Relationship between the Nusselt number for convective heat transfer and the cross-sectional average solids volume concentration in circulating fluidized beds of different sizes [16].</note>
<note type="content">Fig. 7: Heat transfer probe [24].</note>
<note type="content">Fig. 8: Axial profiles of local heat transfer coefficient inside an FBHE (Werdermann and Werther 1993b [24]).</note>
<note type="content">Fig. 9: Polar heat transfer profiles measured in chamber 1 of the FBHE [24].</note>
<note type="content">Fig. 10: Suction probe for measurements under ambient conditions [12].</note>
<note type="content">Fig. 11: Influence of the suction velocity on the solids collection rate (700 mm wide cold model CFB, data taken 6 mm from the side wall, u=3.4 m/s, Gs=13 kg m−2 s−1, from Leckner et al. [29]).</note>
<note type="content">Fig. 12: Suction probe used in the Duisburg CFB combustor by Werdermann [19].</note>
<note type="content">Fig. 13: Head of the impeller probe [33].</note>
<note type="content">Fig. 14: The principle of the guarded capacitance probe [1].</note>
<note type="content">Fig. 15: Design of a water-cooled guarded capacitance probe [44].</note>
<note type="content">Fig. 16: `Trigger' sensor for particle size measurement in dust laden gas streams [49].</note>
<note type="content">Fig. 17: Particle frequencies and particle size distributions measured in a coal-fired circulating fluidized bed combustor [49].</note>
<note type="content">Fig. 18: Path layout for γ-ray measurements and reconstructed suspension density in a 518 mm ID riser [50].</note>
<note type="content">Fig. 19: Suspension density map in a 0.94 m ID industrial FCC riser obtained by γ-ray transmission tomography [52].</note>
<note type="content">Fig. 20: Measuring principle of a single-fiber optical probe [53].</note>
<note type="content">Fig. 21: Depth of measurement volume for a single-fiber optical probe (fiber diameter 0.6 mm, quartz spheres d=0.15 m in air, from Rensner and Werther [53]).</note>
<note type="content">Fig. 22: Optical probe with limited measurement volume [59].</note>
<note type="content">Fig. 23: LDA probe holder with DANTEC FibreFlow probe (dimensions in mm, [61]).</note>
<note type="content">Fig. 24: A comparison of local mean velocities measured by LDA with those obtained by cross-correlation of fiber-optical probe signals (riser 0.4 m diameter, u=4 m/s, h=6 m [61].</note>
<note type="content">Fig. 25: Backscattering of coherent light by a single, rough particle [49].</note>
<note type="content">Fig. 26: Capacitance flow imaging system (Huang et al. 1989 [66]).</note>
<note type="content">Fig. 27: Capacitance sensor arrangement used by Halow et al. [70].</note>
<note type="content">Fig. 28: Optic fiber micrograph probe [83].</note>
<note type="content">Fig. 29: X-ray imaging principle (Gamblin et al. 1993 [90]).</note>
<note type="content">Fig. 30: Flow visualization by laser sheet [94].</note>
<note type="content">Fig. 31: `Internal imaging' set-up used by Kuroki and Horio [97].</note>
<note type="content">Fig. 32: Endoscopic light sheet generation and observation [98].</note>
<note type="content">Fig. 33: Influence of solids volume concentration cv and distance aca between laser sheet and observation endoscope on the ratio of received light power Q̇ca to the power Q̇l of light emitted by the laser [98].</note>
<note type="content">Fig. 34: Image sequence taken in the core of the circulating fluidized bed riser (quartz sand particles, dp=180 μm, u=3 m/s, Gs=11.6 kg/m2 s, h=6.4 m, 0.5 ms time step between two pictures, window size 28.5×11.5 mm2, [98].</note>
<note type="content">Fig. 35: Two-dimensional flow patterns observed at the transparent wall of a 0.4 m ID circulating fluidized bed and corresponding velocity field (u=3 m/s, Gs=14 kg/m2 s, h=5.65 m, window size 10×12 cm2, [99].</note>
<subject>
<genre>Keywords</genre>
<topic>Fluidized bed</topic>
<topic>Gas–solid flow</topic>
<topic>Measurement technique</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Powder Technology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>PTEC</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">199904</dateIssued>
</originInfo>
<identifier type="ISSN">0032-5910</identifier>
<identifier type="PII">S0032-5910(00)X0058-7</identifier>
<part>
<date>199904</date>
<detail type="volume">
<number>102</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1</start>
<end>108</end>
</extent>
<extent unit="pages">
<start>15</start>
<end>36</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">2419EAE55FCC3F57C56838D265D05D6FF8DD5199</identifier>
<identifier type="DOI">10.1016/S0032-5910(98)00202-2</identifier>
<identifier type="PII">S0032-5910(98)00202-2</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1999 Elsevier Science S.A.</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science S.A., ©1999</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C71 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001C71 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:2419EAE55FCC3F57C56838D265D05D6FF8DD5199
   |texte=   Measurement techniques in fluidized beds
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024