Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural and magnetic properties of evaporated Co/Si(100) and Co/glass thin films

Identifieur interne : 001350 ( Istex/Corpus ); précédent : 001349; suivant : 001351

Structural and magnetic properties of evaporated Co/Si(100) and Co/glass thin films

Auteurs : A. Kharmouche ; S-M Chrif ; A. Bourzami ; A. Layadi ; G. Schmerber

Source :

RBID : ISTEX:0DE3815B0F45C57FF44B0A835B501C567777C92D

Abstract

A series of Co thin films have been evaporated onto Si(100) and glass substrates. The Co thickness, tCo, ranges from 50 to 195nm. The structural and magnetic properties have been investigated by x-ray diffraction, hysteresis curves, Brillouin light scattering and magnetic force microscopy (MFM) techniques. The Co thin films are found to be polycrystalline with (0001) texture. There is an increase of the grain size with increasing film thickness. The coercive fields range from values as low as 2Oe in thinner films to the highest values, 2500Oe, in 195nm thick Co/Si films. The magnetocrystalline anisotropy field Ha decreases as the thickness increases; surface and stress induced anisotropies seem to contribute to the value of Ha. MFM images reveal a well-defined stripe pattern for thicker Co/Si samples. Such domains are not observed in the case of the thinner films. These so-called weak-stripe domains appear in magnetic films with a low or intermediate perpendicular anisotropy. Similar behaviour was observed in Co/glass samples, in addition, cross-tie walls were seen in thinner ones.

Url:
DOI: 10.1088/0022-3727/37/18/014

Links to Exploration step

ISTEX:0DE3815B0F45C57FF44B0A835B501C567777C92D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural and magnetic properties of evaporated Co/Si(100) and Co/glass thin films</title>
<author>
<name sortKey="Kharmouche, A" sort="Kharmouche, A" uniqKey="Kharmouche A" first="A" last="Kharmouche">A. Kharmouche</name>
<affiliation>
<mods:affiliation>Dpartement de Physique, Universit Ferhat Abbas, Stif 19000, Algeria</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire PMTM, Institut Galile, Universit Paris 13, Villetaneuse, 93340, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Author to whom any correspondence should be addressed.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: kharmouche_ahmed@yahoo.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chrif, S M" sort="Chrif, S M" uniqKey="Chrif S" first="S-M" last="Chrif">S-M Chrif</name>
<affiliation>
<mods:affiliation>Laboratoire PMTM, Institut Galile, Universit Paris 13, Villetaneuse, 93340, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bourzami, A" sort="Bourzami, A" uniqKey="Bourzami A" first="A" last="Bourzami">A. Bourzami</name>
<affiliation>
<mods:affiliation>Dpartement de Physique, Universit Ferhat Abbas, Stif 19000, Algeria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Layadi, A" sort="Layadi, A" uniqKey="Layadi A" first="A" last="Layadi">A. Layadi</name>
<affiliation>
<mods:affiliation>Dpartement de Physique, Universit Ferhat Abbas, Stif 19000, Algeria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schmerber, G" sort="Schmerber, G" uniqKey="Schmerber G" first="G" last="Schmerber">G. Schmerber</name>
<affiliation>
<mods:affiliation>IPCMS-GEMME, UMR-CNRS, Universit Louis Pasteur, 23 rue du Loess, B.P. 43, 67034, Strasbourg, Cedex 2, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0DE3815B0F45C57FF44B0A835B501C567777C92D</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1088/0022-3727/37/18/014</idno>
<idno type="url">https://api.istex.fr/document/0DE3815B0F45C57FF44B0A835B501C567777C92D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001350</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001350</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Structural and magnetic properties of evaporated Co/Si(100) and Co/glass thin films</title>
<author>
<name sortKey="Kharmouche, A" sort="Kharmouche, A" uniqKey="Kharmouche A" first="A" last="Kharmouche">A. Kharmouche</name>
<affiliation>
<mods:affiliation>Dpartement de Physique, Universit Ferhat Abbas, Stif 19000, Algeria</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratoire PMTM, Institut Galile, Universit Paris 13, Villetaneuse, 93340, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Author to whom any correspondence should be addressed.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: kharmouche_ahmed@yahoo.fr</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chrif, S M" sort="Chrif, S M" uniqKey="Chrif S" first="S-M" last="Chrif">S-M Chrif</name>
<affiliation>
<mods:affiliation>Laboratoire PMTM, Institut Galile, Universit Paris 13, Villetaneuse, 93340, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bourzami, A" sort="Bourzami, A" uniqKey="Bourzami A" first="A" last="Bourzami">A. Bourzami</name>
<affiliation>
<mods:affiliation>Dpartement de Physique, Universit Ferhat Abbas, Stif 19000, Algeria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Layadi, A" sort="Layadi, A" uniqKey="Layadi A" first="A" last="Layadi">A. Layadi</name>
<affiliation>
<mods:affiliation>Dpartement de Physique, Universit Ferhat Abbas, Stif 19000, Algeria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schmerber, G" sort="Schmerber, G" uniqKey="Schmerber G" first="G" last="Schmerber">G. Schmerber</name>
<affiliation>
<mods:affiliation>IPCMS-GEMME, UMR-CNRS, Universit Louis Pasteur, 23 rue du Loess, B.P. 43, 67034, Strasbourg, Cedex 2, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Physics D: Applied Physics</title>
<title level="j" type="abbrev">J. Phys. D: Appl. Phys.</title>
<idno type="ISSN">0022-3727</idno>
<idno type="eISSN">1361-6463</idno>
<imprint>
<publisher>Institute of Physics Publishing</publisher>
<date type="published" when="2004">2004</date>
<biblScope unit="volume">37</biblScope>
<biblScope unit="issue">18</biblScope>
<biblScope unit="page" from="2583">2583</biblScope>
<biblScope unit="page" to="2587">2587</biblScope>
<biblScope unit="production">Printed in the UK</biblScope>
</imprint>
<idno type="ISSN">0022-3727</idno>
</series>
<idno type="istex">0DE3815B0F45C57FF44B0A835B501C567777C92D</idno>
<idno type="DOI">10.1088/0022-3727/37/18/014</idno>
<idno type="PII">S0022-3727(04)81643-7</idno>
<idno type="articleID">181643</idno>
<idno type="articleNumber">014</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-3727</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">A series of Co thin films have been evaporated onto Si(100) and glass substrates. The Co thickness, tCo, ranges from 50 to 195nm. The structural and magnetic properties have been investigated by x-ray diffraction, hysteresis curves, Brillouin light scattering and magnetic force microscopy (MFM) techniques. The Co thin films are found to be polycrystalline with (0001) texture. There is an increase of the grain size with increasing film thickness. The coercive fields range from values as low as 2Oe in thinner films to the highest values, 2500Oe, in 195nm thick Co/Si films. The magnetocrystalline anisotropy field Ha decreases as the thickness increases; surface and stress induced anisotropies seem to contribute to the value of Ha. MFM images reveal a well-defined stripe pattern for thicker Co/Si samples. Such domains are not observed in the case of the thinner films. These so-called weak-stripe domains appear in magnetic films with a low or intermediate perpendicular anisotropy. Similar behaviour was observed in Co/glass samples, in addition, cross-tie walls were seen in thinner ones.</div>
</front>
</TEI>
<istex>
<corpusName>iop</corpusName>
<author>
<json:item>
<name>A Kharmouche</name>
<affiliations>
<json:string>Dpartement de Physique, Universit Ferhat Abbas, Stif 19000, Algeria</json:string>
<json:string>Laboratoire PMTM, Institut Galile, Universit Paris 13, Villetaneuse, 93340, France</json:string>
<json:string>Author to whom any correspondence should be addressed.</json:string>
<json:string>E-mail: kharmouche_ahmed@yahoo.fr</json:string>
</affiliations>
</json:item>
<json:item>
<name>S-M Chrif</name>
<affiliations>
<json:string>Laboratoire PMTM, Institut Galile, Universit Paris 13, Villetaneuse, 93340, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>A Bourzami</name>
<affiliations>
<json:string>Dpartement de Physique, Universit Ferhat Abbas, Stif 19000, Algeria</json:string>
</affiliations>
</json:item>
<json:item>
<name>A Layadi</name>
<affiliations>
<json:string>Dpartement de Physique, Universit Ferhat Abbas, Stif 19000, Algeria</json:string>
</affiliations>
</json:item>
<json:item>
<name>G Schmerber</name>
<affiliations>
<json:string>IPCMS-GEMME, UMR-CNRS, Universit Louis Pasteur, 23 rue du Loess, B.P. 43, 67034, Strasbourg, Cedex 2, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Co thin films</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Hysteresis curves</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Brillouin Light Scattering (BLS)</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Magnetic Force Microscopy (MFM)</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>paper</json:string>
</originalGenre>
<abstract>A series of Co thin films have been evaporated onto Si(100) and glass substrates. The Co thickness, tCo, ranges from 50 to 195nm. The structural and magnetic properties have been investigated by x-ray diffraction, hysteresis curves, Brillouin light scattering and magnetic force microscopy (MFM) techniques. The Co thin films are found to be polycrystalline with (0001) texture. There is an increase of the grain size with increasing film thickness. The coercive fields range from values as low as 2Oe in thinner films to the highest values, 2500Oe, in 195nm thick Co/Si films. The magnetocrystalline anisotropy field Ha decreases as the thickness increases; surface and stress induced anisotropies seem to contribute to the value of Ha. MFM images reveal a well-defined stripe pattern for thicker Co/Si samples. Such domains are not observed in the case of the thinner films. These so-called weak-stripe domains appear in magnetic films with a low or intermediate perpendicular anisotropy. Similar behaviour was observed in Co/glass samples, in addition, cross-tie walls were seen in thinner ones.</abstract>
<qualityIndicators>
<score>5.476</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 841 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>4</keywordCount>
<abstractCharCount>1098</abstractCharCount>
<pdfWordCount>3448</pdfWordCount>
<pdfCharCount>19053</pdfCharCount>
<pdfPageCount>5</pdfPageCount>
<abstractWordCount>169</abstractWordCount>
</qualityIndicators>
<title>Structural and magnetic properties of evaporated Co/Si(100) and Co/glass thin films</title>
<pii>
<json:string>S0022-3727(04)81643-7</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>37</volume>
<publisherId>
<json:string>jphysd</json:string>
</publisherId>
<pages>
<total>5</total>
<last>2587</last>
<first>2583</first>
</pages>
<issn>
<json:string>0022-3727</json:string>
</issn>
<issue>18</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1361-6463</json:string>
</eissn>
<title>Journal of Physics D: Applied Physics</title>
</host>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1088/0022-3727/37/18/014</json:string>
</doi>
<id>0DE3815B0F45C57FF44B0A835B501C567777C92D</id>
<score>0.04148542</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/0DE3815B0F45C57FF44B0A835B501C567777C92D/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/0DE3815B0F45C57FF44B0A835B501C567777C92D/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/0DE3815B0F45C57FF44B0A835B501C567777C92D/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Structural and magnetic properties of evaporated Co/Si(100) and Co/glass thin films</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Institute of Physics Publishing</publisher>
<availability>
<p>2004 IOP Publishing Ltd</p>
</availability>
<date>2004</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Structural and magnetic properties of evaporated Co/Si(100) and Co/glass thin films</title>
<author xml:id="author-1">
<persName>
<forename type="first">A</forename>
<surname>Kharmouche</surname>
</persName>
<email>kharmouche_ahmed@yahoo.fr</email>
<affiliation>Dpartement de Physique, Universit Ferhat Abbas, Stif 19000, Algeria</affiliation>
<affiliation>Laboratoire PMTM, Institut Galile, Universit Paris 13, Villetaneuse, 93340, France</affiliation>
<affiliation>Author to whom any correspondence should be addressed.</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">S-M</forename>
<surname>Chrif</surname>
</persName>
<affiliation>Laboratoire PMTM, Institut Galile, Universit Paris 13, Villetaneuse, 93340, France</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">A</forename>
<surname>Bourzami</surname>
</persName>
<affiliation>Dpartement de Physique, Universit Ferhat Abbas, Stif 19000, Algeria</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">A</forename>
<surname>Layadi</surname>
</persName>
<affiliation>Dpartement de Physique, Universit Ferhat Abbas, Stif 19000, Algeria</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">G</forename>
<surname>Schmerber</surname>
</persName>
<affiliation>IPCMS-GEMME, UMR-CNRS, Universit Louis Pasteur, 23 rue du Loess, B.P. 43, 67034, Strasbourg, Cedex 2, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Physics D: Applied Physics</title>
<title level="j" type="abbrev">J. Phys. D: Appl. Phys.</title>
<idno type="pISSN">0022-3727</idno>
<idno type="eISSN">1361-6463</idno>
<imprint>
<publisher>Institute of Physics Publishing</publisher>
<date type="published" when="2004"></date>
<biblScope unit="volume">37</biblScope>
<biblScope unit="issue">18</biblScope>
<biblScope unit="page" from="2583">2583</biblScope>
<biblScope unit="page" to="2587">2587</biblScope>
<biblScope unit="production">Printed in the UK</biblScope>
</imprint>
</monogr>
<idno type="istex">0DE3815B0F45C57FF44B0A835B501C567777C92D</idno>
<idno type="DOI">10.1088/0022-3727/37/18/014</idno>
<idno type="PII">S0022-3727(04)81643-7</idno>
<idno type="articleID">181643</idno>
<idno type="articleNumber">014</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2004</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>A series of Co thin films have been evaporated onto Si(100) and glass substrates. The Co thickness, tCo, ranges from 50 to 195nm. The structural and magnetic properties have been investigated by x-ray diffraction, hysteresis curves, Brillouin light scattering and magnetic force microscopy (MFM) techniques. The Co thin films are found to be polycrystalline with (0001) texture. There is an increase of the grain size with increasing film thickness. The coercive fields range from values as low as 2Oe in thinner films to the highest values, 2500Oe, in 195nm thick Co/Si films. The magnetocrystalline anisotropy field Ha decreases as the thickness increases; surface and stress induced anisotropies seem to contribute to the value of Ha. MFM images reveal a well-defined stripe pattern for thicker Co/Si samples. Such domains are not observed in the case of the thinner films. These so-called weak-stripe domains appear in magnetic films with a low or intermediate perpendicular anisotropy. Similar behaviour was observed in Co/glass samples, in addition, cross-tie walls were seen in thinner ones.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Co thin films</term>
</item>
<item>
<term>Hysteresis curves</term>
</item>
<item>
<term>Brillouin Light Scattering (BLS)</term>
</item>
<item>
<term>Magnetic Force Microscopy (MFM)</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<classCode scheme="">75.70.Ak</classCode>
<classCode scheme="">75.50.Cc</classCode>
<classCode scheme="">78.35.+c</classCode>
<classCode scheme="">75.60.Ch</classCode>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2004">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/0DE3815B0F45C57FF44B0A835B501C567777C92D/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus iop not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="ISO-8859-1"</istex:xmlDeclaration>
<istex:docType SYSTEM="http://ej.iop.org/dtd/iopv1_4_5.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article artid="jphysd181643">
<article-metadata>
<jnl-data jnlid="jphysd">
<jnl-fullname>Journal of Physics D: Applied Physics</jnl-fullname>
<jnl-abbreviation>J. Phys. D: Appl. Phys.</jnl-abbreviation>
<jnl-shortname>JPhysD</jnl-shortname>
<jnl-issn>0022-3727</jnl-issn>
<jnl-coden>JPAPBE</jnl-coden>
<jnl-imprint>Institute of Physics Publishing</jnl-imprint>
<jnl-web-address>stacks.iop.org/JPhysD</jnl-web-address>
</jnl-data>
<volume-data>
<year-publication>2004</year-publication>
<volume-number>37</volume-number>
</volume-data>
<issue-data>
<issue-number>18</issue-number>
<coverdate>21 September 2004</coverdate>
</issue-data>
<article-data>
<article-type type="paper" sort="regular"></article-type>
<type-number type="paper" artnum="014">14</type-number>
<article-number>181643</article-number>
<first-page>2583</first-page>
<last-page>2587</last-page>
<length>5</length>
<pii>S0022-3727(04)81643-7</pii>
<doi>10.1088/0022-3727/37/18/014</doi>
<copyright>2004 IOP Publishing Ltd</copyright>
<ccc>0022-3727/04/182583+05$30.00</ccc>
<printed>Printed in the UK</printed>
<features colour="none" mmedia="no" suppdata="no"></features>
</article-data>
</article-metadata>
<header>
<title-group>
<title>Structural and magnetic properties of evaporated Co/Si(100) and Co/glass thin films</title>
<short-title>Structural and magnetic properties of Co thin films</short-title>
<ej-title>Structural and magnetic properties of Co thin films</ej-title>
</title-group>
<author-group>
<author address="jphysd181643ad1" second-address="jphysd181643ad2" alt-address="jphysd181643ad4" email="jphysd181643ea1">
<first-names>A</first-names>
<second-name>Kharmouche</second-name>
</author>
<author address="jphysd181643ad2">
<first-names>S-M</first-names>
<second-name>Chérif</second-name>
</author>
<author address="jphysd181643ad1">
<first-names>A</first-names>
<second-name>Bourzami</second-name>
</author>
<author address="jphysd181643ad1">
<first-names>A</first-names>
<second-name>Layadi</second-name>
</author>
<author address="jphysd181643ad3">
<first-names>G</first-names>
<second-name>Schmerber</second-name>
</author>
</author-group>
<address-group>
<address id="jphysd181643ad1">
<orgname>Département de Physique, Université Ferhat Abbas</orgname>
, Sétif 19000,
<country>Algeria</country>
</address>
<address id="jphysd181643ad2">
<orgname>Laboratoire PMTM, Institut Galilée</orgname>
, Université Paris 13, Villetaneuse, 93340,
<country>France</country>
</address>
<address id="jphysd181643ad3">
<orgname>IPCMS-GEMME, UMR-CNRS, Université Louis Pasteur</orgname>
, 23 rue du Loess, B.P. 43, 67034, Strasbourg, Cedex 2,
<country>France</country>
</address>
<address id="jphysd181643ad4" alt="yes">Author to whom any correspondence should be addressed.</address>
<e-address id="jphysd181643ea1">
<email mailto="kharmouche_ahmed@yahoo.fr">kharmouche_ahmed@yahoo.fr</email>
</e-address>
</address-group>
<history received="7 June 2004" online="1 September 2004"></history>
<abstract-group>
<abstract>
<heading>Abstract</heading>
<p indent="no">A series of Co thin films have been evaporated onto Si(100) and glass substrates. The Co thickness,
<italic>t</italic>
<sub>Co</sub>
, ranges from 50 to 195 nm. The structural and magnetic properties have been investigated by x-ray diffraction, hysteresis curves, Brillouin light scattering and magnetic force microscopy (MFM) techniques. The Co thin films are found to be polycrystalline with (0001) texture. There is an increase of the grain size with increasing film thickness. The coercive fields range from values as low as 2 Oe in thinner films to the highest values, 2500 Oe, in 195 nm thick Co/Si films. The magnetocrystalline anisotropy field
<italic>H</italic>
<sub>a</sub>
decreases as the thickness increases; surface and stress induced anisotropies seem to contribute to the value of
<italic>H</italic>
<sub>a</sub>
. MFM images reveal a well-defined stripe pattern for thicker Co/Si samples. Such domains are not observed in the case of the thinner films. These so-called weak-stripe domains appear in magnetic films with a low or intermediate perpendicular anisotropy. Similar behaviour was observed in Co/glass samples, in addition, cross-tie walls were seen in thinner ones.</p>
</abstract>
</abstract-group>
<classifications>
<class-codes scheme="pacs" print="no">
<code>75.70.Ak</code>
<code>75.50.Cc</code>
<code>78.35.+c</code>
<code>75.60.Ch</code>
</class-codes>
<keywords print="no">
<keyword>Co thin films</keyword>
<keyword>Hysteresis curves</keyword>
<keyword>Brillouin Light Scattering (BLS)</keyword>
<keyword>Magnetic Force Microscopy (MFM)</keyword>
</keywords>
</classifications>
</header>
<body numbering="bysection">
<sec-level1 id="jphysd181643s1" label="1">
<heading>Introduction</heading>
<p indent="no">The physical properties of ferromagnetic single and multilayer thin films have been intensively studied lately because of the development of new and more sophisticated preparation methods and techniques of analysis and also because of their importance in fundamental as well as in applied research. Co and Co-based alloys such as CoCr, CoPt, etc have attracted a lot of attention in the last decade [
<cite linkend="jphysd181643bib01" range="bib1,bib2,bib3,bib4,bib5,bib6,bib7,bib8">1–8</cite>
]; they have been investigated as thin films, as part of a multilayer system or as stripes and dots [
<cite linkend="jphysd181643bib07">7</cite>
,
<cite linkend="jphysd181643bib08">8</cite>
]. These materials may present a perpendicular magnetic anisotropy and can therefore be good candidates for high density storage media. The magnetic properties of these materials depend greatly on the methods and conditions of preparation. Also the structural properties (crystallographic structure, texture, grain size and lattice constant) will affect the magnetic properties such as the anisotropy, the coercivity, the remanent magnetization which are important parameters in magnetic recording. In this work, we have studied the structural and magnetic properties of Co films evaporated onto Si(100) and glass substrates as a function of Co thickness. Several experimental techniques were used to characterize the physical properties of these samples: x-ray diffraction (section
<secref linkend="jphysd181643s3-1">3.1</secref>
), alternating gradient field magnetometer (AGFM) (section
<secref linkend="jphysd181643s3-2">3.2</secref>
), Brillouin light scattering (BLS) (section
<secref linkend="jphysd181643s3-3">3.3</secref>
), magnetic force microscopy (MFM) (section
<secref linkend="jphysd181643s3-4">3.4</secref>
). The experimental results from these techniques are analysed and correlated.</p>
</sec-level1>
<sec-level1 id="jphysd181643s2" label="2">
<heading>Experimental methods</heading>
<p indent="no">Two series of Co thin films were deposited onto Si(100) and glass under the same conditions. The Co samples were prepared by evaporation under vacuum from a 99.9% purified Co powder. The pressure was 6 × 10
<sup>−7</sup>
 mbar before deposition; during the evaporation the pressure was around 2 × 10
<sup>−6</sup>
 mbar. Thickness measurements were done with a ‘Taylor–Hobson’ Talystep apparatus. Each series consisted of several samples with thickness ranging from 50 to 195 nm. The structural properties were studied using a Siemens D-500 diffractometer with λ = 1.789 Å. The hysteresis curves were obtained by AGFM measurements, with the external magnetic field
<italic>H</italic>
applied perpendicular (polar configuration) and in the film plane (longitudinal configuration). BLS experiments were used in the backscattering geometry to investigate the magnetic anisotropy in Co/Si samples. The BLS measurements were done using a (2 × 3)-pass tandem Fabry–Perot interferometer. The samples were illuminated at an angle of incidence &thetas; equal to 45° using a single-mode Ar
<sup>+</sup>
ion laser at the wavelength of λ = 5145 Å, with an incident power of 100 mW. The value of the transferred in-plane wave vector
<italic>q</italic>
<sub></sub>
is connected to &thetas; by the relation
<italic>q</italic>
<sub></sub>
= (4 π/λ) sin &thetas;. The experiments were done with different applied magnetic values in the 0–5 kOe range. Finally, the zero-field magnetic structure of these Co films has been investigated by MFM.</p>
</sec-level1>
<sec-level1 id="jphysd181643s3" label="3">
<heading>Results and discussion</heading>
<sec-level2 id="jphysd181643s3-1" label="3.1">
<heading>X-ray diffraction</heading>
<p indent="no">Examples of x-ray diffraction spectrum are shown in figure
<figref linkend="jphysd181643fig01">1</figref>
for Co/Si with
<italic>t</italic>
<sub>Co</sub>
= 195 nm (
<italic>a</italic>
) and
<italic>t</italic>
<sub>Co</sub>
= 50 nm (
<italic>b</italic>
). The Si(200) peak appears at 2 &thetas; = 38° in all Co/Si samples. The Si(400) peak should appear at 2 &thetas; = 82.49°, and at the right-hand side of the figures we can see the tail of the peak. We see several hcp Co peaks which have been identified as shown in the figure, the (002) peak having the highest intensity (see figure
<figref linkend="jphysd181643fig01">1(
<italic>a</italic>
)</figref>
). One can infer from this spectrum that the Co thin films crystallize in the hcp structure, are polycrystalline and have the ⟨ 0001⟩ texture. For thinner Co samples, e.g. 50 nm (figure
<figref linkend="jphysd181643fig01">1(
<italic>b</italic>
)</figref>
), we could see small (002), (100) and (101) peaks (we believe that these specimens consist of very small grains) with the (002) slightly dominating, and the sample starts to develop the (0001) texture. Hence for all Co thickness studied in this work, the films present a ⟨ 0001⟩ preferred orientation.
<figure id="jphysd181643fig01" pageposition="top">
<graphic>
<graphic-file version="print" format="EPS" align="middle" filename="images/jphysd181643fig01.eps" width="XXX"></graphic-file>
<graphic-file version="ej" format="JPEG" align="middle" filename="images/jphysd181643fig01.jpg"></graphic-file>
</graphic>
<caption id="jphysd181643fc01" label="Figure 1">
<p indent="no">X-ray diffraction spectra for Co/Si samples with (
<italic>a</italic>
)
<italic>t</italic>
<sub>Co</sub>
= 195 nm; (
<italic>b</italic>
)
<italic>t</italic>
<sub>Co</sub>
= 50 nm.</p>
</caption>
</figure>
</p>
<p>The lattice constants have been derived from the x-ray spectra. The values of
<italic>a</italic>
and
<italic>c</italic>
are found to be 2.49 Å and 4.69 Å, respectively, with a
<italic>c</italic>
/
<italic>a</italic>
ratio equal to 1.88. While the value of the parameter
<italic>a</italic>
is close to the bulk Co one (0.6% lower), the
<italic>c</italic>
value is about 15% higher than the bulk one; the Co samples are thus under a tensile stress due probably to the growth mode of the films.</p>
<p>The grain sizes have been deduced from x-ray diffraction following the Scherer formula [
<cite linkend="jphysd181643bib09">9</cite>
]. In this case, the grain size
<italic>L</italic>
for a grain with a particular orientation is given by
<display-eqn id="jphysd181643ueq001"></display-eqn>
where λ is the x-ray wavelength, &thetas; is the diffraction angle and Δ &thetas; is the width at half height of the peak corresponding to a particular orientation. We found that the grain sizes increase with increasing thickness corresponding to the preferred orientation. For the (002) grains, the grain sizes are 175 Å, 278 Å, 465 Å and 765 Å, for samples with thickness equal to 50 nm, 60 nm, 173 nm and 195 nm, respectively. This variation of the grain size with thickness is expected. It is generally observed in thin films that grain size increases with increasing thickness. For the grains corresponding to the (100) and (101) orientations and within the uncertainty of the measurements, the grain sizes remain almost constant as the thickness is varied, with average values of 200 Å and 150 Å, respectively.</p>
<p>X-ray diffraction experiments were also performed for Co/glass samples. No noticeable peak was seen in thinner samples, the grain size may be very small. However, for thicker samples (173 and 195 nm) one could see clearly an intense peak at 2&thetas; of about 52.5° (corresponding to the (002) hcp Co) followed by less intense peaks at 2&thetas; equal to 48.8°, 91° and 55.8°, which correspond, respectively, to the (100), (110) and (101) hcp Co. We might thus infer that Co/glass does develop the (0001) texture, at least for thicker samples.</p>
</sec-level2>
<sec-level2 id="jphysd181643s3-2" label="3.2">
<heading>Hysteresis curves</heading>
<p indent="no">The variation of
<italic>H</italic>
<sub>c ∥</sub>
, the coercive field in the longitudinal configuration, with the film thickness
<italic>t</italic>
<sub>Co</sub>
is shown in figure
<figref linkend="jphysd181643fig02">2</figref>
for both series. We note that the
<italic>H</italic>
<sub>c ∥</sub>
values are very small for
<italic>t</italic>
<sub>Co</sub>
less than or equal to 125 nm and, within the measurement uncertainty,
<italic>H</italic>
<sub>c∥</sub>
is almost constant in this thickness range. In fact, for this thickness (125 nm), the lowest values for
<italic>H</italic>
<sub>c ∥</sub>
, 2.3 Oe and 2.5 Oe, are observed for Co/Si and Co/glass, respectively. For thicker samples,
<italic>H</italic>
<sub>c ∥</sub>
rises sharply for both series. Thus, we can infer that: (i) there is no large effect of the substrate on the longitudinal coercive fields; (ii) thinner films have very low
<italic>H</italic>
<sub>c ∥</sub>
values while thicker films have large values. In order to see the effect of the applied field direction on the coercivity, we measure the coercive force of Co/Si series in the polar and the longitudinal configurations. We note that for the same thickness,
<italic>H</italic>
<sub>c ⊥</sub>
is much larger than
<italic>H</italic>
<sub>c ∥</sub>
. We also observe the same trend for the variation of
<italic>H</italic>
<sub>c</sub>
with thickness for both configurations, i.e.
<italic>H</italic>
<sub>c ⊥</sub>
values are large for thicker films. For
<italic>t</italic>
<sub>Co</sub>
= 173 nm,
<italic>H</italic>
<sub>c ∥</sub>
values are 233 Oe and 282 Oe for Co/glass and Co/Si, respectively. The highest coercivity, 2500 Oe, is noted in Co/Si with
<italic>t</italic>
<sub>Co</sub>
= 195 nm in this polar configuration. It is interesting to note that samples with large grain size, i.e. thicker samples, have large coercivity values. If coercivities were associated with domain wall motion across grain boundaries, then one should expect the opposite, i.e. large grain size should lead to low
<italic>H</italic>
<sub>c</sub>
values. Thus, this effect is not predominant in these Co/Si samples. This behaviour of
<italic>H</italic>
<sub>c</sub>
might be correlated with the domain structure as is observed by MFM (see section
<secref linkend="jphysd181643s3-4">3.4</secref>
). The squareness
<italic>S</italic>
, defined as the ratio of the remanent magnetization
<italic>M</italic>
<sub>r</sub>
to the saturation magnetization
<italic>M</italic>
<sub>s</sub>
, has been measured for these samples. Once again, we note that the thick samples are characterized by relatively large squareness value
<italic>S</italic>
; the largest value, 0.754, is observed in the 195 nm thick sample.
<figure id="jphysd181643fig02" pageposition="top">
<graphic>
<graphic-file version="print" format="EPS" align="middle" filename="images/jphysd181643fig02.eps" width="XXX"></graphic-file>
<graphic-file version="ej" format="JPEG" align="middle" filename="images/jphysd181643fig02.jpg"></graphic-file>
</graphic>
<caption id="jphysd181643fc02" label="Figure 2">
<p indent="no">Coercive field
<italic>H</italic>
<sub>c ∥</sub>
versus film thickness
<italic>t</italic>
<sub>Co</sub>
. Applied field
<italic>H</italic>
in the film plane.</p>
</caption>
</figure>
</p>
</sec-level2>
<sec-level2 id="jphysd181643s3-3" label="3.3">
<heading>Brillouin light scattering</heading>
<p indent="no">BLS is a powerful non-destructive method for the investigation of magnetic system [
<cite linkend="jphysd181643bib07">7</cite>
,
<cite linkend="jphysd181643bib08">8</cite>
,
<cite linkend="jphysd181643bib10">10</cite>
]. For a continuous film, in the Damon–Eshbach (DE) geometry, two types of spin-wave modes are observed: (i) one non-reciprocal surface wave for in-plane propagation, the so-called DE mode, and (ii) the bulk spin waves which are excitations of the whole magnetic system (often called standing spin waves (SSWs)). BLS experiments were performed on the Co/Si series under the conditions described in section
<secref linkend="jphysd181643s2">2</secref>
. In figure
<figref linkend="jphysd181643fig03">3</figref>
, we show an example of experimental and calculated Brillouin spectra obtained with
<italic>H</italic>
= 1 kOe for Co/Si sample with
<italic>t</italic>
<sub>Co</sub>
= 195 nm. Several SSW modes are observed in the anti-Stokes (high frequency) side of the spectra. The large peak in the Stokes (low frequency) side of the spectra is due to the DE surface spin wave. The DE mode only appears in one side of the spectra because of its non-reciprocal nature and because the film is sufficiently thick that the light cannot interact with the DE mode localized on the lower surface of the film. Note the large asymmetry of the Stokes/anti-Stokes spectra which affects the DE line. We checked that the asymmetry is reversed when the sense of
<italic>H</italic>
is reversed, as it should be. For thinner investigated samples with
<italic>t</italic>
<sub>Co</sub>
= 70 nm and 50 nm, respectively (not shown), the DE line was observed in the two sides of the spectra with a more or less large asymmetry for both the DE and the first SSW lines. The method of calculation of the spectra, which is based on the evaluation of the appropriate spin dependent response functions (Green functions) has been reported elsewhere [
<cite linkend="jphysd181643bib11">11</cite>
]. It not only provides a correct evaluation of the shapes of the spectra, but also accounts for the positions of the maxima, which, in practice, coincide with the frequencies of the studied surface modes. The agreement between the experimental spectra and the calculated ones is very satisfactory; it was obtained by fitting the magneto-crystalline anisotropy field
<italic>H</italic>
<sub>a</sub>
(assumed to be uniaxial
<italic>H</italic>
<sub>a</sub>
= 2
<italic>K</italic>
<sub>u</sub>
/
<italic>M</italic>
<sub>s</sub>
with
<italic>K</italic>
<sub>u</sub>
the effective uniaxial anisotropy constant) using the bulk magnetization value (4 π
<italic>M</italic>
<sub>s</sub>
= 17.6 kG) and the published values of the gyro-magnetic factor (γ = 1.9 × 10
<sup>+7</sup>
 Hz Oe
<sup>−1</sup>
, i.e.
<italic>g</italic>
= 2.16) and the magnetic exchange (
<italic>D</italic>
= 2.6 × 10
<sup>−9</sup>
 Oe cm
<sup>−2</sup>
) in bulk Co. In figure
<figref linkend="jphysd181643fig04">4</figref>
, we show the frequency shift versus applied field
<italic>H</italic>
curves for five samples of the series. This figure compares the experimental values (the points, as shown in the figure) for the DE line along with the theoretical predictions (solid lines); here too, the fit is quite good. From the fit, values of
<italic>H</italic>
<sub>a</sub>
are found from which we derive an effective anisotropy constant
<italic>K</italic>
<sub>u</sub>
=
<italic>M</italic>
<sub>s</sub>
<italic>H</italic>
<sub>a/2</sub>
.
<figure id="jphysd181643fig03" pageposition="top">
<graphic>
<graphic-file version="print" format="EPS" align="middle" filename="images/jphysd181643fig03.eps" width="XXX"></graphic-file>
<graphic-file version="ej" format="JPEG" align="middle" filename="images/jphysd181643fig03.jpg"></graphic-file>
</graphic>
<caption id="jphysd181643fc03" label="Figure 3">
<p indent="no">Example of experimental and calculated Brillouin spectra of Co/Si samples, for
<italic>t</italic>
<sub>Co</sub>
= 195 nm. Applied field
<italic>H</italic>
= 1 kOe.</p>
</caption>
</figure>
<figure id="jphysd181643fig04" pageposition="top">
<graphic>
<graphic-file version="print" format="EPS" align="middle" filename="images/jphysd181643fig04.eps" width="XXX"></graphic-file>
<graphic-file version="ej" format="JPEG" align="middle" filename="images/jphysd181643fig04.jpg"></graphic-file>
</graphic>
<caption id="jphysd181643fc04" label="Figure 4">
<p indent="no">Frequency shift versus applied magnetic field
<italic>H</italic>
, for Co/Si samples with thickness as shown. Experimental data (points), theoretical predictions (––––).</p>
</caption>
</figure>
</p>
<p>Despite a large number of measurements, including data not shown here, it is not obvious to determine exactly how the strength of the uniaxial magnetocrystalline anisotropy is correlated with the nature of the substrate and the growth conditions since it is extremely sensitive to these two parameters. In order to point out the substrate effect, we tried to perform BLS measurements on Co/glass samples, but unfortunately, due to the low thermal conductivity of glass, the experiments had to be performed using very low illuminating powers (less than 40 mW) in order to avoid undesirable heating and, due to this experimental difficulty, no conclusive spectra were obtained.</p>
<p>In figure
<figref linkend="jphysd181643fig05">5</figref>
, this effective uniaxial anisotropy constant
<italic>K</italic>
<sub>u</sub>
is plotted against the Co film thickness
<italic>t</italic>
<sub>Co</sub>
. First, one can note that
<italic>K</italic>
<sub>u</sub>
decreases monotonously with
<italic>t</italic>
<sub>Co</sub>
, surface anisotropy may then be responsible for such a variation. Second, the values of
<italic>K</italic>
<sub>u</sub>
range from 7.7 × 10
<sup>6</sup>
to 2.45 × 10
<sup>6</sup>
 erg cm
<sup>−3</sup>
; some of the values found for
<italic>K</italic>
<sub>u</sub>
are somewhat high (for instance,
<italic>K</italic>
<sub>u</sub>
= 7.7 × 10
<sup>6</sup>
 erg cm
<sup>−3</sup>
for
<italic>t</italic>
<sub>Co</sub>
= 50 nm). Recall that the
<italic>K</italic>
<sub>u</sub>
bulk value is 5.3 × 10
<sup>6</sup>
 erg cm
<sup>−3</sup>
[
<cite linkend="jphysd181643bib15">15</cite>
]. Roussigné ([
<cite linkend="jphysd181643bib01">1</cite>
] and references therein) found
<italic>K</italic>
<sub>u</sub>
equal to 3.1 × 10
<sup>6</sup>
 erg cm
<sup>−3</sup>
in ultra-thin Au/Co films (where thickness was about 4–5 nm, well below the thickness range used in this work). Also, values of (5–9) × 10
<sup>6</sup>
 erg cm
<sup>−3</sup>
were measured in 200 nm thick epitaxial Co films [
<cite linkend="jphysd181643bib14">14</cite>
]. Moreover, de Gronckel
<italic>et al</italic>
[
<cite linkend="jphysd181643bib16">16</cite>
] found values of
<italic>K</italic>
<sub>u</sub>
ranging from 0.6 × 10
<sup>6</sup>
to 6.3 × 10
<sup>6</sup>
 erg cm
<sup>−3</sup>
in 100 nm Co/mica thin films, where they used the area between the loops in the parallel and the polar configurations (applied field in the plane of the film or perpendicular to the film surface). This leads to another remark about one of the probable origins of the anisotropy. As was seen in the x-ray diffraction, all the films might be subject to a tensile stress. This stress, through inverse magnetostriction, may contribute to this uniaxial anisotropy; this magnetoelastic effect is probably not the only source of the anisotropy. The total uniaxial anisotropy constant, experimentally measured, might then be written as:
<italic>K</italic>
<sub>u</sub>
=
<italic>K</italic>
<sub>uMC</sub>
+ (3 λ σ/2) + (2
<italic>K</italic>
<sub>s</sub>
/
<italic>t</italic>
), where K
<sub>uMC</sub>
is the well-known volume magnetocrystalline anisotropy constant due to spin–orbit coupling, 3 λ σ/2 is the constant describing the stress-induced anisotropy, σ being the stress and λ the magnetostriction constant of Co, finally 2
<italic>K</italic>
<sub>s</sub>
/
<italic>t</italic>
is the surface anisotropy term,
<italic>K</italic>
<sub>s</sub>
being the surface anisotropy constant and
<italic>t</italic>
the film thickness.
<figure id="jphysd181643fig05" pageposition="top">
<graphic>
<graphic-file version="print" format="EPS" align="middle" filename="images/jphysd181643fig05.eps" width="XXX"></graphic-file>
<graphic-file version="ej" format="JPEG" align="middle" filename="images/jphysd181643fig05.jpg"></graphic-file>
</graphic>
<caption id="jphysd181643fc05" label="Figure 5">
<p indent="no">Effective anisotropy constant
<italic>K</italic>
<sub>u</sub>
versus film thickness for the Co/Si series.</p>
</caption>
</figure>
</p>
</sec-level2>
<sec-level2 id="jphysd181643s3-4" label="3.4">
<heading>MFM study</heading>
<p indent="no">The study of the zero-field magnetic structure of the Co films has been carried out by MFM measurements using a Veeco 3100 apparatus. We used CoCr-coated cantilevers supplied by Digital, with the tips magnetized along their axes (perpendicular to the sample surface). Figure
<figref linkend="jphysd181643fig06">6</figref>
shows an MFM image obtained for the Co/Si samples with
<italic>t</italic>
<sub>Co</sub>
= 195 nm. It reveals a well-defined striped pattern of period 2
<italic>W</italic>
= 356 ± 10 nm. According to the lift scan height [
<cite linkend="jphysd181643bib12">12</cite>
] the bright and dark areas can be regarded as corresponding to the position of inner up and down domains. Such domains are not observed in the case of the thinner film. In fact, these stripe domains are found only in the 173 and 195 nm thick films, whereas in films with
<italic>t</italic>
ranging from 50 to 125 nm, this structure is not observed. The periodic stripe domain structure is characteristic of ferromagnetic films with a perpendicular anisotropy [
<cite linkend="jphysd181643bib13">13</cite>
]. Among the various types of the stripe domains, the so-called weak-stripe domains appearing in magnetic films with a low or intermediate perpendicular anisotropy (
<italic>Q</italic>
< 1, where
<italic>Q</italic>
is the quality factor defined as
<inline-eqn></inline-eqn>
) which corresponds to the case of our studied samples. From
<italic>K</italic>
<sub>u</sub>
values obtained in our BLS experiments (see section
<secref linkend="jphysd181643s3-3">3.3</secref>
and figure
<figref linkend="jphysd181643fig05">5</figref>
), we have computed the quality factor
<italic>Q</italic>
for all Co/Si samples. We have found
<italic>Q</italic>
values equal to 0.62 nm, 0.54 nm, 0.48 nm, 0.284 nm and 0.198 nm for
<italic>t</italic>
<sub>Co</sub>
equal to 50 nm, 70 nm, 125 nm, 173 nm and 195 nm, respectively. A
<italic>Q</italic>
value of the order of 0.4 is typical for thin epitaxial cobalt films [
<cite linkend="jphysd181643bib14">14</cite>
].
<figure id="jphysd181643fig06" pageposition="top">
<graphic>
<graphic-file version="print" format="EPS" align="middle" filename="images/jphysd181643fig06.eps" width="XXX"></graphic-file>
<graphic-file version="ej" format="JPEG" align="middle" filename="images/jphysd181643fig06.jpg"></graphic-file>
</graphic>
<caption id="jphysd181643fc06" label="Figure 6">
<p indent="no">MFM image for Co/Si samples with
<italic>t</italic>
<sub>Co</sub>
= 195 nm (stripes domains structure). Scale in the axes: 5 µm × 5 µm.</p>
</caption>
</figure>
</p>
<p>For the Co/glass series, MFM experiments were also done on all samples. In thicker samples, with
<italic>t</italic>
<sub>Co</sub>
= 195 and 173 nm, we saw stripe domain structure similar to that observed in the corresponding samples in the Co/Si series. Note that for the 195 nm thick Co/glass sample, the half period stripe pattern,
<italic>W</italic>
, is found to be 192 nm, a value very close to the film thickness as theoretically predicted for low
<italic>Q</italic>
system. In the thinner (50–125 nm) Co/glass samples, no stripe domains were seen, the magnetization being in the film plane. Moreover, note that we observed that thicker samples with the stripe domain structure have high coercive fields; while the thinner samples, with the magnetization lying in the film plane, are characterized by very low coercivities (see figure
<figref linkend="jphysd181643fig02">2</figref>
). Note that a very interesting feature is observed in these thin Co/glass films: cross-tie walls (see figure
<figref linkend="jphysd181643fig07">7</figref>
). These cross-tie walls are expected to be seen in thin and ultra-thin films with in-plane magnetization in the domains and the walls [
<cite linkend="jphysd181643bib13">13</cite>
], their energy being less than that of a symmetric Néel wall. However, these cross-tie walls were seen in thinner Co/glass and were not noted in the corresponding Co/Si samples. Obviously, there is an effect of the substrate on these domain structures; it might be due to different growth mode of Co; but at this point, no clear explanation can be given for this observation.
<figure id="jphysd181643fig07" pageposition="top">
<graphic>
<graphic-file version="print" format="EPS" align="middle" filename="images/jphysd181643fig07.eps" width="XXX"></graphic-file>
<graphic-file version="ej" format="JPEG" align="middle" filename="images/jphysd181643fig07.jpg"></graphic-file>
</graphic>
<caption id="jphysd181643fc07" label="Figure 7">
<p indent="no">MFM image for Co/glass samples with
<italic>t</italic>
<sub>Co</sub>
= 50 nm (in-plane magnetization, note the cross-tie wall structure). Scale in the axes: 30 µm × 30 µm.</p>
</caption>
</figure>
</p>
</sec-level2>
</sec-level1>
<sec-level1 id="jphysd181643s4" label="4">
<heading>Conclusions</heading>
<p indent="no">The effect of Co thickness,
<italic>t</italic>
<sub>Co</sub>
, and substrate (glass and Si(100)) on the structural and magnetic properties of evaporated Co thin films have been investigated. It is found that Co thin films are polycrystalline with (0001) texture. There is an increase of the grain size with increasing film thickness. There is no large effect of the substrate on the longitudinal coercive fields. Thinner films have very low
<italic>H</italic>
<sub>c ∥</sub>
values (less than 10 Oe) while thicker films have large
<italic>H</italic>
<sub>c ∥</sub>
values. For a given thickness,
<italic>H</italic>
<sub>c ⊥</sub>
is much larger than
<italic>H</italic>
<sub>c ∥</sub>
. The coercive fields range from values as low as 2 Oe for a 125 nm thick Co/glass and Co/Si to the highest value, 2500 Oe, in Co/Si, with
<italic>t</italic>
<sub>Co</sub>
= 195 nm in the polar configuration. The anisotropy field
<italic>H</italic>
<sub>a</sub>
obtained by BLS experiments, decreases as the thickness increases, in the Co/Si series. Surface and stress-induced anisotropies may contribute to this uniaxial magnetocrystalline anisotropy. MFM images reveal a well-defined stripe pattern for thicker Co/Si and Co/glass samples (
<italic>t</italic>
<sub>Co</sub>
= 195 and 173 nm). Such domains are not observed in the case of the thinner films (
<italic>t</italic>
<sub>Co</sub>
= 50–125 nm). Moreover, the thinner Co/glass films exhibit cross-tie wall structures, probably denoting different growth modes in the two substrates.</p>
</sec-level1>
<acknowledgment>
<heading>Acknowledgments</heading>
<p indent="no">The authors would like to thank Professor M Labrune and Dr Y Roussigné for fruitful discussions and D Billet for technical assistance about MFM observations. AL would like to thank Dr B Bacroix, Director of the Laboratory (LPMTM) at the Université of Paris 13 for the stay in the Laboratory as an Invited Professor. Thanks are also due to Professors H Dreyssé and O Benkherourou for allowing AK to carry out several experiments at the IPCMS-GEMM with financial support from the French–Algerian CMEP MDU 249, between Louis Pasteur University at Strasbourg and Ferhat Abbas University at Sétif.</p>
</acknowledgment>
</body>
<back>
<references>
<heading>References</heading>
<reference-list type="numeric">
<misc-ref id="jphysd181643bib01" num="1">
<authors>
<au>
<second-name>Roussigné</second-name>
<first-names>Y</first-names>
</au>
</authors>
<year>1995</year>
<thesis>PhD Thesis</thesis>
<source>Université Paris-Nord</source>
</misc-ref>
<journal-ref id="jphysd181643bib02" num="2">
<authors>
<au>
<second-name>Allenspath</second-name>
<first-names>R</first-names>
</au>
<au>
<second-name>Stomponini</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Bischo</second-name>
<first-names>A</first-names>
</au>
</authors>
<year>1990</year>
<jnl-title>Phys. Rev. Lett.</jnl-title>
<volume>65</volume>
<pages>3344</pages>
</journal-ref>
<journal-ref id="jphysd181643bib03" num="3">
<authors>
<au>
<second-name>Kingstu</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Sakai</second-name>
<first-names>K</first-names>
</au>
</authors>
<year>1993</year>
<jnl-title>Phys. Rev.</jnl-title>
<part>B</part>
<volume>48</volume>
<pages>4140</pages>
</journal-ref>
<journal-ref id="jphysd181643bib04" num="4">
<authors>
<au>
<second-name>Nguyen Van Dau</second-name>
<first-names>F</first-names>
</au>
<au>
<second-name>Sussiau</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Schuhl</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Galtier</second-name>
<first-names>P</first-names>
</au>
</authors>
<year>1997</year>
<jnl-title>J. Appl. Phys.</jnl-title>
<volume>81</volume>
<pages>4482</pages>
</journal-ref>
<journal-ref id="jphysd181643bib05" num="5">
<authors>
<au>
<second-name>Krauss</second-name>
<first-names>P R</first-names>
</au>
<au>
<second-name>Fischer</second-name>
<first-names>P B</first-names>
</au>
<au>
<second-name>Chou</second-name>
<first-names>S Y</first-names>
</au>
</authors>
<year>1994</year>
<jnl-title>J. Vac. Sci. Technol.</jnl-title>
<part>B</part>
<volume>12</volume>
<pages>3639</pages>
</journal-ref>
<journal-ref id="jphysd181643bib06" num="6">
<authors>
<au>
<second-name>Chou</second-name>
<first-names>S Y</first-names>
</au>
<au>
<second-name>Wei</second-name>
<first-names>M S</first-names>
</au>
<au>
<second-name>Krauss</second-name>
<first-names>P R</first-names>
</au>
<au>
<second-name>Fischer</second-name>
<first-names>P B</first-names>
</au>
</authors>
<year>1994</year>
<jnl-title>J. Appl. Phys.</jnl-title>
<volume>76</volume>
<pages>6673</pages>
</journal-ref>
<journal-ref id="jphysd181643bib07" num="7">
<authors>
<au>
<second-name>Chérif</second-name>
<first-names>S M</first-names>
</au>
<au>
<second-name>Roussigné</second-name>
<first-names>Y</first-names>
</au>
<au>
<second-name>Moch</second-name>
<first-names>P</first-names>
</au>
</authors>
<year>1999</year>
<jnl-title>Phys. Rev.</jnl-title>
<part>B</part>
<volume>59</volume>
<pages>9482</pages>
</journal-ref>
<journal-ref id="jphysd181643bib08" num="8">
<authors>
<au>
<second-name>Chérif</second-name>
<first-names>S M</first-names>
</au>
<au>
<second-name>Roussigné</second-name>
<first-names>Y</first-names>
</au>
<au>
<second-name>Dugautier</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Moch</second-name>
<first-names>P</first-names>
</au>
</authors>
<year>2000</year>
<jnl-title>J. Magn. Magn. Mater.</jnl-title>
<volume>222</volume>
<pages>337</pages>
</journal-ref>
<book-ref id="jphysd181643bib09" num="9">
<authors>
<au>
<second-name>Eberhart</second-name>
<first-names>J P</first-names>
</au>
</authors>
<year>1989</year>
<book-title>Analyse Structurale et Chimiques des Matériaux</book-title>
<publication>
<place>Paris</place>
<publisher>Bordas</publisher>
</publication>
</book-ref>
<journal-ref id="jphysd181643bib10" num="10">
<authors>
<au>
<second-name>Hillebrands</second-name>
<first-names>B</first-names>
</au>
<au>
<second-name>Mathieu</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Bauer</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Demokritov</second-name>
<first-names>S O</first-names>
</au>
<au>
<second-name>Bartenlian</second-name>
<first-names>B</first-names>
</au>
<au>
<second-name>Chappert</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Decanini</second-name>
<first-names>D</first-names>
</au>
<au>
<second-name>Rousseaux</second-name>
<first-names>F</first-names>
</au>
</authors>
<year>1997</year>
<jnl-title>J. Appl. Phys.</jnl-title>
<volume>81</volume>
<pages>4993</pages>
</journal-ref>
<journal-ref id="jphysd181643bib11" num="11">
<authors>
<au>
<second-name>Roussigné</second-name>
<first-names>Y</first-names>
</au>
<au>
<second-name>Ganot</second-name>
<first-names>F</first-names>
</au>
<au>
<second-name>Dugautier</second-name>
<first-names>C</first-names>
</au>
<au>
<second-name>Moch</second-name>
<first-names>P</first-names>
</au>
<au>
<second-name>Renard</second-name>
<first-names>D</first-names>
</au>
</authors>
<year>1995</year>
<jnl-title>Phys. Rev.</jnl-title>
<part>B</part>
<volume>52</volume>
<pages>350</pages>
</journal-ref>
<journal-ref id="jphysd181643bib12" num="12">
<authors>
<au>
<second-name>Labrune</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Belliard</second-name>
<first-names>L</first-names>
</au>
</authors>
<year>1999</year>
<jnl-title>Phys. Status Solidi</jnl-title>
<part>a</part>
<volume>174</volume>
<pages>483</pages>
</journal-ref>
<book-ref id="jphysd181643bib13" num="13">
<authors>
<au>
<second-name>Hubert</second-name>
<first-names>A</first-names>
</au>
<au>
<second-name>Schaefer</second-name>
<first-names>R</first-names>
</au>
</authors>
<year>1998</year>
<book-title>Magnetic Domains</book-title>
<publication>
<place>New York</place>
<publisher>Springer</publisher>
</publication>
</book-ref>
<misc-ref id="jphysd181643bib14" num="14">
<authors>
<au>
<second-name>Hehn</second-name>
<first-names>M</first-names>
</au>
</authors>
<year>1997</year>
<thesis>PhD Thesis</thesis>
<source>Université Louis Pasteur de Strasbourg</source>
</misc-ref>
<book-ref id="jphysd181643bib15" num="15">
<authors>
<au>
<second-name>du Trémollet de Lacheisserie</second-name>
<first-names>E</first-names>
</au>
</authors>
<year>1999</year>
<book-title>Magnétisme</book-title>
<publication>
<place>Grenoble</place>
<publisher>Presse Universitaire de Grenoble</publisher>
</publication>
</book-ref>
<journal-ref id="jphysd181643bib16" num="16">
<authors>
<au>
<second-name>de Gronckel</second-name>
<first-names>H A M</first-names>
</au>
<au>
<second-name>Bloemen</second-name>
<first-names>P J H</first-names>
</au>
<au>
<second-name>van Alphen</second-name>
<first-names>E A M</first-names>
</au>
<au>
<second-name>de Jonge</second-name>
<first-names>W J M</first-names>
</au>
</authors>
<year>1994</year>
<jnl-title>Phys. Rev.</jnl-title>
<part>B</part>
<volume>49</volume>
<pages>11327</pages>
</journal-ref>
</reference-list>
</references>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="eng">
<title>Structural and magnetic properties of evaporated Co/Si(100) and Co/glass thin films</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Structural and magnetic properties of Co thin films</title>
</titleInfo>
<titleInfo type="alternative" lang="eng">
<title>Structural and magnetic properties of evaporated Co/Si(100) and Co/glass thin films</title>
</titleInfo>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Kharmouche</namePart>
<affiliation>Dpartement de Physique, Universit Ferhat Abbas, Stif 19000, Algeria</affiliation>
<affiliation>Laboratoire PMTM, Institut Galile, Universit Paris 13, Villetaneuse, 93340, France</affiliation>
<affiliation>Author to whom any correspondence should be addressed.</affiliation>
<affiliation>E-mail: kharmouche_ahmed@yahoo.fr</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S-M</namePart>
<namePart type="family">Chrif</namePart>
<affiliation>Laboratoire PMTM, Institut Galile, Universit Paris 13, Villetaneuse, 93340, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Bourzami</namePart>
<affiliation>Dpartement de Physique, Universit Ferhat Abbas, Stif 19000, Algeria</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Layadi</namePart>
<affiliation>Dpartement de Physique, Universit Ferhat Abbas, Stif 19000, Algeria</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Schmerber</namePart>
<affiliation>IPCMS-GEMME, UMR-CNRS, Universit Louis Pasteur, 23 rue du Loess, B.P. 43, 67034, Strasbourg, Cedex 2, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="paper">paper</genre>
<originInfo>
<publisher>Institute of Physics Publishing</publisher>
<dateIssued encoding="w3cdtf">2004</dateIssued>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<note type="production">Printed in the UK</note>
</physicalDescription>
<abstract>A series of Co thin films have been evaporated onto Si(100) and glass substrates. The Co thickness, tCo, ranges from 50 to 195nm. The structural and magnetic properties have been investigated by x-ray diffraction, hysteresis curves, Brillouin light scattering and magnetic force microscopy (MFM) techniques. The Co thin films are found to be polycrystalline with (0001) texture. There is an increase of the grain size with increasing film thickness. The coercive fields range from values as low as 2Oe in thinner films to the highest values, 2500Oe, in 195nm thick Co/Si films. The magnetocrystalline anisotropy field Ha decreases as the thickness increases; surface and stress induced anisotropies seem to contribute to the value of Ha. MFM images reveal a well-defined stripe pattern for thicker Co/Si samples. Such domains are not observed in the case of the thinner films. These so-called weak-stripe domains appear in magnetic films with a low or intermediate perpendicular anisotropy. Similar behaviour was observed in Co/glass samples, in addition, cross-tie walls were seen in thinner ones.</abstract>
<subject>
<genre>keywords</genre>
<topic>Co thin films</topic>
<topic>Hysteresis curves</topic>
<topic>Brillouin Light Scattering (BLS)</topic>
<topic>Magnetic Force Microscopy (MFM)</topic>
</subject>
<classification authority="pacs">75.70.Ak</classification>
<classification authority="pacs">75.50.Cc</classification>
<classification authority="pacs">78.35.+c</classification>
<classification authority="pacs">75.60.Ch</classification>
<relatedItem type="host">
<titleInfo>
<title>Journal of Physics D: Applied Physics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Phys. D: Appl. Phys.</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0022-3727</identifier>
<identifier type="eISSN">1361-6463</identifier>
<identifier type="PublisherID">jphysd</identifier>
<identifier type="CODEN">JPAPBE</identifier>
<identifier type="URL">stacks.iop.org/JPhysD</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>37</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>18</number>
</detail>
<extent unit="pages">
<start>2583</start>
<end>2587</end>
<total>5</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">0DE3815B0F45C57FF44B0A835B501C567777C92D</identifier>
<identifier type="DOI">10.1088/0022-3727/37/18/014</identifier>
<identifier type="PII">S0022-3727(04)81643-7</identifier>
<identifier type="articleID">181643</identifier>
<identifier type="articleNumber">014</identifier>
<accessCondition type="use and reproduction" contentType="copyright">2004 IOP Publishing Ltd</accessCondition>
<recordInfo>
<recordContentSource>IOP</recordContentSource>
<recordOrigin>2004 IOP Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001350 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001350 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:0DE3815B0F45C57FF44B0A835B501C567777C92D
   |texte=   Structural and magnetic properties of evaporated Co/Si(100) and Co/glass thin films
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024