Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates

Identifieur interne : 001475 ( Istex/Corpus ); précédent : 001474; suivant : 001476

Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates

Auteurs : Y. Dahmane ; L. Cagnon ; J. Voiron ; S. Pairis ; M. Bacia ; L. Ortega ; N. Benbrahim ; A. Kadri

Source :

RBID : ISTEX:78F55CD2EB8240439E60F9E075C0AD1C047B05BF

Abstract

CoPt and FePt nanowire arrays were successfully prepared by electrodeposition into nanochannels of porous alumina membranes. The as-deposited CoPt alloy has a face centred cubic structure and displays soft magnetic properties. Heat treatment at 700C for different durations, under vacuum condition was carried out in order to obtain the ordered face centred tetragonal phase L10, exhibiting hard magnetic properties. After annealing, arrays of nanowires actually show hard magnetic properties with coercive fields up to 1.1T at room temperature. Phase transformation, structural and magnetic properties were analysed and necessary conditions to obtain optimum magnetic properties are concluded.The first results obtained with FePt nanowires denote a more complicated system since the as-deposited material shows no magnetization. Magnetism appears only after annealing at 700C minimum. Coercivity up to 1.1T has been obtained at room temperature but with inhomogeneous phase composition.

Url:
DOI: 10.1088/0022-3727/39/21/001

Links to Exploration step

ISTEX:78F55CD2EB8240439E60F9E075C0AD1C047B05BF

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates</title>
<author>
<name sortKey="Dahmane, Y" sort="Dahmane, Y" uniqKey="Dahmane Y" first="Y" last="Dahmane">Y. Dahmane</name>
<affiliation>
<mods:affiliation>Laboratoire Louis Nel, CNRS, BP 166, 38042 Grenoble cedex 9, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire de Matriaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou, Algeria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cagnon, L" sort="Cagnon, L" uniqKey="Cagnon L" first="L" last="Cagnon">L. Cagnon</name>
<affiliation>
<mods:affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: laurent.cagnon@grenoble.cnrs.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Voiron, J" sort="Voiron, J" uniqKey="Voiron J" first="J" last="Voiron">J. Voiron</name>
<affiliation>
<mods:affiliation>Laboratoire Louis Nel, CNRS, BP 166, 38042 Grenoble cedex 9, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pairis, S" sort="Pairis, S" uniqKey="Pairis S" first="S" last="Pairis">S. Pairis</name>
<affiliation>
<mods:affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bacia, M" sort="Bacia, M" uniqKey="Bacia M" first="M" last="Bacia">M. Bacia</name>
<affiliation>
<mods:affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ortega, L" sort="Ortega, L" uniqKey="Ortega L" first="L" last="Ortega">L. Ortega</name>
<affiliation>
<mods:affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Benbrahim, N" sort="Benbrahim, N" uniqKey="Benbrahim N" first="N" last="Benbrahim">N. Benbrahim</name>
<affiliation>
<mods:affiliation>Laboratoire de Matriaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou, Algeria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kadri, A" sort="Kadri, A" uniqKey="Kadri A" first="A" last="Kadri">A. Kadri</name>
<affiliation>
<mods:affiliation>Laboratoire de Matriaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou, Algeria</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:78F55CD2EB8240439E60F9E075C0AD1C047B05BF</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1088/0022-3727/39/21/001</idno>
<idno type="url">https://api.istex.fr/document/78F55CD2EB8240439E60F9E075C0AD1C047B05BF/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001475</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001475</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates</title>
<author>
<name sortKey="Dahmane, Y" sort="Dahmane, Y" uniqKey="Dahmane Y" first="Y" last="Dahmane">Y. Dahmane</name>
<affiliation>
<mods:affiliation>Laboratoire Louis Nel, CNRS, BP 166, 38042 Grenoble cedex 9, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire de Matriaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou, Algeria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cagnon, L" sort="Cagnon, L" uniqKey="Cagnon L" first="L" last="Cagnon">L. Cagnon</name>
<affiliation>
<mods:affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: laurent.cagnon@grenoble.cnrs.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Voiron, J" sort="Voiron, J" uniqKey="Voiron J" first="J" last="Voiron">J. Voiron</name>
<affiliation>
<mods:affiliation>Laboratoire Louis Nel, CNRS, BP 166, 38042 Grenoble cedex 9, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pairis, S" sort="Pairis, S" uniqKey="Pairis S" first="S" last="Pairis">S. Pairis</name>
<affiliation>
<mods:affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bacia, M" sort="Bacia, M" uniqKey="Bacia M" first="M" last="Bacia">M. Bacia</name>
<affiliation>
<mods:affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ortega, L" sort="Ortega, L" uniqKey="Ortega L" first="L" last="Ortega">L. Ortega</name>
<affiliation>
<mods:affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Benbrahim, N" sort="Benbrahim, N" uniqKey="Benbrahim N" first="N" last="Benbrahim">N. Benbrahim</name>
<affiliation>
<mods:affiliation>Laboratoire de Matriaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou, Algeria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kadri, A" sort="Kadri, A" uniqKey="Kadri A" first="A" last="Kadri">A. Kadri</name>
<affiliation>
<mods:affiliation>Laboratoire de Matriaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou, Algeria</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Physics D: Applied Physics</title>
<title level="j" type="abbrev">J. Phys. D: Appl. Phys.</title>
<idno type="ISSN">0022-3727</idno>
<idno type="eISSN">1361-6463</idno>
<imprint>
<publisher>Institute of Physics Publishing</publisher>
<date type="published" when="2006">2006</date>
<biblScope unit="volume">39</biblScope>
<biblScope unit="issue">21</biblScope>
<biblScope unit="page" from="4523">4523</biblScope>
<biblScope unit="page" to="4528">4528</biblScope>
<biblScope unit="production">Printed in the UK</biblScope>
</imprint>
<idno type="ISSN">0022-3727</idno>
</series>
<idno type="istex">78F55CD2EB8240439E60F9E075C0AD1C047B05BF</idno>
<idno type="DOI">10.1088/0022-3727/39/21/001</idno>
<idno type="PII">S0022-3727(06)29503-2</idno>
<idno type="articleID">229503</idno>
<idno type="articleNumber">001</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-3727</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">CoPt and FePt nanowire arrays were successfully prepared by electrodeposition into nanochannels of porous alumina membranes. The as-deposited CoPt alloy has a face centred cubic structure and displays soft magnetic properties. Heat treatment at 700C for different durations, under vacuum condition was carried out in order to obtain the ordered face centred tetragonal phase L10, exhibiting hard magnetic properties. After annealing, arrays of nanowires actually show hard magnetic properties with coercive fields up to 1.1T at room temperature. Phase transformation, structural and magnetic properties were analysed and necessary conditions to obtain optimum magnetic properties are concluded.The first results obtained with FePt nanowires denote a more complicated system since the as-deposited material shows no magnetization. Magnetism appears only after annealing at 700C minimum. Coercivity up to 1.1T has been obtained at room temperature but with inhomogeneous phase composition.</div>
</front>
</TEI>
<istex>
<corpusName>iop</corpusName>
<author>
<json:item>
<name>Y Dahmane</name>
<affiliations>
<json:string>Laboratoire Louis Nel, CNRS, BP 166, 38042 Grenoble cedex 9, France</json:string>
<json:string>Laboratoire de Matriaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou, Algeria</json:string>
</affiliations>
</json:item>
<json:item>
<name>L Cagnon</name>
<affiliations>
<json:string>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</json:string>
<json:string>E-mail: laurent.cagnon@grenoble.cnrs.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>J Voiron</name>
<affiliations>
<json:string>Laboratoire Louis Nel, CNRS, BP 166, 38042 Grenoble cedex 9, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>S Pairis</name>
<affiliations>
<json:string>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>M Bacia</name>
<affiliations>
<json:string>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>L Ortega</name>
<affiliations>
<json:string>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>N Benbrahim</name>
<affiliations>
<json:string>Laboratoire de Matriaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou, Algeria</json:string>
</affiliations>
</json:item>
<json:item>
<name>A Kadri</name>
<affiliations>
<json:string>Laboratoire de Matriaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou, Algeria</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>paper</json:string>
</originalGenre>
<abstract>CoPt and FePt nanowire arrays were successfully prepared by electrodeposition into nanochannels of porous alumina membranes. The as-deposited CoPt alloy has a face centred cubic structure and displays soft magnetic properties. Heat treatment at 700C for different durations, under vacuum condition was carried out in order to obtain the ordered face centred tetragonal phase L10, exhibiting hard magnetic properties. After annealing, arrays of nanowires actually show hard magnetic properties with coercive fields up to 1.1T at room temperature. Phase transformation, structural and magnetic properties were analysed and necessary conditions to obtain optimum magnetic properties are concluded.The first results obtained with FePt nanowires denote a more complicated system since the as-deposited material shows no magnetization. Magnetism appears only after annealing at 700C minimum. Coercivity up to 1.1T has been obtained at room temperature but with inhomogeneous phase composition.</abstract>
<qualityIndicators>
<score>5.777</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>595 x 841 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>987</abstractCharCount>
<pdfWordCount>3633</pdfWordCount>
<pdfCharCount>20679</pdfCharCount>
<pdfPageCount>6</pdfPageCount>
<abstractWordCount>137</abstractWordCount>
</qualityIndicators>
<title>Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates</title>
<pii>
<json:string>S0022-3727(06)29503-2</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>39</volume>
<publisherId>
<json:string>jphysd</json:string>
</publisherId>
<pages>
<total>6</total>
<last>4528</last>
<first>4523</first>
</pages>
<issn>
<json:string>0022-3727</json:string>
</issn>
<issue>21</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1361-6463</json:string>
</eissn>
<title>Journal of Physics D: Applied Physics</title>
</host>
<publicationDate>2006</publicationDate>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1088/0022-3727/39/21/001</json:string>
</doi>
<id>78F55CD2EB8240439E60F9E075C0AD1C047B05BF</id>
<score>0.039821822</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/78F55CD2EB8240439E60F9E075C0AD1C047B05BF/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/78F55CD2EB8240439E60F9E075C0AD1C047B05BF/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/78F55CD2EB8240439E60F9E075C0AD1C047B05BF/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Institute of Physics Publishing</publisher>
<availability>
<p>2006 IOP Publishing Ltd</p>
</availability>
<date>2006</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates</title>
<author xml:id="author-1">
<persName>
<forename type="first">Y</forename>
<surname>Dahmane</surname>
</persName>
<affiliation>Laboratoire Louis Nel, CNRS, BP 166, 38042 Grenoble cedex 9, France</affiliation>
<affiliation>Laboratoire de Matriaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou, Algeria</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">L</forename>
<surname>Cagnon</surname>
</persName>
<email>laurent.cagnon@grenoble.cnrs.fr</email>
<affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">J</forename>
<surname>Voiron</surname>
</persName>
<affiliation>Laboratoire Louis Nel, CNRS, BP 166, 38042 Grenoble cedex 9, France</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">S</forename>
<surname>Pairis</surname>
</persName>
<affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">M</forename>
<surname>Bacia</surname>
</persName>
<affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</affiliation>
</author>
<author xml:id="author-6">
<persName>
<forename type="first">L</forename>
<surname>Ortega</surname>
</persName>
<affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</affiliation>
</author>
<author xml:id="author-7">
<persName>
<forename type="first">N</forename>
<surname>Benbrahim</surname>
</persName>
<affiliation>Laboratoire de Matriaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou, Algeria</affiliation>
</author>
<author xml:id="author-8">
<persName>
<forename type="first">A</forename>
<surname>Kadri</surname>
</persName>
<affiliation>Laboratoire de Matriaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou, Algeria</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Physics D: Applied Physics</title>
<title level="j" type="abbrev">J. Phys. D: Appl. Phys.</title>
<idno type="pISSN">0022-3727</idno>
<idno type="eISSN">1361-6463</idno>
<imprint>
<publisher>Institute of Physics Publishing</publisher>
<date type="published" when="2006"></date>
<biblScope unit="volume">39</biblScope>
<biblScope unit="issue">21</biblScope>
<biblScope unit="page" from="4523">4523</biblScope>
<biblScope unit="page" to="4528">4528</biblScope>
<biblScope unit="production">Printed in the UK</biblScope>
</imprint>
</monogr>
<idno type="istex">78F55CD2EB8240439E60F9E075C0AD1C047B05BF</idno>
<idno type="DOI">10.1088/0022-3727/39/21/001</idno>
<idno type="PII">S0022-3727(06)29503-2</idno>
<idno type="articleID">229503</idno>
<idno type="articleNumber">001</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2006</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>CoPt and FePt nanowire arrays were successfully prepared by electrodeposition into nanochannels of porous alumina membranes. The as-deposited CoPt alloy has a face centred cubic structure and displays soft magnetic properties. Heat treatment at 700C for different durations, under vacuum condition was carried out in order to obtain the ordered face centred tetragonal phase L10, exhibiting hard magnetic properties. After annealing, arrays of nanowires actually show hard magnetic properties with coercive fields up to 1.1T at room temperature. Phase transformation, structural and magnetic properties were analysed and necessary conditions to obtain optimum magnetic properties are concluded.The first results obtained with FePt nanowires denote a more complicated system since the as-deposited material shows no magnetization. Magnetism appears only after annealing at 700C minimum. Coercivity up to 1.1T has been obtained at room temperature but with inhomogeneous phase composition.</p>
</abstract>
<textClass>
<classCode scheme="">75.50.Ss</classCode>
<classCode scheme="">75.50.Vv</classCode>
<classCode scheme="">75.75.a</classCode>
<classCode scheme="">81.15.p</classCode>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2006">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/78F55CD2EB8240439E60F9E075C0AD1C047B05BF/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus iop not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="ISO-8859-1"</istex:xmlDeclaration>
<istex:docType SYSTEM="http://ej.iop.org/dtd/iopv1_5_1.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article artid="jphysd229503">
<article-metadata>
<jnl-data jnlid="jphysd">
<jnl-fullname>Journal of Physics D: Applied Physics</jnl-fullname>
<jnl-abbreviation>J. Phys. D: Appl. Phys.</jnl-abbreviation>
<jnl-shortname>JPhysD</jnl-shortname>
<jnl-issn>0022-3727</jnl-issn>
<jnl-coden>JPAPBE</jnl-coden>
<jnl-imprint>Institute of Physics Publishing</jnl-imprint>
<jnl-web-address>stacks.iop.org/JPhysD</jnl-web-address>
</jnl-data>
<volume-data>
<year-publication>2006</year-publication>
<volume-number>39</volume-number>
</volume-data>
<issue-data>
<issue-number>21</issue-number>
<coverdate>7 November 2006</coverdate>
</issue-data>
<article-data>
<article-type type="paper" sort="regular"></article-type>
<type-number type="paper" artnum="001">1</type-number>
<article-number>229503</article-number>
<first-page>4523</first-page>
<last-page>4528</last-page>
<length>6</length>
<pii>S0022-3727(06)29503-2</pii>
<doi>10.1088/0022-3727/39/21/001</doi>
<copyright>2006 IOP Publishing Ltd</copyright>
<ccc>0022-3727/06/214523+06$30.00</ccc>
<printed>Printed in the UK</printed>
<features colour="global" mmedia="no" suppdata="no"></features>
</article-data>
</article-metadata>
<header>
<title-group>
<title>Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates</title>
<short-title>CoPt and FePt nanowires in nanoporous alumina</short-title>
<ej-title>CoPt and FePt nanowires in nanoporous alumina</ej-title>
</title-group>
<author-group>
<author address="jphysd229503ad1 jphysd229503ad2">
<first-names>Y</first-names>
<second-name>Dahmane</second-name>
</author>
<author address="jphysd229503ad3" email="jphysd229503ea1">
<first-names>L</first-names>
<second-name>Cagnon</second-name>
</author>
<author address="jphysd229503ad1">
<first-names>J</first-names>
<second-name>Voiron</second-name>
</author>
<author address="jphysd229503ad3">
<first-names>S</first-names>
<second-name>Pairis</second-name>
</author>
<author address="jphysd229503ad3">
<first-names>M</first-names>
<second-name>Bacia</second-name>
</author>
<author address="jphysd229503ad3">
<first-names>L</first-names>
<second-name>Ortega</second-name>
</author>
<author address="jphysd229503ad2">
<first-names>N</first-names>
<second-name>Benbrahim</second-name>
</author>
<author address="jphysd229503ad2">
<first-names>A</first-names>
<second-name>Kadri</second-name>
</author>
</author-group>
<address-group>
<address id="jphysd229503ad1">
<orgname>Laboratoire Louis Néel, CNRS</orgname>
, BP 166, 38042 Grenoble cedex 9,
<country>France</country>
</address>
<address id="jphysd229503ad2">
<orgname>Laboratoire de Matériaux, Electrochimie et Corrosion</orgname>
, BP 17, 15000 Tizi-Ouzou,
<country>Algeria</country>
</address>
<address id="jphysd229503ad3">
<orgname>Laboratoire de Cristallographie, CNRS</orgname>
, BP 166, 38042 Grenoble cedex 9,
<country>France</country>
</address>
<e-address id="jphysd229503ea1">
<email mailto="laurent.cagnon@grenoble.cnrs.fr">laurent.cagnon@grenoble.cnrs.fr</email>
</e-address>
</address-group>
<history received="26 July 2006" online="20 October 2006"></history>
<abstract-group>
<abstract>
<heading>Abstract</heading>
<p indent="no">CoPt and FePt nanowire arrays were successfully prepared by electrodeposition into nanochannels of porous alumina membranes. The as-deposited CoPt alloy has a face centred cubic structure and displays soft magnetic properties. Heat treatment at 700 °C for different durations, under vacuum condition was carried out in order to obtain the ordered face centred tetragonal phase L1
<sub>0</sub>
, exhibiting hard magnetic properties. After annealing, arrays of nanowires actually show hard magnetic properties with coercive fields up to 1.1 T at room temperature. Phase transformation, structural and magnetic properties were analysed and necessary conditions to obtain optimum magnetic properties are concluded.</p>
<p>The first results obtained with FePt nanowires denote a more complicated system since the as-deposited material shows no magnetization. Magnetism appears only after annealing at 700 °C minimum. Coercivity up to 1.1 T has been obtained at room temperature but with inhomogeneous phase composition.</p>
</abstract>
</abstract-group>
<classifications>
<class-codes scheme="pacs" print="no">
<code>75.50.Ss</code>
<code>75.50.Vv</code>
<code>75.75.+a</code>
<code>81.15.p</code>
</class-codes>
</classifications>
</header>
<body numbering="bysection">
<sec-level1 id="jphysd229503s1" label="1">
<heading>Introduction</heading>
<p indent="no">Magnetic thin films and nanostructures have received a growing interest during the last decade from a fundamental and experimental point of view because of their potential application in the high density data storage field and also their integration capability in functional micro or nanodevices (MEMS/NEMS). High density storage requires media with perpendicular anisotropy and high coercive fields. Thin films of these materials are generally obtained by physical methods such as molecular beam epitaxy or sputtering [
<cite linkend="jphysd229503bib01" range="bib1,bib2,bib3,bib4,bib5,bib6,bib7,bib8">1–8</cite>
]. Nevertheless, films of hard magnetic materials such as CoPt or FePt alloys have been successfully prepared by electrodeposition [
<cite linkend="jphysd229503bib09" range="bib9,bib10,bib11,bib12">9–12</cite>
]. A convenient way to increase coercivity is the reduction of the lateral dimensions of materials. This can be achieved by using lithography techniques in order to define areas where the material is deposited. Another approach consists of the use of nanoporous membranes. Alumina membranes are easily obtained by anodic oxidation of aluminium foils. Ordered nanopore arrays could be obtained under specific anodizing conditions [
<cite linkend="jphysd229503bib13">13</cite>
] and these membranes have been widely used as templates to grow nanowires arrays. High aspect ratio nanostructures such as nanowires are mainly obtained by electrochemical deposition since physical methods are unlikely to fill in pores over tens of micrometres in length. So far, magnetic nanowires of cobalt, nickel, iron and different alloys have been extensively studied [
<cite linkend="jphysd229503bib14">14</cite>
].</p>
<p>It is only very recently that CoPt and FePt nanowires were successfully electrodeposited in nanoporous alumina membranes [
<cite linkend="jphysd229503bib15" range="bib15,bib16,bib17,bib18,bib19,bib20,bib21">15–21</cite>
]. Equiatomic CoPt and FePt alloys, which crystallize in L1
<sub>0</sub>
structure, present large magnetocrystalline anisotropy (with
<italic>K</italic>
<sub>u</sub>
≈ 2 × 10
<sup>6</sup>
J m
<sup>−3</sup>
[
<cite linkend="jphysd229503bib22">22</cite>
] and ≈ 7 × 10
<sup>−6</sup>
 J m
<sup>−3</sup>
[
<cite linkend="jphysd229503bib23">23</cite>
], respectively, for CoPt and FePt). Hence this property makes these materials excellent candidates for high density recording media. Such large anisotropies are necessary to overcome superparamagnetism in small particles. Huang
<italic>et al</italic>
[
<cite linkend="jphysd229503bib15">15</cite>
] were the first to successfully grow by electrodeposition CoPt and FePt nanowires using a simple electrolyte with Co, Fe and Pt chloride salts. After annealing, they obtained a coercivity of only 0.4 T for nanowires about 100 nm in diameter. Yasui
<italic>et al</italic>
[
<cite linkend="jphysd229503bib16">16</cite>
] have also successfully electrodeposited CoPt nanowires but they used a slightly more complicated electrolyte containing MgSO
<sub>4</sub>
. Depending on the underlayer at the bottom of the nanoholes, they were able to induce perpendicular magnetic anisotropy by using textured Pt(001) underlayer. With W underlayer, no anisotropy was observed because of the random orientation of the
<italic>c</italic>
axes. The coercivity obtained after annealing reached 0.74 T [
<cite linkend="jphysd229503bib13">13</cite>
]. These nanowires were about 0.5 µm long and 80 nm in diameter. Very recently, Mallet
<italic>et al</italic>
[
<cite linkend="jphysd229503bib17">17</cite>
] and Rhen
<italic>et al</italic>
[
<cite linkend="jphysd229503bib18">18</cite>
] obtained CoPt nanowires with coercivity higher than 1.0 T. More recently, Gapin
<italic>et al</italic>
[
<cite linkend="jphysd229503bib19">19</cite>
] prepared CoPt nanowires with smaller diameter (20 nm) and about 100 nm length but with a coercive field of 0.77 T. The electrolytes used contained organic additives besides the metallic salts which were Pt p-salts and Co sulphate or sulfamate and Fe sulphate or chloride salts for CoPt and FePt nanowires growth, respectively. In these studies, CoPt nanowires were polycrystalline and showed no anisotropy. From all these studies, post annealing treatment is necessary to convert the fcc phase of the as-deposited material into the fct L1
<sub>0</sub>
phase. Despite the larger anisotropy of the L1
<sub>0</sub>
phase FePt than L1
<sub>0</sub>
CoPt, it seems more difficult to obtain FePt nanowires with large coercivity. The values found in the literature so far are 0.4 [
<cite linkend="jphysd229503bib15">15</cite>
], 0.7 [
<cite linkend="jphysd229503bib20">20</cite>
] and 0.1 T [
<cite linkend="jphysd229503bib21">21</cite>
].</p>
<p>In this paper, we report on the electrodeposition of CoPt nanowires arrays in nanoporous alumina membranes. The membranes used here are either commercial (C) or elaborated in our laboratory. A very simple bath only consisting of two salts was used for the electrodeposition. The structural properties of nanowires arrays in both types of nanoporous alumina have been investigated by x-ray and electronic diffraction and discussed with the magnetic properties. We also present preliminary and promising results obtained on FePt nanowires arrays, elaborated following the same procedure as for CoPt nanowires</p>
</sec-level1>
<sec-level1 id="jphysd229503s2" label="2">
<heading>Experimental</heading>
<p indent="no">In this work CoPt nanowires were electrodeposited in C [
<cite linkend="jphysd229503bib24">24</cite>
] and home-made (HM) nanoporous alumina membranes. For the C membranes a mean pore diameter of 65 nm and a porosity of 15% are given by the manufacturer. The preparation of the HM membranes started with mechanical polishing of pure aluminium plates, followed by electropolishing in an ethanol/perchloric acid mixture (4 : 1 in volume), for 1–2 min with current density of 400 mA cm
<sup>−2</sup>
. Then, a two-step anodizing procedure in 0.5 M oxalic acid at 40 V was used to obtain the template. The first and second anodizing steps were 17 and 5 h, respectively, with a bath temperature of 15 °C. Between these steps, the first alumina layer was removed by using a phosphoric and chromic acid mixture at 60 °C. After removal of the aluminium substrate in a saturated HgCl
<sub>2</sub>
solution, a pore opening and widening treatment was then applied in 0.2 M phosphoric acid solution for 30 min at 35 °C. The obtained membranes showed ordered arrays of pores with diameter of 60 nm and interpore distance of 100 nm and thickness of 40 µm. A thin layer of silver or gold was then sputter deposited or evaporated onto one side of the templates in order to serve as a cathode.</p>
<p>Electrolytes were prepared using grade chemical reagent and were composed of 10
<sup>−1</sup>
 M CoCl
<sub>2</sub>
and 10
<sup>−3</sup>
 M K
<sub>2</sub>
PtCl
<sub>6</sub>
with pH = 5 for CoPt and 10
<sup>−1</sup>
 M FeCl
<sub>2</sub>
and 10
<sup>−3</sup>
 M K
<sub>2</sub>
PtCl
<sub>6</sub>
with pH = 3 for FePt. Before starting electrodeposition, argon was bubbled in the electrolyte to reduce the amount of dissolved oxygen. Electrodeposition has been carried out potentiostatically at room temperature in a conventional three electrodes cell, connected to a PAR 273 A potentiostat. Applied potentials were measured with respect to a saturated calomel electrode (SCE) reference and a platinum mesh was used as counter electrode.</p>
<p>In order to determine the applied potential giving the desired composition of the alloy, thin layers have been produced onto Si/W(∼30 nm)/Ag(∼ 200 nm) substrates at different potentials and analysed by energy dispersive x-ray analysis (EDX) in a scanning electron microscope (SEM, JEOL 840A) at various accelerating voltages.</p>
<p>Annealing treatment of the as-deposited samples was performed under vacuum condition at 700 °C for different durations. The template's filling has been characterized by SEM with backscattered electron imaging mode. Morphology and microstructure of nanowires have been observed using transmission electron microscopy (TEMS), operating at 300 kV (TEM, Philips CM 300), after dissolution of the alumina membrane in 2 M NaOH solution. Structural properties of the nanowires have been determined by x-ray diffraction (XRD) (Seifert diffractometer) on the whole membrane and by selected area electron diffraction (SAED) on isolated wires.</p>
<p>Magnetic properties have been characterized at 300 and 10 K using a superconducting quantum interference device (SQUID, Quantum Design) magnetometer.</p>
</sec-level1>
<sec-level1 id="jphysd229503s3" label="3">
<heading>Results and discussion</heading>
<sec-level2 id="jphysd229503s3-1" label="3.1">
<heading>Morphology and structural properties</heading>
<p indent="no">In this study, two kinds of nanoporous alumina templates were used to grow the CoPt nanowire arrays. Figures
<figref linkend="jphysd229503fig01">1(
<italic>a</italic>
) and (
<italic>b</italic>
)</figref>
show top-views of ‘home-made’ (HM) and C (
<italic>C</italic>
) membranes, respectively. HM alumina is characterized by a high degree of ordering of the pores array and low dispersion of pore diameter compared with the C membrane. Figure
<figref linkend="jphysd229503fig01">1(
<italic>b</italic>
)</figref>
also shows the difference existing in the pore array geometry between both sides of the C membrane whereas HM membranes have completely equivalent sides. Pore diameter is 60 nm for the HM membrane. From the SEM imaging, the porosity was evaluated to 35%.
<figure id="jphysd229503fig01" pageposition="top">
<graphic>
<graphic-file version="print" format="EPS" align="middle" filename="images/jphysd229503fig01.eps" width="XXX"></graphic-file>
<graphic-file version="ej" format="JPEG" align="middle" filename="images/jphysd229503fig01.jpg"></graphic-file>
</graphic>
<caption id="jphysd229503fc01" label="Figure 1">
<p indent="no">SEM imaging. (
<italic>a</italic>
) Top-view of HM alumina membrane. (
<italic>b</italic>
) Both sides of C alumina membrane. (
<italic>c</italic>
), (
<italic>d</italic>
) Cross sections of HM and C alumina, respectively. (
<italic>e</italic>
), (
<italic>f</italic>
) Back-scattered electrons images of HM and C alumina cross sections, respectively, after CoPt electrodeposition.</p>
</caption>
</figure>
</p>
<p>For the C membrane, because of non-circular pore opening, pore width varies between 50 and 100 nm and porosity was evaluated to 15% from the SEM imaging. Left part of image 1(
<italic>b</italic>
) corresponds to the side which has been metallized to serve as a cathode. The difference between both kinds of membranes is also illustrated by figures
<figref linkend="jphysd229503fig01">1(
<italic>c</italic>
) and (
<italic>d</italic>
)</figref>
showing cross section views of HM and C membranes, respectively. Straight parallel pores with uniform section are found in the HM membrane. On the contrary, the C membrane presents non-parallel pores and ramified pores are also observed.</p>
<p>After CoPt alloy has been electrodeposited into the membranes, SEM imaging in backscattered electrons mode, which gives chemical contrast, was used to control the template filling. After a 2 h deposition time, a very regular growth front of the CoPt nanowires can be observed in the HM membrane (figure
<figref linkend="jphysd229503fig01">1(
<italic>e</italic>
)</figref>
). The average length is 2.8 µm. On the contrary, in the C membrane (figure
<figref linkend="jphysd229503fig01">1(
<italic>f</italic>
)</figref>
), a more irregular growth front is observed. In this case, the majority of nanowires are 2.8 µm long, and the longest ones can reach 3.8 µm.</p>
<p>The structural properties of the CoPt nanowires arrays have been investigated by XRD before and after annealing at 700 °C at Cu K
<sub>α</sub>
wavelength. The XRD diagrams are presented in figure
<figref linkend="jphysd229503fig02">2</figref>
. Before annealing, only the (111) peak at 2&thetas; = 40.7° is observed (figure
<figref linkend="jphysd229503fig02">2(
<italic>a</italic>
)</figref>
). It corresponds to CoPt alloy with fcc structure and a cell parameter
<italic>a</italic>
= 3.835 Å. After heat treatment under vacuum, for 80 min, the XRD spectrum displays many new peaks, especially the superstructure peaks such as (001), (110), (201), (112) and the splitting of (200) and (220) peaks. They are well indexed in the tetragonal ordered phase L1
<sub>0</sub>
of the CoPt alloy. The lattice parameters obtained after refinement are
<italic>a</italic>
= 3.806 5 Å and
<italic>c</italic>
= 3.699 7 Å, giving a
<italic>c</italic>
/
<italic>a</italic>
ratio of 0.971 9. By using the Scherrer formula which writes as follows
<display-eqn id="jphysd229503ueq001"></display-eqn>
where
<italic>B</italic>
<sub>cryst</sub>
is the peak broadening due to small crystallite size,
<italic>L</italic>
the average crystallite size, and
<italic>k</italic>
a constant taken generally close to unity [
<cite linkend="jphysd229503bib25">25</cite>
], it is therefore possible, from the XRD diagram, to estimate the average grain size of the CoPt nanowires alloy. Before annealing, only the (111) peak is available. From this peak, an average size of 3.8 nm is deduced. After annealing and by considering the (111) peak, the estimated average size is about 20 nm. Therefore, the annealing process has led to grain growth of the CoPt alloy.
<figure id="jphysd229503fig02" pageposition="top">
<graphic>
<graphic-file version="print" format="EPS" align="middle" filename="images/jphysd229503fig02.eps" width="XXX"></graphic-file>
<graphic-file version="ej" format="JPEG" align="middle" filename="images/jphysd229503fig02.jpg"></graphic-file>
</graphic>
<caption id="jphysd229503fc02" label="Figure 2">
<p indent="no">XRD patterns of (
<italic>a</italic>
) CoPt nanowires array before heat treatment and (
<italic>b</italic>
) after heat treatment.</p>
</caption>
</figure>
</p>
<p>Structural characterizations have also been conducted by TEM on nanowires after they have been liberated from the alumina membrane. Figure
<figref linkend="jphysd229503fig03">3</figref>
shows TEM micrographs of individual nanowires and electron diffraction patterns obtained on samples before and after annealing procedure. Figure
<figref linkend="jphysd229503fig03">3(
<italic>a</italic>
)</figref>
illustrates the microstructural aspect of a CoPt alloy nanowire before annealing. These nanowires are composed of very small spherical grains about 3–5 nm in diameter, in good agreement with the average size deduced from XRD data. The SAED pattern obtained on such nanowires is shown in figure
<figref linkend="jphysd229503fig03">3(
<italic>b</italic>
)</figref>
. The diffuse continuous rings indicate the polycrystalline nature of the alloy and can easily be indexed in the face centred cubic structure of CoPt alloy. The very thin ring at the centre of diffraction pattern is an artefact coming from the digital camera of the microscope. Figure
<figref linkend="jphysd229503fig03">3(
<italic>c</italic>
)</figref>
shows an individual nanowire after the annealing treatment. From the comparison of figures
<figref linkend="jphysd229503fig03">3(
<italic>a</italic>
) and (
<italic>c</italic>
)</figref>
, it is clear that the heat treatment has induced grain growth. The corresponding SAED pattern of figure
<figref linkend="jphysd229503fig03">3(
<italic>d</italic>
)</figref>
is again composed of rings because of the polycrystalline alloy microstructure. In that case, they can be indexed in the face centred tetragonal ordered phase L1
<sub>0</sub>
. These rings show many diffraction spots, which is in agreement with an increased crystallites size.
<figure id="jphysd229503fig03" pageposition="top">
<graphic>
<graphic-file version="print" format="EPS" align="middle" filename="images/jphysd229503fig03.eps" width="XXX"></graphic-file>
<graphic-file version="ej" format="JPEG" align="middle" filename="images/jphysd229503fig03.jpg"></graphic-file>
</graphic>
<caption id="jphysd229503fc03" label="Figure 3">
<p indent="no">TEM images of isolated CoPt nanowires before (
<italic>a</italic>
) and after heat treatment (
<italic>c</italic>
). Corresponding indexed SAED patterns (
<italic>b</italic>
) and (
<italic>d</italic>
).</p>
</caption>
</figure>
</p>
<p>The nanowires composition has also been determined by TEM equipped with EDX. The measured compositions are Co
<sub>0.48</sub>
Pt
<sub>0.52</sub>
and Co
<sub>0.42</sub>
Pt
<sub>0.58</sub>
for nanowires deposited in C and HM membranes, respectively. Although nanowires have been electrodeposited at the same potential in both types of membranes, this difference in composition may be explained by changes in the kinetics of protons reduction reaction within the nanochannels of different diameters.</p>
<p>FePt nanowires have been deposited in C membranes with a nominal diameter of 55 nm. It has not been possible to determine precisely by TEM the composition of this sample, but considering the magnetic properties of other FePt samples, we estimate the iron concentration to be 45± 5 at%.</p>
</sec-level2>
<sec-level2 id="jphysd229503s3-2" label="3.2">
<heading>Magnetic properties</heading>
<p indent="no">Magnetic properties were investigated at 300 and 10 K for the as-deposited samples and annealed samples prepared in two kinds of membranes (C and HM). Figure
<figref linkend="jphysd229503fig04">4</figref>
shows the magnetization curves obtained at 300 K for the as-deposited CoPt samples (C and HM) for the two field directions. For the two samples, a soft magnetic behaviour is observed and the easy axis of magnetization is parallel to the wires. These materials present before annealing a face centred cubic phase and no large magnetocrystalline anisotropy is expected. The main anisotropy results from the shape anisotropy and from the dipolar coupling between the wires. A mean field model [
<cite linkend="jphysd229503bib26">26</cite>
,
<cite linkend="jphysd229503bib27">27</cite>
] takes into account the shape anisotropy of the individual wires and the dipolar coupling energy between wires. The model yields a demagnetizing factor parallel to the wires' axis equal to the porosity
<italic>P</italic>
of the membranes and a factor equal to (1−
<italic>P</italic>
)/2 in the perpendicular direction. The porosities of the membranes are 15% and 35%, respectively, for C and home made (HM) membranes. With the increase in the porosity a decrease in the initial slope of magnetization curves in the parallel direction and an increase in the perpendicular direction is expected. Experimental curves are in qualitative agreement with the evolution of slopes. But with a porosity of 35% the parallel and perpendicular curves should be very close. This disagreement is attributed to irregularities of the wires and to their roughness, which modify the dipolar energy and consequently the demagnetizing factors in the two field directions.
<figure id="jphysd229503fig04" pageposition="top">
<graphic>
<graphic-file version="print" format="EPS" align="middle" filename="images/jphysd229503fig04.eps" width="XXX"></graphic-file>
<graphic-file version="ej" format="JPEG" align="middle" filename="images/jphysd229503fig04.jpg"></graphic-file>
</graphic>
<caption id="jphysd229503fc04" label="Figure 4">
<p indent="no">As-deposited samples: magnetization curves obtained at room temperature with the magnetic field applied parallel and perpendicular to the wires for (
<italic>a</italic>
) the Co
<sub>0.48</sub>
Pt
<sub>0.52</sub>
sample in the C membrane and (
<italic>b</italic>
) the Co
<sub>0.42</sub>
Pt
<sub>0.58</sub>
sample in the HM membrane.</p>
</caption>
</figure>
</p>
<p>Figure
<figref linkend="jphysd229503fig05">5</figref>
shows hysteresis loops obtained when the field is applied parallel and perpendicular to the wires' axis for the two CoPt samples deposited in C and HM membranes after annealing at 700 °C. The two samples present coercive fields larger than 1 T at room temperature (1.0 T for the C sample and 1.10 T for the HM one). This value of coercivity corresponds to about one tenth of the anisotropy field μ
<sub>0</sub>
<italic>H</italic>
<sub>a</sub>
= 2 
<italic>K</italic>
<sub>u</sub>
/
<italic>M</italic>
<sub>s</sub>
, which means that the magnetization reversal does not result from a coherent rotation of magnetization but proceeds through a mechanism of domain nucleation and wall propagation as it happens in most magnetic materials. At low temperature (10 K) the coercive field is 1.45 T in C membranes and 1.6 T in HM membranes.
<figure id="jphysd229503fig05" pageposition="top">
<graphic>
<graphic-file version="print" format="EPS" align="middle" filename="images/jphysd229503fig05.eps" width="XXX"></graphic-file>
<graphic-file version="ej" format="JPEG" align="middle" filename="images/jphysd229503fig05.jpg"></graphic-file>
</graphic>
<caption id="jphysd229503fc05" label="Figure 5">
<p indent="no">Samples annealed at 700 °C: magnetization curves obtained at room temperature with the magnetic field applied parallel and perpendicular to the wires for (
<italic>a</italic>
) the Co
<sub>0.48</sub>
Pt
<sub>0.52</sub>
sample in the C membrane and (
<italic>b</italic>
) the Co
<sub>0.42</sub>
Pt
<sub>0.58</sub>
sample in the HM membrane.</p>
</caption>
</figure>
</p>
<p>This maximum coercivity around 1.1 T obtained at room temperature is comparable to the best values observed in CoPt nanowires by others authors [
<cite linkend="jphysd229503bib17">17</cite>
,
<cite linkend="jphysd229503bib18">18</cite>
]. It is also the coercive field measured in thin CoPt films [
<cite linkend="jphysd229503bib05">5</cite>
,
<cite linkend="jphysd229503bib06">6</cite>
]. The coercivity only depends on the material elaborated with the appropriate thermal annealing process and does not depend on the morphology and porosity of the different membranes. This value of coercive field around 1.1 T seems to correspond to the optimal properties for annealed CoPt samples.</p>
<p>For the two studied samples, deposited in two different membranes (HM and C), there is no significant difference between the curves with the field applied parallel or perpendicular to the wires. These isotropic magnetization processes point out a random distribution of the
<italic>c</italic>
axis of grains within each nanowire. This isotropic behaviour has been observed by other authors [
<cite linkend="jphysd229503bib16">16</cite>
,
<cite linkend="jphysd229503bib17">17</cite>
] but also in some cases anisotropic properties have been reported and attributed to smaller diameter wires [
<cite linkend="jphysd229503bib17">17</cite>
] or to an oriented Pt underlayer used as a cathode [
<cite linkend="jphysd229503bib16">16</cite>
].</p>
<p>Magnetization curves of the Co
<sub>0.48</sub>
Pt
<sub>0.52</sub>
C sample (figure
<figref linkend="jphysd229503fig05">5(
<italic>a</italic>
)</figref>
) are characteristic of materials with a single hard phase while the Co
<sub>0.42</sub>
Pt
<sub>0.58</sub>
HM sample shows two phases (figure
<figref linkend="jphysd229503fig05">5(
<italic>b</italic>
)</figref>
), a hard one and a soft one. The nearly equiatomic C sample has been completely transformed by annealing to the hard ordered L1
<sub>0</sub>
phase. But the annealed Co
<sub>0.42</sub>
Pt
<sub>0.58</sub>
HM sample, the composition of which is far from the equiatomic composition, consists of a main tetragonal hard phase and a soft phase, which could be CoPt
<sub>3</sub>
.</p>
<p>The situation looks more complicated for FePt nanowires. As-deposited FePt nanowires present no magnetization, while ferromagnetism is well observed after annealing. This behaviour could be explained, as suggested by other authors [
<cite linkend="jphysd229503bib10">10</cite>
], by the formation of non-magnetic iron hydroxides. Indeed, for example Fe(OH)
<sub>3</sub>
is a very weak ferromagnet [
<cite linkend="jphysd229503bib28">28</cite>
], the magnetic structure of which is closed to a collinear antiferromagnet. Magnetization curves of the FePt nanowires sample, obtained at room temperature with the field applied parallel or perpendicular to the wires, are presented in figure
<figref linkend="jphysd229503fig06">6</figref>
. As for the CoPt sample, an isotropic behaviour is observed, representative of a random distribution of the
<italic>c</italic>
axis of grains within each nanowire. The coercivity is nearly 1.1 T at room temperature, which is to our knowledge the largest value reported for FePt nanowires. But the shape of the magnetization curves reveals a mixing of tetragonal FePt with large coercive fields and a distribution of compositions leading to a large range of smaller coercive fields. Adjusting the ions concentration in the electrolytic bath or the deposition potential is necessary to get the equiatomic composition.
<figure id="jphysd229503fig06" pageposition="top">
<graphic>
<graphic-file version="print" format="EPS" align="middle" filename="images/jphysd229503fig06.eps" width="XXX"></graphic-file>
<graphic-file version="ej" format="JPEG" align="middle" filename="images/jphysd229503fig06.jpg"></graphic-file>
</graphic>
<caption id="jphysd229503fc06" label="Figure 6">
<p indent="no">Magnetization curves obtained at room temperature with the magnetic field applied parallel and perpendicular to the wires of the FePt sample in the C membrane.</p>
</caption>
</figure>
</p>
</sec-level2>
</sec-level1>
<sec-level1 id="jphysd229503s4" label="4">
<heading>Conclusion</heading>
<p indent="no">In conclusion, CoPt and FePt nanowires exhibiting large coercive fields up to 1.1 T have been successfully prepared by electrodeposition into nanopores of C and HM alumina membranes from a very simple electrolyte. The as-deposited material has the fcc structure with soft magnetic properties. An annealing treatment is essential to transform this phase into the L1
<sub>0</sub>
phase. CoPt nanowires of annealed samples consist of grains around at least 20 nm, with their
<italic>c</italic>
axes randomly distributed. In our case, the coercivity does not depend on morphology and porosity of the two types of membranes but only on the deposited material elaborated with the appropriate thermal annealing process. This value of the coercive field around 1 T, obtained by several authors, seems to correspond to the optimal properties for annealed CoPt nanowires. To achieve a single hard phase L1
<sub>0</sub>
, it is essential to get the equiatomic composition for the as-deposited sample and then to use the suitable annealing parameters (temperature and time) to change the whole fcc phase into the fct ordered L1
<sub>0</sub>
phase. In the case of FePt nanowires, our preliminary results are promising and show the highest coercivities reported so far. Nevertheless, the deposition conditions need to be optimized and higher coercive fields are expected.</p>
</sec-level1>
</body>
<back>
<references>
<heading>References</heading>
<reference-list type="numeric">
<journal-ref id="jphysd229503bib01" num="1">
<authors>
<au>
<second-name>Ristau</second-name>
<first-names>R A</first-names>
</au>
<au>
<second-name>Barmak</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Lewis</second-name>
<first-names>L H</first-names>
</au>
<au>
<second-name>Coffey</second-name>
<first-names>K R</first-names>
</au>
<au>
<second-name>Howard</second-name>
<first-names>J K</first-names>
</au>
</authors>
<year>1999</year>
<jnl-title>J. Appl. Phys.</jnl-title>
<volume>86</volume>
<pages>4527</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.371397</cr_doi>
<cr_issn type="print">00218979</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib02" num="2">
<authors>
<au>
<second-name>Barmak</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Ristau</second-name>
<first-names>R A</first-names>
</au>
<au>
<second-name>Coffey</second-name>
<first-names>K R</first-names>
</au>
<au>
<second-name>Parker</second-name>
<first-names>M A</first-names>
</au>
<au>
<second-name>Howard</second-name>
<first-names>J K</first-names>
</au>
</authors>
<year>1996</year>
<jnl-title>J. Appl. Phys.</jnl-title>
<volume>79</volume>
<pages>5330</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.361368</cr_doi>
<cr_issn type="print">00218979</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib03" num="3">
<authors>
<au>
<second-name>Jeong</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>McHenry</second-name>
<first-names>M E</first-names>
</au>
<au>
<second-name>Laughlin</second-name>
<first-names>D E</first-names>
</au>
</authors>
<year>2001</year>
<jnl-title>IEEE Trans. Magn.</jnl-title>
<volume>37</volume>
<pages>1309</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1109/20.950826</cr_doi>
<cr_issn type="print">00189464</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib04" num="4">
<authors>
<au>
<second-name>Karanasos</second-name>
<first-names>V</first-names>
</au>
<au>
<second-name>Panagiotopoulos</second-name>
<first-names>I</first-names>
</au>
<au>
<second-name>Niarchos</second-name>
<first-names>D</first-names>
</au>
<au>
<second-name>Okumura</second-name>
<first-names>H</first-names>
</au>
<au>
<second-name>Hadjipanayis</second-name>
<first-names>G C</first-names>
</au>
</authors>
<year>2000</year>
<jnl-title>J. Appl. Phys.</jnl-title>
<volume>88</volume>
<pages>2740</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.1287230</cr_doi>
<cr_issn type="print">00218979</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib05" num="5">
<authors>
<au>
<second-name>Yamamoto</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Tezuka</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Nishimaki</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Ishiguro</second-name>
<first-names>T</first-names>
</au>
</authors>
<year>1998</year>
<art-title>Japan.</art-title>
<jnl-title>J. Appl. Phys.</jnl-title>
<volume>37</volume>
<pages>5980</pages>
</journal-ref>
<journal-ref id="jphysd229503bib06" num="6">
<authors>
<au>
<second-name>Christodoulides</second-name>
<first-names>J A</first-names>
</au>
<au>
<second-name>Huang</second-name>
<first-names>Y</first-names>
</au>
<au>
<second-name>Zhang</second-name>
<first-names>Y</first-names>
</au>
<au>
<second-name>Hadjipanayis</second-name>
<first-names>G C</first-names>
</au>
<au>
<second-name>Panagiotopoulos</second-name>
<first-names>I</first-names>
</au>
<au>
<second-name>Niarchos</second-name>
<first-names>D</first-names>
</au>
</authors>
<year>2000</year>
<jnl-title>J. Appl. Phys.</jnl-title>
<volume>87</volume>
<pages>6938</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.372892</cr_doi>
<cr_issn type="print">00218979</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib07" num="7">
<authors>
<au>
<second-name>Chen</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Kitakami</second-name>
<first-names>O</first-names>
</au>
<au>
<second-name>Okamoto</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Shimada</second-name>
<first-names>Y</first-names>
</au>
</authors>
<year>2000</year>
<jnl-title>J. Appl. Phys.</jnl-title>
<volume>87</volume>
<pages>6947</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.372895</cr_doi>
<cr_issn type="print">00218979</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib08" num="8">
<authors>
<au>
<second-name>Jeong</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Hsu</second-name>
<first-names>Y N</first-names>
</au>
<au>
<second-name>McHenry</second-name>
<first-names>M E</first-names>
</au>
<au>
<second-name>Laughlin</second-name>
<first-names>D E</first-names>
</au>
</authors>
<year>2000</year>
<jnl-title>J. Appl. Phys.</jnl-title>
<volume>87</volume>
<pages>6950</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.372896</cr_doi>
<cr_issn type="print">00218979</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib09" num="9">
<authors>
<au>
<second-name>Eagleton</second-name>
<first-names>T S</first-names>
</au>
<au>
<second-name>Mallet</second-name>
<first-names>J</first-names>
</au>
<au>
<second-name>Cheng</second-name>
<first-names>X</first-names>
</au>
<au>
<second-name>Wang</second-name>
<first-names>J</first-names>
</au>
<au>
<second-name>Chien</second-name>
<first-names>C L</first-names>
</au>
<au>
<second-name>Searson</second-name>
<first-names>P C</first-names>
</au>
</authors>
<year>2005</year>
<jnl-title>J. Electrochem. Soc.</jnl-title>
<volume>152</volume>
<pages>C27</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1149/1.1836128</cr_doi>
<cr_issn type="print">00134651</cr_issn>
</crossref>
</journal-ref>
<multipart id="jphysd229503bib10" num="10">
<journal-ref id="jphysd229503bib10a">
<authors>
<au>
<second-name>Leistner</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Thomas</second-name>
<first-names>J</first-names>
</au>
<au>
<second-name>Baunack</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Schlorb</second-name>
<first-names>H</first-names>
</au>
<au>
<second-name>Schultz</second-name>
<first-names>L</first-names>
</au>
<au>
<second-name>Fahler</second-name>
<first-names>S</first-names>
</au>
</authors>
<year>2005</year>
<jnl-title>J. Magn. Magn. Mater.</jnl-title>
<volume>290–291</volume>
<pages>1270</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.jmmm.2004.11.420</cr_doi>
<cr_issn type="print">03048853</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib10b">
<authors>
<au>
<second-name>Leistner</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Thomas</second-name>
<first-names>J</first-names>
</au>
<au>
<second-name>Baunack</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Schlorb</second-name>
<first-names>H</first-names>
</au>
<au>
<second-name>Schultz</second-name>
<first-names>L</first-names>
</au>
<au>
<second-name>Fahler</second-name>
<first-names>S</first-names>
</au>
</authors>
<year>2004</year>
<jnl-title>Appl. Phys. Lett.</jnl-title>
<volume>85</volume>
<pages>3498</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.1807958</cr_doi>
<cr_issn type="print">00036951</cr_issn>
<cr_issn type="electronic">00036951</cr_issn>
</crossref>
</journal-ref>
</multipart>
<journal-ref id="jphysd229503bib11" num="11">
<authors>
<au>
<second-name>Svedberg</second-name>
<first-names>E B</first-names>
</au>
<au>
<second-name>Mallett</second-name>
<first-names>J J</first-names>
</au>
<au>
<second-name>Sayan</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Shapiro</second-name>
<first-names>A J</first-names>
</au>
<au>
<second-name>Egelhoff</second-name>
<first-names>W F</first-names>
<name-suffix>Jr</name-suffix>
</au>
<au>
<second-name>Moffat</second-name>
<first-names>T</first-names>
</au>
</authors>
<year>2004</year>
<jnl-title>Appl. Phys. Lett.</jnl-title>
<volume>85</volume>
<pages>1353</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.1784525</cr_doi>
<cr_issn type="print">00036951</cr_issn>
<cr_issn type="electronic">00036951</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib12" num="12">
<authors>
<au>
<second-name>Wang</second-name>
<first-names>F</first-names>
</au>
<au>
<second-name>Hosoiri</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Doi</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Okamoto</second-name>
<first-names>N</first-names>
</au>
<au>
<second-name>Kuzushima</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Totsuka</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Watanabe</second-name>
<first-names>-T</first-names>
</au>
</authors>
<year>2004</year>
<jnl-title>Electrochem. Commun.</jnl-title>
<volume>6</volume>
<pages>1149</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.elecom.2004.09.009</cr_doi>
<cr_issn type="print">13882481</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib13" num="13">
<authors>
<au>
<second-name>Sellmyer</second-name>
<first-names>D J</first-names>
</au>
<au>
<second-name>Zheng</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Skomski</second-name>
<first-names>R</first-names>
</au>
</authors>
<year>2001</year>
<jnl-title>J. Phys.: Condens. Matter</jnl-title>
<volume>13</volume>
<pages>R433</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1088/0953-8984/13/25/201</cr_doi>
<cr_issn type="print">09538984</cr_issn>
<cr_issn type="electronic">1361648X</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib14" num="14">
<authors>
<au>
<second-name>Piraux</second-name>
<first-names>L</first-names>
</au>
<au>
<second-name>Encinas</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Vila</second-name>
<first-names>L</first-names>
</au>
<au>
<second-name>Matefi-Tempfli</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Matefi-Tempfli</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Darques</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Elhoussine</second-name>
<first-names>F</first-names>
</au>
<au>
<second-name>Michotte</second-name>
<first-names>S</first-names>
</au>
</authors>
<year>2005</year>
<jnl-title>J. Nanosci. Nanotechnol.</jnl-title>
<volume>5</volume>
<pages>372</pages>
<misc-text>and references therein</misc-text>
<crossref>
<cr_doi>http://dx.doi.org/10.1166/jnn.2005.062</cr_doi>
<cr_issn type="print">15334880</cr_issn>
<cr_issn type="electronic">00000000</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib15" num="15">
<authors>
<au>
<second-name>Huang</second-name>
<first-names>Y H</first-names>
</au>
<au>
<second-name>Okumura</second-name>
<first-names>H</first-names>
</au>
<au>
<second-name>Hadjipanayis</second-name>
<first-names>G C</first-names>
</au>
<au>
<second-name>Weller</second-name>
<first-names>D</first-names>
</au>
</authors>
<year>2002</year>
<jnl-title>J. Appl. Phys.</jnl-title>
<volume>91</volume>
<pages>6869</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.1447524</cr_doi>
<cr_issn type="print">00218979</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib16" num="16">
<authors>
<au>
<second-name>Yasui</second-name>
<first-names>N</first-names>
</au>
<au>
<second-name>Imada</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Den</second-name>
<first-names>T</first-names>
</au>
</authors>
<year>2003</year>
<jnl-title>Appl. Phys. Lett.</jnl-title>
<volume>83</volume>
<pages>3347</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.1622787</cr_doi>
<cr_issn type="print">00036951</cr_issn>
<cr_issn type="electronic">00036951</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib17" num="17">
<authors>
<au>
<second-name>Mallet</second-name>
<first-names>J</first-names>
</au>
<au>
<second-name>Yu-Zhang</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Màtéfi-Tempfli</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Piraux</second-name>
<first-names>L</first-names>
</au>
</authors>
<year>2005</year>
<jnl-title>J. Phys. D: Appl. Phys.</jnl-title>
<volume>38</volume>
<pages>909</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1088/0022-3727/38/6/020</cr_doi>
<cr_issn type="print">00223727</cr_issn>
<cr_issn type="electronic">13616463</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib18" num="18">
<authors>
<au>
<second-name>Rhen</second-name>
<first-names>F M F</first-names>
</au>
<au>
<second-name>Backen</second-name>
<first-names>E</first-names>
</au>
<au>
<second-name>J Coey</second-name>
<first-names>J M D</first-names>
</au>
</authors>
<year>2005</year>
<jnl-title>J. Appl. Phys.</jnl-title>
<volume>97</volume>
<pages>113908</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.1923587</cr_doi>
<cr_issn type="print">00218979</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib19" num="19">
<authors>
<au>
<second-name>Gapin</second-name>
<first-names>A I</first-names>
</au>
<au>
<second-name>Ye</second-name>
<first-names>X R</first-names>
</au>
<au>
<second-name>Aubuchon</second-name>
<first-names>J F</first-names>
</au>
<au>
<second-name>Chen</second-name>
<first-names>L H</first-names>
</au>
<au>
<second-name>Tang</second-name>
<first-names>Y J</first-names>
</au>
<au>
<second-name>Jin</second-name>
<first-names>S</first-names>
</au>
</authors>
<year>2006</year>
<jnl-title>J. Appl. Phys.</jnl-title>
<volume>99</volume>
<pages>08G902</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.2163289</cr_doi>
<cr_issn type="print">00218979</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib20" num="20">
<authors>
<au>
<second-name>Ichihara</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Ueda</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Den</second-name>
<first-names>T</first-names>
</au>
</authors>
<year>2005</year>
<jnl-title>IEEE Trans. Magn.</jnl-title>
<volume>41</volume>
<pages>3349</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1109/TMAG.2005.854704</cr_doi>
<cr_issn type="print">00189464</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib21" num="21">
<authors>
<au>
<second-name>Chu</second-name>
<first-names>S Z</first-names>
</au>
<au>
<second-name>Inoue</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Wada</second-name>
<first-names>K</first-names>
</au>
<au>
<second-name>Kanke</second-name>
<first-names>Y</first-names>
</au>
<au>
<second-name>Kurashima</second-name>
<first-names>K</first-names>
</au>
</authors>
<year>2005</year>
<jnl-title>J. Electrochem. Soc.</jnl-title>
<volume>152</volume>
<pages>C42</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1149/1.1836153</cr_doi>
<cr_issn type="print">00134651</cr_issn>
</crossref>
</journal-ref>
<multipart id="jphysd229503bib22" num="22">
<journal-ref id="jphysd229503bib22a">
<authors>
<au>
<second-name>Mc Currie</second-name>
<first-names>R A</first-names>
</au>
<au>
<second-name>Gaunt</second-name>
<first-names>P</first-names>
</au>
</authors>
<year>1966</year>
<jnl-title>Phil. Mag.</jnl-title>
<volume>13</volume>
<pages>567</pages>
</journal-ref>
<journal-ref id="jphysd229503bib22b">
<authors>
<au>
<second-name>Lairson</second-name>
<first-names>B M</first-names>
</au>
<au>
<second-name>Clemens</second-name>
<first-names>B M</first-names>
</au>
</authors>
<year>1993</year>
<jnl-title>Appl. Phys. Lett.</jnl-title>
<volume>78</volume>
<pages>1438</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.110768</cr_doi>
<cr_issn type="print">00036951</cr_issn>
<cr_issn type="electronic">00036951</cr_issn>
</crossref>
</journal-ref>
</multipart>
<journal-ref id="jphysd229503bib23" num="23">
<authors>
<au>
<second-name>Ivanov</second-name>
<first-names>O A</first-names>
</au>
<au>
<second-name>Solina</second-name>
<first-names>L V</first-names>
</au>
<au>
<second-name>Demshina</second-name>
<first-names>V A</first-names>
</au>
</authors>
<year>1973</year>
<jnl-title>Phys. Met. Metallogr.</jnl-title>
<volume>35</volume>
<pages>81</pages>
</journal-ref>
<misc-ref id="jphysd229503bib24" num="24">
<authors>
<collaboration reflist="yes">
<group>Synkera Technology Inc</group>
</collaboration>
</authors>
<misc-text>
<webref url="http://www.synkera.com">http://www.synkera.com</webref>
</misc-text>
</misc-ref>
<book-ref id="jphysd229503bib25" num="25">
<authors>
<au>
<second-name>Suryanarayana</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Grant Norton</second-name>
<first-names>M</first-names>
</au>
</authors>
<year>1998</year>
<book-title>X-Ray Diffraction: A Practical Approach</book-title>
<publication>
<place>New York</place>
<publisher>Plenum</publisher>
</publication>
</book-ref>
<journal-ref id="jphysd229503bib26" num="26">
<authors>
<au>
<second-name>Netzelmann</second-name>
<first-names>U</first-names>
</au>
</authors>
<year>1990</year>
<jnl-title>J. Appl. Phys.</jnl-title>
<volume>68</volume>
<pages>1800</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.346613</cr_doi>
<cr_issn type="print">00218979</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib27" num="27">
<authors>
<au>
<second-name>Encinas-Oropesa</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Demand</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Piraux</second-name>
<first-names>L</first-names>
</au>
<au>
<second-name>Huynen</second-name>
<first-names>I</first-names>
</au>
<au>
<second-name>Ebels</second-name>
<first-names>U</first-names>
</au>
</authors>
<year>2001</year>
<jnl-title>Phys. Rev.</jnl-title>
<part>B</part>
<volume>63</volume>
<pages>104415</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1103/PhysRevB.63.104415</cr_doi>
<cr_issn type="print">01631829</cr_issn>
<cr_issn type="electronic">10953795</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="jphysd229503bib28" num="28">
<authors>
<au>
<second-name>McCammon</second-name>
<first-names>C A</first-names>
</au>
<au>
<second-name>De Grave</second-name>
<first-names>E</first-names>
</au>
<au>
<second-name>Pring</second-name>
<first-names>P</first-names>
</au>
</authors>
<year>1996</year>
<jnl-title>J. Magn. Magn. Mater.</jnl-title>
<volume>152</volume>
<pages>33</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/0304-8853(95)00456-4</cr_doi>
<cr_issn type="print">03048853</cr_issn>
</crossref>
</journal-ref>
</reference-list>
</references>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="eng">
<title>Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>CoPt and FePt nanowires in nanoporous alumina</title>
</titleInfo>
<titleInfo type="alternative" lang="eng">
<title>Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates</title>
</titleInfo>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Dahmane</namePart>
<affiliation>Laboratoire Louis Nel, CNRS, BP 166, 38042 Grenoble cedex 9, France</affiliation>
<affiliation>Laboratoire de Matriaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou, Algeria</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="family">Cagnon</namePart>
<affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</affiliation>
<affiliation>E-mail: laurent.cagnon@grenoble.cnrs.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Voiron</namePart>
<affiliation>Laboratoire Louis Nel, CNRS, BP 166, 38042 Grenoble cedex 9, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Pairis</namePart>
<affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Bacia</namePart>
<affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="family">Ortega</namePart>
<affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble cedex 9, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Benbrahim</namePart>
<affiliation>Laboratoire de Matriaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou, Algeria</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Kadri</namePart>
<affiliation>Laboratoire de Matriaux, Electrochimie et Corrosion, BP 17, 15000 Tizi-Ouzou, Algeria</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="paper">paper</genre>
<originInfo>
<publisher>Institute of Physics Publishing</publisher>
<dateIssued encoding="w3cdtf">2006</dateIssued>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<note type="production">Printed in the UK</note>
</physicalDescription>
<abstract>CoPt and FePt nanowire arrays were successfully prepared by electrodeposition into nanochannels of porous alumina membranes. The as-deposited CoPt alloy has a face centred cubic structure and displays soft magnetic properties. Heat treatment at 700C for different durations, under vacuum condition was carried out in order to obtain the ordered face centred tetragonal phase L10, exhibiting hard magnetic properties. After annealing, arrays of nanowires actually show hard magnetic properties with coercive fields up to 1.1T at room temperature. Phase transformation, structural and magnetic properties were analysed and necessary conditions to obtain optimum magnetic properties are concluded.The first results obtained with FePt nanowires denote a more complicated system since the as-deposited material shows no magnetization. Magnetism appears only after annealing at 700C minimum. Coercivity up to 1.1T has been obtained at room temperature but with inhomogeneous phase composition.</abstract>
<classification authority="pacs">75.50.Ss</classification>
<classification authority="pacs">75.50.Vv</classification>
<classification authority="pacs">75.75.a</classification>
<classification authority="pacs">81.15.p</classification>
<relatedItem type="host">
<titleInfo>
<title>Journal of Physics D: Applied Physics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Phys. D: Appl. Phys.</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0022-3727</identifier>
<identifier type="eISSN">1361-6463</identifier>
<identifier type="PublisherID">jphysd</identifier>
<identifier type="CODEN">JPAPBE</identifier>
<identifier type="URL">stacks.iop.org/JPhysD</identifier>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>39</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>21</number>
</detail>
<extent unit="pages">
<start>4523</start>
<end>4528</end>
<total>6</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">78F55CD2EB8240439E60F9E075C0AD1C047B05BF</identifier>
<identifier type="DOI">10.1088/0022-3727/39/21/001</identifier>
<identifier type="PII">S0022-3727(06)29503-2</identifier>
<identifier type="articleID">229503</identifier>
<identifier type="articleNumber">001</identifier>
<accessCondition type="use and reproduction" contentType="copyright">2006 IOP Publishing Ltd</accessCondition>
<recordInfo>
<recordContentSource>IOP</recordContentSource>
<recordOrigin>2006 IOP Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001475 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001475 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:78F55CD2EB8240439E60F9E075C0AD1C047B05BF
   |texte=   Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024