Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A novel 3D cyano-bridged mixed-valence CoII/CoIII canted antiferromagnet constructed from defective cubanes. Synthesis, X-ray structure and magnetic properties

Identifieur interne : 001225 ( Istex/Corpus ); précédent : 001224; suivant : 001226

A novel 3D cyano-bridged mixed-valence CoII/CoIII canted antiferromagnet constructed from defective cubanes. Synthesis, X-ray structure and magnetic properties

Auteurs : Antonio Rodríguez-Diéguez ; Raikko Kivek S ; Hiroshi Sakiyama ; Ahderrahmane Debdoubi ; Enrique Colacio

Source :

RBID : ISTEX:9AD92438DBD37D997642B0911E897383463C4E4C

Abstract

The hydrothermal reaction of 2-pyrimidine-carboxamide, CoCl2·6H2O and K3[Co(CN)6] affords a novel mixed-valence CoII/CoIII 3D complex K[Co3(CN)6(ox)(H2O)2]·H2O, which contains cyano-bridged Co7 defective cubanes connected by oxalate and cyanide bridging groups and behaves as a canted antiferromagnet with Tc = 17.5 K.

Url:
DOI: 10.1039/b618479k

Links to Exploration step

ISTEX:9AD92438DBD37D997642B0911E897383463C4E4C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>A novel 3D cyano-bridged mixed-valence CoII/CoIII canted antiferromagnet constructed from defective cubanes. Synthesis, X-ray structure and magnetic properties</title>
<author wicri:is="90%">
<name sortKey="Rodriguez Dieguez, Antonio" sort="Rodriguez Dieguez, Antonio" uniqKey="Rodriguez Dieguez A" first="Antonio" last="Rodríguez-Diéguez">Antonio Rodríguez-Diéguez</name>
<affiliation>
<mods:affiliation>Departamento de Química Inorgánica, Universidad de Granada, 18071, Avenida Fuente nueva s/n, Granada, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: ecolacio@ugr.es</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Kivek S, Raikko" sort="Kivek S, Raikko" uniqKey="Kivek S R" first="Raikko" last="Kivek S">Raikko Kivek S</name>
<affiliation>
<mods:affiliation>Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 55, FIN-00014, University of Helsinki, Finland</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Sakiyama, Hiroshi" sort="Sakiyama, Hiroshi" uniqKey="Sakiyama H" first="Hiroshi" last="Sakiyama">Hiroshi Sakiyama</name>
<affiliation>
<mods:affiliation>Department of Material and Biological Chemistry, Faculty of Science, Yamagata UniVersity, 990-8560, Kojirakawa, 1-4-12, Yamagata, Japan</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Debdoubi, Ahderrahmane" sort="Debdoubi, Ahderrahmane" uniqKey="Debdoubi A" first="Ahderrahmane" last="Debdoubi">Ahderrahmane Debdoubi</name>
<affiliation>
<mods:affiliation>Unité de Calorimétrie et Materiaux, Université Abdelmalek Essaadi, Faculté des Sciences, 93002, P. O. Box 2121, Tétouan, Morocco</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Colacio, Enrique" sort="Colacio, Enrique" uniqKey="Colacio E" first="Enrique" last="Colacio">Enrique Colacio</name>
<affiliation>
<mods:affiliation>Departamento de Química Inorgánica, Universidad de Granada, 18071, Avenida Fuente nueva s/n, Granada, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: ecolacio@ugr.es</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:9AD92438DBD37D997642B0911E897383463C4E4C</idno>
<date when="2007" year="2007">2007</date>
<idno type="doi">10.1039/b618479k</idno>
<idno type="url">https://api.istex.fr/document/9AD92438DBD37D997642B0911E897383463C4E4C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001225</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001225</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">A novel 3D cyano-bridged mixed-valence CoII/CoIII canted antiferromagnet constructed from defective cubanes. Synthesis, X-ray structure and magnetic properties</title>
<author wicri:is="90%">
<name sortKey="Rodriguez Dieguez, Antonio" sort="Rodriguez Dieguez, Antonio" uniqKey="Rodriguez Dieguez A" first="Antonio" last="Rodríguez-Diéguez">Antonio Rodríguez-Diéguez</name>
<affiliation>
<mods:affiliation>Departamento de Química Inorgánica, Universidad de Granada, 18071, Avenida Fuente nueva s/n, Granada, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: ecolacio@ugr.es</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Kivek S, Raikko" sort="Kivek S, Raikko" uniqKey="Kivek S R" first="Raikko" last="Kivek S">Raikko Kivek S</name>
<affiliation>
<mods:affiliation>Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 55, FIN-00014, University of Helsinki, Finland</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Sakiyama, Hiroshi" sort="Sakiyama, Hiroshi" uniqKey="Sakiyama H" first="Hiroshi" last="Sakiyama">Hiroshi Sakiyama</name>
<affiliation>
<mods:affiliation>Department of Material and Biological Chemistry, Faculty of Science, Yamagata UniVersity, 990-8560, Kojirakawa, 1-4-12, Yamagata, Japan</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Debdoubi, Ahderrahmane" sort="Debdoubi, Ahderrahmane" uniqKey="Debdoubi A" first="Ahderrahmane" last="Debdoubi">Ahderrahmane Debdoubi</name>
<affiliation>
<mods:affiliation>Unité de Calorimétrie et Materiaux, Université Abdelmalek Essaadi, Faculté des Sciences, 93002, P. O. Box 2121, Tétouan, Morocco</mods:affiliation>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Colacio, Enrique" sort="Colacio, Enrique" uniqKey="Colacio E" first="Enrique" last="Colacio">Enrique Colacio</name>
<affiliation>
<mods:affiliation>Departamento de Química Inorgánica, Universidad de Granada, 18071, Avenida Fuente nueva s/n, Granada, Spain</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: ecolacio@ugr.es</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Dalton Transactions</title>
<title level="j" type="abbrev">Dalton Trans.</title>
<idno type="ISSN">1477-9226</idno>
<idno type="eISSN">1477-9234</idno>
<imprint>
<publisher>The Royal Society of Chemistry.</publisher>
<date type="published" when="2007">2007</date>
<biblScope unit="volume">0</biblScope>
<biblScope unit="issue">21</biblScope>
<biblScope unit="page" from="2145">2145</biblScope>
<biblScope unit="page" to="2149">2149</biblScope>
</imprint>
<idno type="ISSN">1477-9226</idno>
</series>
<idno type="istex">9AD92438DBD37D997642B0911E897383463C4E4C</idno>
<idno type="DOI">10.1039/b618479k</idno>
<idno type="ms-id">b618479k</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1477-9226</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The hydrothermal reaction of 2-pyrimidine-carboxamide, CoCl2·6H2O and K3[Co(CN)6] affords a novel mixed-valence CoII/CoIII 3D complex K[Co3(CN)6(ox)(H2O)2]·H2O, which contains cyano-bridged Co7 defective cubanes connected by oxalate and cyanide bridging groups and behaves as a canted antiferromagnet with Tc = 17.5 K.</div>
</front>
</TEI>
<istex>
<corpusName>rsc-journals</corpusName>
<author>
<json:item>
<name>Antonio Rodríguez-Diéguez</name>
<affiliations>
<json:string>Departamento de Química Inorgánica, Universidad de Granada, 18071, Avenida Fuente nueva s/n, Granada, Spain</json:string>
<json:string>E-mail: ecolacio@ugr.es</json:string>
</affiliations>
</json:item>
<json:item>
<name>Raikko Kivekäs</name>
<affiliations>
<json:string>Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 55, FIN-00014, University of Helsinki, Finland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Hiroshi Sakiyama</name>
<affiliations>
<json:string>Department of Material and Biological Chemistry, Faculty of Science, Yamagata UniVersity, 990-8560, Kojirakawa, 1-4-12, Yamagata, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ahderrahmane Debdoubi</name>
<affiliations>
<json:string>Unité de Calorimétrie et Materiaux, Université Abdelmalek Essaadi, Faculté des Sciences, 93002, P. O. Box 2121, Tétouan, Morocco</json:string>
</affiliations>
</json:item>
<json:item>
<name>Enrique Colacio</name>
<affiliations>
<json:string>Departamento de Química Inorgánica, Universidad de Granada, 18071, Avenida Fuente nueva s/n, Granada, Spain</json:string>
<json:string>E-mail: ecolacio@ugr.es</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>ART</json:string>
</originalGenre>
<abstract>The hydrothermal reaction of 2-pyrimidine-carboxamide, CoCl2·6H2O and K3[Co(CN)6] affords a novel mixed-valence CoII/CoIII 3D complex K[Co3(CN)6(ox)(H2O)2]·H2O, which contains cyano-bridged Co7 defective cubanes connected by oxalate and cyanide bridging groups and behaves as a canted antiferromagnet with Tc = 17.5 K.</abstract>
<qualityIndicators>
<score>4.011</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>595 x 780 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>318</abstractCharCount>
<pdfWordCount>3531</pdfWordCount>
<pdfCharCount>19819</pdfCharCount>
<pdfPageCount>5</pdfPageCount>
<abstractWordCount>40</abstractWordCount>
</qualityIndicators>
<title>A novel 3D cyano-bridged mixed-valence CoII/CoIII canted antiferromagnet constructed from defective cubanes. Synthesis, X-ray structure and magnetic properties</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>0</volume>
<pages>
<total>5</total>
<last>2149</last>
<first>2145</first>
</pages>
<issn>
<json:string>1477-9226</json:string>
</issn>
<issue>21</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1477-9234</json:string>
</eissn>
<title>Dalton Transactions</title>
</host>
<publicationDate>2007</publicationDate>
<copyrightDate>2007</copyrightDate>
<doi>
<json:string>10.1039/b618479k</json:string>
</doi>
<id>9AD92438DBD37D997642B0911E897383463C4E4C</id>
<score>0.045505084</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/9AD92438DBD37D997642B0911E897383463C4E4C/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/9AD92438DBD37D997642B0911E897383463C4E4C/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/9AD92438DBD37D997642B0911E897383463C4E4C/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">A novel 3D cyano-bridged mixed-valence CoII/CoIII canted antiferromagnet constructed from defective cubanes. Synthesis, X-ray structure and magnetic properties</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>The Royal Society of Chemistry.</publisher>
<availability>
<p>This journal is © The Royal Society of Chemistry</p>
</availability>
<date>2007</date>
</publicationStmt>
<notesStmt>
<note>The 3D mixed-valence CoII/CoIII complex K[Co3(CN)6(ox)(H2O)2]·H2O, which contains cyano-bridged Co7 defective cubanes connected by oxalate and cyanide bridging groups, behaves as a canted antiferromagnet with Tc = 17.5 K. [b618479k-ga.tif]</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">A novel 3D cyano-bridged mixed-valence CoII/CoIII canted antiferromagnet constructed from defective cubanes. Synthesis, X-ray structure and magnetic properties</title>
<author xml:id="author-1">
<persName>
<forename type="first">Antonio</forename>
<surname>Rodríguez-Diéguez</surname>
</persName>
<email>ecolacio@ugr.es</email>
<affiliation>Departamento de Química Inorgánica, Universidad de Granada, 18071, Avenida Fuente nueva s/n, Granada, Spain</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Raikko</forename>
<surname>Kivekäs</surname>
</persName>
<affiliation>Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 55, FIN-00014, University of Helsinki, Finland</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Hiroshi</forename>
<surname>Sakiyama</surname>
</persName>
<affiliation>Department of Material and Biological Chemistry, Faculty of Science, Yamagata UniVersity, 990-8560, Kojirakawa, 1-4-12, Yamagata, Japan</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Ahderrahmane</forename>
<surname>Debdoubi</surname>
</persName>
<affiliation>Unité de Calorimétrie et Materiaux, Université Abdelmalek Essaadi, Faculté des Sciences, 93002, P. O. Box 2121, Tétouan, Morocco</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Enrique</forename>
<surname>Colacio</surname>
</persName>
<email>ecolacio@ugr.es</email>
<affiliation>Departamento de Química Inorgánica, Universidad de Granada, 18071, Avenida Fuente nueva s/n, Granada, Spain</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Dalton Transactions</title>
<title level="j" type="abbrev">Dalton Trans.</title>
<idno type="pISSN">1477-9226</idno>
<idno type="eISSN">1477-9234</idno>
<imprint>
<publisher>The Royal Society of Chemistry.</publisher>
<date type="published" when="2007"></date>
<biblScope unit="volume">0</biblScope>
<biblScope unit="issue">21</biblScope>
<biblScope unit="page" from="2145">2145</biblScope>
<biblScope unit="page" to="2149">2149</biblScope>
</imprint>
</monogr>
<idno type="istex">9AD92438DBD37D997642B0911E897383463C4E4C</idno>
<idno type="DOI">10.1039/b618479k</idno>
<idno type="ms-id">b618479k</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2007</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>The hydrothermal reaction of 2-pyrimidine-carboxamide, CoCl2·6H2O and K3[Co(CN)6] affords a novel mixed-valence CoII/CoIII 3D complex K[Co3(CN)6(ox)(H2O)2]·H2O, which contains cyano-bridged Co7 defective cubanes connected by oxalate and cyanide bridging groups and behaves as a canted antiferromagnet with Tc = 17.5 K.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="2007">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/9AD92438DBD37D997642B0911E897383463C4E4C/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus rsc-journals not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:document>
<article type="ART" xsi:schemaLocation="http://www.rsc.org/schema/rscart38 http://www.rsc.org/schema/rscart38/rscart38.xsd" dtd="RSCART3.8">
<metainfo>
<articletype code="ART" pubmedForm="research-article" headingForm="Papers" group="Paper" fullForm="Paper"></articletype>
</metainfo>
<art-admin>
<ms-id>b618479k</ms-id>
<doi>10.1039/b618479k</doi>
<received>
<date>
<year>2006</year>
<month>December</month>
<day>18</day>
</date>
</received>
<date role="accepted">
<year>2007</year>
<month>March</month>
<day>23</day>
</date>
</art-admin>
<published type="web">
<journalref>
<link>DT</link>
</journalref>
<volumeref>
<link>Unassigned</link>
</volumeref>
<issueref>
<link>Advance Articles</link>
</issueref>
<pubfront>
<fpage></fpage>
<lpage></lpage>
<no-of-pages></no-of-pages>
<date>
<year>2007</year>
<month>April</month>
<day>16</day>
</date>
</pubfront>
</published>
<published type="print">
<journalref>
<link>DT</link>
</journalref>
<volumeref>
<link>0</link>
</volumeref>
<issueref>
<link>21</link>
</issueref>
<pubfront>
<fpage>2145</fpage>
<lpage>2149</lpage>
<no-of-pages>5</no-of-pages>
<date>
<year>2007</year>
<month>5</month>
<day>21</day>
</date>
</pubfront>
</published>
<published type="subsyear">
<journalref>
<title type="abbreviated">Dalton Trans.</title>
<title type="full">Dalton Transactions</title>
<title type="journal">Dalton Transactions</title>
<title type="display">Dalton Transactions</title>
<title type="pubmed">Dalton Trans</title>
<sercode>DT</sercode>
<publisher>
<orgname>
<nameelt>The Royal Society of Chemistry</nameelt>
</orgname>
</publisher>
<issn type="print">1477-9226</issn>
<issn type="online">1477-9234</issn>
<coden>ICHBD9</coden>
<cpyrt>This journal is © The Royal Society of Chemistry</cpyrt>
</journalref>
<volumeref>
<link></link>
</volumeref>
<issueref>
<link>21</link>
</issueref>
<pubfront>
<fpage></fpage>
<lpage></lpage>
<no-of-pages></no-of-pages>
<date>
<year>2007</year>
<month>Unassigned</month>
<day>Unassigned</day>
</date>
</pubfront>
</published>
<art-links>
<suppinf>
<link>INFO</link>
</suppinf>
</art-links>
<art-front>
<titlegrp>
<title>A novel 3D cyano-bridged mixed-valence Co
<sup>II</sup>
/Co
<sup>III</sup>
canted antiferromagnet constructed from defective cubanes. Synthesis, X-ray structure and magnetic properties</title>
</titlegrp>
<authgrp>
<author aff="affa">
<person>
<persname>
<fname>Antonio</fname>
<surname>Rodríguez-Diéguez</surname>
</persname>
</person>
</author>
<author aff="affb">
<person>
<persname>
<fname>Raikko</fname>
<surname>Kivekäs</surname>
</persname>
</person>
</author>
<author aff="affc">
<person>
<persname>
<fname>Hiroshi</fname>
<surname>Sakiyama</surname>
</persname>
</person>
</author>
<author aff="affd">
<person>
<persname>
<fname>Ahderrahmane</fname>
<surname>Debdoubi</surname>
</persname>
</person>
</author>
<author aff="affa" role="corres">
<person>
<persname>
<fname>Enrique</fname>
<surname>Colacio</surname>
</persname>
</person>
</author>
<aff id="affa">
<org>
<orgname>
<nameelt>Departamento de Química Inorgánica</nameelt>
<nameelt>Universidad de Granada</nameelt>
</orgname>
</org>
<address>
<addrelt>Avenida Fuente nueva s/n</addrelt>
<postcode>18071</postcode>
<city>Granada</city>
<country>Spain</country>
</address>
<email>ecolacio@ugr.es</email>
<fax>+34-958248526</fax>
</aff>
<aff id="affb">
<org>
<orgname>
<nameelt>Department of Chemistry</nameelt>
<nameelt>Laboratory of Inorganic Chemistry</nameelt>
<nameelt>P.O. Box 55</nameelt>
<nameelt>FIN-00014</nameelt>
<nameelt>University of Helsinki</nameelt>
</orgname>
</org>
<address>
<country>Finland</country>
</address>
</aff>
<aff id="affc">
<org>
<orgname>
<nameelt>Department of Material and Biological Chemistry</nameelt>
<nameelt>Faculty of Science</nameelt>
<nameelt>Yamagata UniVersity</nameelt>
</orgname>
</org>
<address>
<addrelt>Kojirakawa</addrelt>
<addrelt>1-4-12</addrelt>
<city>Yamagata</city>
<postcode>990-8560</postcode>
<country>Japan</country>
</address>
</aff>
<aff id="affd">
<org>
<orgname>
<nameelt>Unité de Calorimétrie et Materiaux</nameelt>
<nameelt>Université Abdelmalek Essaadi</nameelt>
<nameelt>Faculté des Sciences</nameelt>
</orgname>
</org>
<address>
<addrelt>P. O. Box 2121</addrelt>
<city>Tétouan</city>
<postcode>93002</postcode>
<country>Morocco</country>
</address>
</aff>
</authgrp>
<art-toc-entry>
<ictext>The 3D mixed-valence Co
<sup>II</sup>
/Co
<sup>III</sup>
complex K[Co
<inf>3</inf>
(CN)
<inf>6</inf>
(ox)(H
<inf>2</inf>
O)
<inf>2</inf>
]·H
<inf>2</inf>
O, which contains cyano-bridged Co
<inf>7</inf>
defective cubanes connected by oxalate and cyanide bridging groups, behaves as a canted antiferromagnet with
<it>T</it>
<inf>c</inf>
= 17.5 K.</ictext>
<icgraphic xsrc="b618479k-ga.tif" id="ga"></icgraphic>
</art-toc-entry>
<abstract>
<p>The hydrothermal reaction of 2-pyrimidine-carboxamide, CoCl
<inf>2</inf>
·6H
<inf>2</inf>
O and K
<inf>3</inf>
[Co(CN)
<inf>6</inf>
] affords a novel mixed-valence Co
<sup>II</sup>
/Co
<sup>III</sup>
3D complex K[Co
<inf>3</inf>
(CN)
<inf>6</inf>
(ox)(H
<inf>2</inf>
O)
<inf>2</inf>
]·H
<inf>2</inf>
O, which contains cyano-bridged Co
<inf>7</inf>
defective cubanes connected by oxalate and cyanide bridging groups and behaves as a canted antiferromagnet with
<it>T</it>
<inf>c</inf>
= 17.5 K.</p>
</abstract>
</art-front>
<art-body>
<section>
<title>Introduction</title>
<p>Cyano-bridged metal coordination polymers are playing an important role in areas such as high-
<it>T</it>
<inf>c</inf>
magnetic materials,
<citref idrefs="cit1">1</citref>
photo-induced magnetism,
<citref idrefs="cit2">2</citref>
spin-crossover (SCO) materials,
<citref idrefs="cit3">3</citref>
host–guest chemistry,
<citref idrefs="cit4">4</citref>
vapochromic materials,
<citref idrefs="cit5">5</citref>
magnetochirality,
<citref idrefs="cit6">6</citref>
<it>etc.</it>
Most of these systems have been synthesized by controlled assembly of a cyanometalate complex that acts as a ligand and a transition metal complex with free or available coordination sites for the nitrogen atoms of the cyanide groups. Nevertheless, the number of cyano-bridged polymers prepared from less-controlled hydrothermal reactions has vastly increased during the last decade. Recently, we
<citref idrefs="cit7">7</citref>
and others
<citref idrefs="cit8">8</citref>
have shown that cyanide-bridged coordination polymers can also be assembled through hydrothermal reactions by using either hexacyanoferrate(
<scp>iii</scp>
) or hexacyanocobaltate(
<scp>iii</scp>
) anions as a source of cyanide groups. In this regard, [Co(CN)
<inf>6</inf>
]
<sup>3−</sup>
and Ni(
<scp>ii</scp>
) ions can be used to successfully obtain cyano-bridged Co
<sup>II</sup>
–Ni
<sup>II</sup>
complexes.
<citref idrefs="cit8">8</citref>
In the course of the hydrothermal reaction, cyanide anions from the dissociation of [Co(CN)
<inf>6</inf>
]
<sup>3−</sup>
are responsible for the Co
<sup>III</sup>
to Co
<sup>II</sup>
reduction process, yielding cyanogen (NC–CN) as the oxidation product. Bearing this in mind, we have used, hexacyanocobaltate(
<scp>iii</scp>
) and a cobalt(
<scp>ii</scp>
) salt in the presence of the new multidentate ligand pyrimidine-2-carboxamide (pymca, see
<schemref idrefs="sch1">Scheme I</schemref>
)) in an attempt to obtain cyanide-bridged homometallic compounds. However, the hydrothermal reaction of K
<inf>3</inf>
[Co(CN)
<inf>6</inf>
], CoCl
<inf>2</inf>
·6H
<inf>2</inf>
O and pymca in 1 : 1 : 1 molar ratio at 180 °C for 2 d afforded the 3D cyano-bridged mixed-valence Co
<sup>II</sup>
/Co
<sup>III</sup>
canted antiferromagnetic system K[Co
<inf>3</inf>
(CN)
<inf>6</inf>
(ox)(H
<inf>2</inf>
O)
<inf>2</inf>
]·H
<inf>2</inf>
O (
<compoundref idrefs="chem1">1</compoundref>
). We report here the structure and magnetic properties of this compound. It should be noted that, as we are aware, only two structurally cyano-bridged mixed-valence Co
<sup>II</sup>
/Co
<sup>III</sup>
have been reported so far, Co
<sup>II</sup>
<inf>3</inf>
[Co
<sup>III</sup>
(CN)
<inf>6</inf>
]
<inf>2</inf>
·12H
<inf>2</inf>
O
<citref idrefs="cit9">9</citref>
and [Co
<sup>II</sup>
(tmphen)
<inf>2</inf>
]
<inf>3</inf>
[Co(CN)
<inf>6</inf>
]
<inf>2</inf>
(tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline).
<citref idrefs="cit10">10</citref>
</p>
<scheme xsrc="b618479k-s1.tif" id="sch1">
<title>Pyrimidine-2-carboxamide (pymca).</title>
</scheme>
</section>
<section>
<title>Results and discussion</title>
<p>The hydrothermal reaction of K
<inf>3</inf>
[Co(CN)
<inf>6</inf>
], CoCl
<inf>2</inf>
·6H
<inf>2</inf>
O and pymca did not lead to the expected Co(
<scp>ii</scp>
)–CN–Co(
<scp>ii</scp>
) system with coordinated pymca ligands, but to the serendipitous formation of
<compoundref idrefs="chem1">1</compoundref>
. The oxalato ligand in
<compoundref idrefs="chem1">1</compoundref>
is generated
<it>in situ</it>
from the oxidation of the pymca ligand under hydrothermal conditions. A similar process has been shown to occur for pyridinecarboxylate and 5-pyrimidyltetrazolate species, which react with metal ions under hydrothermal conditions affording oxalate-bridged polymeric complexes.
<citref idrefs="cit11 cit12">11,12</citref>
Attempts were made to obtain compound
<compoundref idrefs="chem1">1</compoundref>
by using potassium oxalate instead of the pymca ligand, but they proved unsuccessful. Moreover, the counterion of the Co(
<scp>ii</scp>
) salt does not play a significant role in the formation of
<compoundref idrefs="chem1">1</compoundref>
. It is interesting to note that
<compoundref idrefs="chem1">1</compoundref>
can be also obtained by using Co
<sup>III</sup>
–Co
<sup>II</sup>
–pymca molar ratios other than 1 : 1 : 1, but in no case appropriate crystals for X-ray diffraction formed.</p>
<p>The IR spectrum of this complex exhibits a
<it>ν</it>
(CN) band at 2160 cm
<sup>−1</sup>
, which appears 60 cm
<sup>−1</sup>
higher than the corresponding
<it>ν</it>
(CN) band of the [Co(CN)
<inf>6</inf>
]
<sup>3−</sup>
anion. This band is assigned to the cyanide bridging ligands and its increase in energy is due to the mechanical constraint of the motion of the CN group originated from the presence of the Co(
<scp>ii</scp>
) metal centre (kinematic effect). In the Co
<sup>II</sup>
/Co
<sup>III</sup>
Prussian Blue analogue, Co
<sup>II</sup>
<inf>3</inf>
[Co
<sup>III</sup>
(CN)
<inf>6</inf>
]
<inf>2</inf>
·12H
<inf>2</inf>
O, with all the cyanide groups connecting Co
<sup>II</sup>
and Co
<sup>III</sup>
atoms as in
<compoundref idrefs="chem1">1</compoundref>
, this band appears at 2170 cm
<sup>−1</sup>
.
<citref idrefs="cit10">10</citref>
The
<it>ν</it>
(COO)
<inf>as</inf>
and
<it>ν</it>
(COO)
<inf>s</inf>
of the oxalato-bridging group appear at 1627 cm
<sup>−1</sup>
and 1360 cm
<sup>−1</sup>
, respectively, whereas the very broad band at 3420 cm
<sup>−1</sup>
and the intense band at 1654 cm
<sup>−1</sup>
correspond to
<it>ν</it>
(OH) and
<it>δ</it>
(OH) vibration modes of the water molecules.</p>
<p>The structure of this compound consists of a 3D anionic network, [Co
<inf>3</inf>
(CN)
<inf>6</inf>
(ox)(H
<inf>2</inf>
O)
<inf>2</inf>
]
<sup></sup>
, made of cyano-bridged Co
<inf>7</inf>
defective cubanes (
<figref idrefs="fig1">Fig. 1</figref>
), K
<sup>+</sup>
cations and crystal water molecules. Selected bond distances are given in
<tableref idrefs="tab1">Table 1</tableref>
.</p>
<table-entry id="tab1">
<title>Selected bond distances of
<compoundref idrefs="chem1">1</compoundref>
</title>
<table>
<tgroup cols="4">
<colspec colname="1"></colspec>
<colspec colname="2"></colspec>
<colspec colname="3"></colspec>
<colspec colname="4"></colspec>
<tbody>
<row>
<entry>Co1–C</entry>
<entry>1.866(11)–1.890(8)</entry>
<entry>Co3–Oox</entry>
<entry>2.110(5)</entry>
</row>
<row>
<entry>Co2–N</entry>
<entry>2.081(7)–2.099(11)</entry>
<entry>Co3–Ow</entry>
<entry>2.187(10)</entry>
</row>
<row>
<entry>Co2–Oox</entry>
<entry>2.141(5)</entry>
<entry>K–Ow</entry>
<entry>2.647(12)</entry>
</row>
<row>
<entry>Co2–Ow</entry>
<entry>2.110(10)</entry>
<entry>K1–Oox</entry>
<entry>2.780(6)–3.305(6)</entry>
</row>
<row>
<entry>Co3–N</entry>
<entry>2.081(7)–2.111(12)</entry>
<entry>K–N</entry>
<entry>3.265(10)–3.093(7)</entry>
</row>
</tbody>
</tgroup>
</table>
</table-entry>
<figure xsrc="b618479k-f1.tif" id="fig1">
<title>Cyano-bridged Co
<inf>7</inf>
defective cubane unit in
<compoundref idrefs="chem1">1</compoundref>
. Co
<inf>1</inf>
(orange), Co
<inf>2</inf>
(brown), Co
<inf>3</inf>
(pink), K (yellow).</title>
</figure>
<p>Within the [Co
<inf>3</inf>
(CN)
<inf>6</inf>
(ox)(H
<inf>2</inf>
O)
<inf>2</inf>
]
<sup></sup>
anionic framework, there are one cobalt(
<scp>iii</scp>
) atom (Co1) and two Co(
<scp>ii</scp>
) atoms (Co2 and Co3), with CoC
<inf>6</inf>
and CoN
<inf>3</inf>
O
<inf>3</inf>
coordination environments, respectively. The Co1 atom, which belongs to a hexacyanocobaltate unit, exhibits a minimally distorted octahedral geometry, whereas Co2 and Co3 atoms, with distorted octahedral geometries, are both coordinated by three nitrogen atoms belonging to cyanide-bridging ligands in a
<it>fac</it>
configuration, two oxygen atoms belonging to a tetradentate oxalato bridging ligand and one oxygen atom from a molecule of water.</p>
<p>Cyanide bridges connect each Co1 atom to three Co2 and three Co3 atoms in a
<it>fac</it>
configuration and each Co2 and Co3 atom to three Co1 atoms, also in a
<it>fac</it>
configuration, giving rise to Co
<sup>III</sup>
<inf>3</inf>
Co
<sup>II</sup>
<inf>4</inf>
heptanuclear defective cubane units (
<figref idrefs="fig1">Fig. 1</figref>
) with a Co1⋯Co2 distance of 5.1020(15) Å and a Co1⋯Co3 distance of 4.9056(14) Å. Each Co
<inf>7</inf>
defective cubane unit has two centres of symmetry located at the centres of two edge-sharing faces (
<figref idrefs="fig2">Fig. 2</figref>
). Therefore, each of these faces is shared by two inverted cubanes, which form a chain running along the
<it>b</it>
axis (
<figref idrefs="fig2">Fig. 2</figref>
). Additionally, Co2 atoms are connected to Co3 atoms by oxalate bridging ligands (see
<figref idrefs="fig1">Fig. 1</figref>
) with a Co3⋯Co2 distance of 5.515(2) Å, affording a unique 3D anionic network.</p>
<figure xsrc="b618479k-f2.tif" id="fig2">
<title>Double chain of cyano-bridge Co
<inf>7</inf>
cubanes along the
<it>b</it>
direction. Co
<inf>1</inf>
(orange), Co
<inf>2</inf>
(brown), Co
<inf>3</inf>
(pink), K (yellow).</title>
</figure>
<p>K
<sup>+</sup>
cations are located in the cubane cavities near to the absent vertex, adopting a charge compensating and space-filling role in the material. Each K
<sup>+</sup>
cation interacts with four oxygen atoms of two oxalate groups, with two nitrogen atoms of cyanide groups connecting Co2 and Co3 atoms and with the crystallization water molecule that is also placed inside the cubane unit (
<figref idrefs="fig1">Fig. 1</figref>
). When the compound is viewed down the
<it>c</it>
axis (
<figref idrefs="fig3">Fig. 3</figref>
), one can realize that the compound has channels where the K
<sup>+</sup>
cations and water molecules are hosted.</p>
<figure xsrc="b618479k-f3.tif" id="fig3">
<title>Perspective view of the 3D network along the
<it>c</it>
axis, showing the channels in which K
<sup>+</sup>
cations and water molecules are hosted. In this case all Co atoms are pink in colour.</title>
</figure>
<subsect1>
<title>Magnetic properties</title>
<p>The temperature dependence of the
<it>χ</it>
<inf>M</inf>
<it>T</it>
product (
<it>χ</it>
<inf>M</inf>
is the molar susceptibility per formula unit) for
<compoundref idrefs="chem1">1</compoundref>
at different applied magnetic fields is given in
<figref idrefs="fig4">Fig. 4</figref>
.</p>
<figure xsrc="b618479k-f4.tif" id="fig4">
<title>Temperature dependence of the
<it>χ</it>
<inf>M</inf>
<it>T</it>
and
<it>χ</it>
<inf>M</inf>
<sup>−1</sup>
per Co
<inf>2</inf>
unit for
<compoundref idrefs="chem1">1</compoundref>
in the 2–300 K. The line is the best fit using the Curie–Weiss law.</title>
</figure>
<p>The value of
<it>χ</it>
<inf>M</inf>
<it>T</it>
at room temperature of 7.92 cm
<sup>3</sup>
mol
<sup>−1</sup>
K substantially exceeds the spin only value of 3.75 cm
<sup>3</sup>
mol
<sup>−1</sup>
K expected for two uncoupled high-spin Co
<sup>II</sup>
(
<it>S</it>
= 3/2) ions with
<it>g</it>
= 2, thus indicating that an important orbital contribution due to the distorted octahedral Co
<sup>II</sup>
ions exists. The magnetic data above 30 K follow the Curie–Weiss law with a high Weiss constant
<it>θ</it>
of −52 K (
<figref idrefs="fig4">Fig. 4</figref>
). This parameter is obviously too high as it accounts for both the spin–orbit coupling effects (these are equivalent to a
<it>θ</it>
value of about −25 K) and weak antiferromagnetic interactions. These latter are responsible for the continuous decrease of the
<it>χ</it>
<inf>M</inf>
<it>T</it>
product at very low temperatures in a magnetic field of 5 kOe, reaching a value of 0.13 cm
<sup>3</sup>
mol
<sup>−1</sup>
K at 2 K However, in a field of 20 Oe, the
<it>χ</it>
<inf>M</inf>
<it>T</it>
product first decreases smoothly to a rounded minimum of 2.99 cm
<sup>3</sup>
mol
<sup>−1</sup>
K at 21 K, then increases sharply to reach a maximum of 5.4 cm
<sup>3</sup>
mol
<sup>−1</sup>
K at 17.5 K and then decreases rapidly. This low-temperature behaviour suggests the presence of a magnetically ordered state with a net magnetisation; the decrease below 17.5 K being due to saturation effects. At
<it>T</it>
< 21 K the magnetization is strongly field-dependent and the field-cooled magnetization at 20 Oe confirms the occurrence of a magnetic ordering (
<figref idrefs="fig5">Fig. 5</figref>
). The critical temperature
<it>T</it>
<inf>c</inf>
= 17.5 K is taken here as the maximum of the slope d
<it>M</it>
/d
<it>T</it>
.</p>
<figure xsrc="b618479k-f5.tif" id="fig5">
<title>Field-cooling magnetization of
<compoundref idrefs="chem1">1</compoundref>
measured at 20 Oe from 2 to 30 K. Inset: Dynamic ac susceptibilities in a
<it>H</it>
<inf>ac</inf>
field of 3.5 Oe.</title>
</figure>
<p>Dynamic (ac) susceptibility measurements under an
<it>H</it>
<inf>dc</inf>
= 0 Oe and
<it>H</it>
<inf>ac</inf>
= 3.5 Oe field show a maximum at 17.5 in the in-phase signal (
<it>χ</it>
<inf>ac</inf>
). No visible out-of-phase signal (
<it>χ</it>
<inf>M</inf>
″) nor frequency dependence were observed. Because the magnetic moment from canting is very small (see below) the loss of energy related to the out-of-phase signal might be negligible and therefore the
<it>χ</it>
<inf>M</inf>
″ would be difficult to be observed. The same ac susceptibility behaviour has been observed for other 2D and 3D polynuclear Co
<sup>II</sup>
complexes.
<citref idrefs="cit13">13</citref>
The isothermal magnetization per cobalt atom at 2 K (
<figref idrefs="fig6">Fig. 6</figref>
) shows almost a linear dependence with field, attaining a value of 3127 cm
<sup>3</sup>
G mol
<sup>−1</sup>
per formula unit at 50 kOe, which is significantly smaller than the theoretical saturation magnetization value (
<it>M</it>
<inf>s</inf>
) of 16 755 cm
<sup>3</sup>
G mol
<sup>−1</sup>
with
<it>g</it>
= 2. The magnetic hysteresis loop for
<compoundref idrefs="chem1">1</compoundref>
shows values of coercitive field and remnant magnetization (
<it>M</it>
<inf>r</inf>
) of 100 G and 13 cm
<sup>3</sup>
G mol
<sup>−1</sup>
, respectively, which are typical of a very soft magnet. All the above magnetic properties are characteristic of weak ferromagnetism at low temperature caused by uncompensated antiferromagnetic spin canting. By using the expression sin
<it>α</it>
=
<it>M</it>
<inf>r</inf>
/
<it>M</it>
<inf>s</inf>
, the canting angle
<it>α</it>
is estimated to be about 0.05°.</p>
<figure xsrc="b618479k-f6.tif" id="fig6">
<title>Field dependence of the magnetization at 2 K for
<compoundref idrefs="chem1">1</compoundref>
. Inset: Hysteresis loop measured at 2 K.</title>
</figure>
<p>The spin-canting in
<compoundref idrefs="chem1">1</compoundref>
must be mainly a consequence of the local anisotropy of the high-spin Co
<sup>II</sup>
ions. The 3D long-range order in
<compoundref idrefs="chem1">1</compoundref>
is only possible through very weak interactions through hexacyanocobaltate units and this is the reason why
<it>T</it>
<inf>c</inf>
is relatively low.</p>
<p>In a magnetic field of 5 kOe, the
<it>χ</it>
<inf>M</inf>
<it>vs</it>
<it>T</it>
plot does not show the abrupt increase below 21 K and the susceptibility simply passes through a single maximum at about 18 K (
<figref idrefs="fig7">Fig. 7</figref>
).</p>
<figure xsrc="b618479k-f7.tif" id="fig7">
<title>Temperature dependence of
<it>χ</it>
<inf>M</inf>
for
<compoundref idrefs="chem1">1</compoundref>
at 5 kOe. The solid line corresponds to the best fit to the theoretical model with Δ = −859 cm
<sup>−1</sup>
.</title>
</figure>
<p>Because the [Co(CN)
<inf>6</inf>
]
<sup>3−</sup>
bridging groups are known to be very poor mediators of the magnetic interactions,
<citref idrefs="cit10">10</citref>
compound
<compoundref idrefs="chem1">1</compoundref>
could be approximated as a dinuclear system. Although the octahedral field around the Co2 and Co3 ions is differently distorted, we have considered that the dinuclear system is symmetric. In keeping with this, the experimental magnetic data in the paramagnetic region (above
<it>T</it>
<inf>c</inf>
) were analyzed through the full Hamiltonian involving spin–orbit coupling, axial distortion, Zeeman interactions and magnetic exchange coupling for a symmetric dinuclear Co
<sup>II</sup>
system:
<eqntext>
<it>H</it>
=
<it>Δ</it>
(
<it>L</it>
<inf>
<it>z</it>
</inf>
<sup>2</sup>
− 2/3) + (−3/2)
<it>κλ</it>
<it>LS</it>
+
<it>β</it>
[−(3/2)
<it>κ</it>
<it>L</it>
+
<it>g</it>
<inf>e</inf>
<it>S</it>
]
<it>H</it>
<it>J</it>
[
<it>α
<inf>z</inf>
</it>
<sup>2</sup>
<it>s</it>
<inf>1
<it>z</it>
</inf>
×
<it>s</it>
<inf>2
<it>z</it>
</inf>
+ 2
<it>α
<inf>x</inf>
</it>
<sup>2</sup>
<it>s</it>
<inf>1
<it>x</it>
</inf>
×
<it>s</it>
<inf>2
<it>x</it>
</inf>
]</eqntext>
</p>
<p>The exchange part of the Hamiltonian can be rewritten as
<it>H</it>
<inf>ex</inf>
= −
<it>J</it>
<inf>eff</inf>
<it>s</it>
<inf>1</inf>
×
<it>s</it>
<inf>2</inf>
+
<it>D</it>
<inf>eff</inf>
<it>s</it>
<inf>1
<it>z</it>
</inf>
<it>s</it>
<inf>2
<it>z</it>
</inf>
if parameters
<it>J</it>
<inf>eff</inf>
and
<it>D</it>
<inf>eff</inf>
are defined as
<it>J</it>
<inf>eff</inf>
=
<it>α</it>
<inf>
<it>x</it>
</inf>
<sup>2</sup>
<it>J</it>
and
<it>D</it>
<inf>eff</inf>
= [
<it>α</it>
<inf>
<it>x</it>
</inf>
<sup>2</sup>
<it>α</it>
<inf>
<it>z</it>
</inf>
<sup>2</sup>
]
<it>J</it>
, respectively. The parameters
<it>κ</it>
,
<it>λ</it>
and
<it>Δ</it>
have their usual meaning.
<it>D</it>
<inf>eff</inf>
is the anisotropic parameter describing the interaction between effective spin (1/2);
<it>D</it>
<inf>tri</inf>
is the zero-field splitting within a triplet state, which is generated from the effective (1/2) spins and expressed as
<it>D</it>
<inf>tri</inf>
=
<it>D</it>
<inf>eff</inf>
/2;
<it>J</it>
<inf>eff</inf>
is the isotropic exchange parameter describing the interaction between effective spin (1/2) and
<it>J</it>
is the magnetic exchange parameter describing the interaction between true spin (3/2). Parameters
<it>α</it>
<inf>
<it>z</it>
</inf>
and
<it>α</it>
<inf>
<it>x</it>
</inf>
are expressed by
<it>κ</it>
,
<it>λ</it>
and Δ.
<citref idrefs="cit14">14</citref>
</p>
<p>Only five independent parameters are needed to fit the magnetic susceptibility data to the theoretical equation
<citref idrefs="cit14">14</citref>
derived from the above Hamiltonian:
<it>J</it>
,
<it>κ</it>
,
<it>λ</it>
,
<it>Δ</it>
and TIP. In this case, the optimization of the five parameters it is not difficult because
<it>λ</it>
and
<it>κ</it>
do not vary very much and because
<it>λ</it>
,
<it>κ</it>
and TIP only have a significant influence in the higher temperature range, typically above 100 K. The fit of the experimental data to the theoretical equation shows that the sign of
<it>Δ</it>
can not be unambiguously determined because the agreement factors (
<it>R</it>
) for positive and negative values of
<it>Δ</it>
are close. The best fit (
<figref idrefs="fig6">Fig. 6</figref>
) parameters for positive and negative
<it>Δ</it>
values are:
<it>J</it>
= −6.3 cm
<sup>−1</sup>
,
<it>κ</it>
= 0. 91,
<it>λ</it>
= −160 cm
<sup>−1</sup>
,
<it>Δ</it>
= −859 cm
<sup>−1</sup>
, TIP = 3.8 × 10
<sup>−3</sup>
cm
<sup>3</sup>
mol
<sup>−1</sup>
with
<it>R</it>
(
<it>χ</it>
) = 9.5 × 10
<sup>−6</sup>
and
<it>J</it>
= −4.5 cm
<sup>−1</sup>
,
<it>κ</it>
= 0. 86,
<it>λ</it>
= −145 cm
<sup>−1</sup>
,
<it>Δ</it>
= 337 cm
<sup>−1</sup>
, TIP = 3.8 × 10
<sup>−3</sup>
cm
<sup>3</sup>
mol
<sup>−1</sup>
with
<it>R</it>
(
<it>χ</it>
) = 2.8 × 10
<sup>−5</sup>
. From these independent parameters can be obtained the dependent parameters:
<it>J</it>
<inf>eff</inf>
= −6.9,
<it>D</it>
<inf>eff</inf>
= 36.6,
<it>g</it>
<inf>
<it>z</it>
</inf>
= 7.25,
<it>g</it>
<inf>
<it>x</it>
</inf>
= 2.32 and
<it>J</it>
<inf>eff</inf>
= −15.6,
<it>D</it>
<inf>eff</inf>
= −8.7,
<it>g</it>
<inf>
<it>z</it>
</inf>
= 2.77,
<it>g</it>
<inf>
<it>x</it>
</inf>
= 4.79, respectively. The fitting parameters (
<it>κ</it>
,
<it>λ</it>
, and
<it>Δ</it>
) are in good accordance with previously reported values for distorted Co(
<scp>ii</scp>
) complexes (
<it>Δ</it>
is the energy gap between the
<sup>4</sup>
A
<inf>2g</inf>
and
<sup>4</sup>
E
<inf>g</inf>
states, which are generated from the splitting of the
<sup>4</sup>
T
<inf>1g</inf>
state by axial distortion). The
<it>Δ</it>
values indicate low distortion in agreement with the high
<it>χ</it>
<inf>M</inf>
<it>T</it>
values at room temperature. The
<it>λ</it>
values are smaller than that for the free ion (
<it>λ</it>
<inf>o</inf>
= 180 cm
<sup>−1</sup>
) because of covalent effects. The magnetic exchange interaction between the Co(
<scp>ii</scp>
) ions through the oxalato bridge can not be precisely determined from the fit of the magentic data and we can only conclude that the value of
<it>J</it>
must be in the range −4.5 to −6.3 cm
<sup>−1</sup>
.</p>
<p>Theoretical studies and experimental results have clearly shown that in oxalato-bridged dinuclear Ni(
<scp>ii</scp>
) and Cu(
<scp>ii</scp>
) complexes there exists a correlation between the electronegativity of the donor atoms of the peripheral ligands and the magnitude of the exchange interaction: the less electronegative the peripheral ligands, the larger is the magnetic exchange interaction.
<citref idrefs="cit15">15</citref>
It should be mentioned that only a few examples of structurally and magnetically characterized oxalato-bridged dinuclear Co(
<scp>ii</scp>
) complexes have been reported so far and all of them contain N
<inf>4</inf>
-tetradentate peripheral ligands.
<citref idrefs="cit16 cit17">16,17</citref>
In three instances (compounds
<compoundref idrefs="chem2">2–4</compoundref>
),
<citref idrefs="cit16">16</citref>
the oxalato ligand exhibits, as in
<compoundref idrefs="chem1">1</compoundref>
, the usual symmetric in-plane bis-chelating bridging mode, with
<it>J</it>
values from −8.8 cm
<sup>−1</sup>
to −11.4 cm
<sup>−1</sup>
(see
<tableref idrefs="tab2">Table 2</tableref>
). In one instance (compound
<compoundref idrefs="chem5">5</compoundref>
),
<citref idrefs="cit17">17</citref>
however, the oxalato ligand exhibits the unusual asymmetric tridentate bridging mode with a “
<it>J</it>
” value of −11.1 cm
<sup>−1</sup>
. This “
<it>J</it>
” value is for effective (
<it>S</it>
= 1/2) spins. Therefore, if we want to compare the
<it>J</it>
values for
<compoundref idrefs="chem1">1</compoundref>
and
<compoundref idrefs="chem5">5</compoundref>
, the relationship
<it>J</it>
≈ (9/25)
<it>J</it>
<inf>eff</inf>
should be used.
<citref idrefs="cit18">18</citref>
The recalculated value for
<compoundref idrefs="chem5">5</compoundref>
is then
<it>J</it>
= −11.1(9/25) = −4.00 cm
<sup>−1</sup>
. Because, the asymmetric tridentate bridging mode is less efficient in transmitting the magnetic exchange interaction than the symmetric tetradentate bridging mode, the
<it>J</it>
value for
<compoundref idrefs="chem5">5</compoundref>
is smaller than those observed for
<compoundref idrefs="chem1">1–4</compoundref>
. According to the expected trend, the
<it>J</it>
value for
<compoundref idrefs="chem1">1</compoundref>
, with N
<inf>3</inf>
O-donor peripheral ligands, is smaller than those observed for
<compoundref idrefs="chem2">2–4</compoundref>
, with N
<inf>4</inf>
-coordinated peripheral ligands.
<citref idrefs="cit16">16</citref>
We are now trying to obtain in our lab either other cyano-bridged mixed-valence Co
<sup>II</sup>
/Co
<sup>III</sup>
systems or homometallic Co
<sup>II</sup>
complexes using the same synthetic method and polydentate ligands such 2,2′-bipyridine, 2,2′-bipyrimidine, 2-carboxypyrimidine, 5-pyrimidyltetrazol and phenanthroline.</p>
<table-entry id="tab2">
<title>
<it>J</it>
values for (µ-oxalato)Co
<inf>2</inf>
complexes
<fnoteref idrefs="tab2fna"></fnoteref>
</title>
<table>
<tgroup cols="5">
<colspec colname="1"></colspec>
<colspec colname="2"></colspec>
<colspec colname="3"></colspec>
<colspec colname="4"></colspec>
<colspec colname="5"></colspec>
<thead>
<row>
<entry>Compound</entry>
<entry>Cobalt(
<scp>ii</scp>
) geometry</entry>
<entry>
<it>J</it>
/cm
<sup>−1</sup>
</entry>
<entry>Oxalato coordination mode</entry>
<entry>Reference</entry>
</row>
</thead>
<tfoot>
<row>
<entry namest="1" nameend="5">
<footnote id="tab2fna">bispicen =
<it>N</it>
,
<it>N</it>
′-bis(2-pyridylmethyl)-
<it>N</it>
,
<it>N</it>
′-dimethyl-1,2-ethanediamine; bispictn =
<it>N</it>
,
<it>N</it>
′-bis(2-pyridylmethyl)-1,3-propanediamine; bispicMe
<inf>2</inf>
en =
<it>N</it>
,
<it>N</it>
′-bis(2-pyridylmethyl)-1,2-ethanediamine; tpmc =
<it>N</it>
,
<it>N</it>
′,
<it>N</it>
″,
<it>N</it>
‴-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane.</footnote>
<footnote id="tab2fnb">No X-ray crystal structure.</footnote>
</entry>
</row>
</tfoot>
<tbody>
<row>
<entry>K[Co
<inf>3</inf>
(CN)
<inf>6</inf>
(ox)(H
<inf>2</inf>
O)
<inf>2</inf>
]·H
<inf>2</inf>
O
<compoundref idrefs="chem1">1</compoundref>
</entry>
<entry>Distorted octahedral CoN
<inf>3</inf>
O
<inf>3</inf>
</entry>
<entry align="char">−6.3</entry>
<entry>Symmetric tetradentate</entry>
<entry>This work</entry>
</row>
<row>
<entry>[Co
<inf>2</inf>
(ox)(bispicen)
<inf>2</inf>
](ClO
<inf>4</inf>
)
<inf>2</inf>
·H
<inf>2</inf>
O
<compoundref idrefs="chem2">2</compoundref>
</entry>
<entry>Distorted octahedral CoN
<inf>4</inf>
O
<inf>2</inf>
</entry>
<entry align="char">−8.8</entry>
<entry>Symmetric tetradentate</entry>
<entry>
<citref idrefs="cit16" position="baseline">16</citref>
</entry>
</row>
<row>
<entry>[Co
<inf>2</inf>
(ox)(bispictn)
<inf>2</inf>
](ClO
<inf>4</inf>
)
<inf>2</inf>
·H
<inf>2</inf>
O
<fnoteref idrefs="tab2fnb"></fnoteref>
<compoundref idrefs="chem3">3</compoundref>
</entry>
<entry>Distorted octahedral CoN
<inf>4</inf>
O
<inf>2</inf>
</entry>
<entry align="char">−9.4</entry>
<entry>Symmetric tetradentate</entry>
<entry>
<citref idrefs="cit16" position="baseline">16</citref>
</entry>
</row>
<row>
<entry>[Co
<inf>2</inf>
(ox)(bisMe
<inf>2</inf>
en)
<inf>2</inf>
](ClO
<inf>4</inf>
)
<inf>2</inf>
.H
<inf>2</inf>
O
<fnoteref idrefs="tab2fnb"></fnoteref>
<compoundref idrefs="chem4">4</compoundref>
</entry>
<entry>Distorted octahedral CoN
<inf>4</inf>
O
<inf>2</inf>
</entry>
<entry align="char">−11.4</entry>
<entry>Symmetric tetradentate</entry>
<entry>
<citref idrefs="cit16" position="baseline">16</citref>
</entry>
</row>
<row>
<entry>[[Co
<inf>2</inf>
(ox)(tpmc](ClO
<inf>4</inf>
)
<inf>2</inf>
·3H
<inf>2</inf>
O
<compoundref idrefs="chem5">5</compoundref>
</entry>
<entry>Distorted octahedral CoN
<inf>4</inf>
O
<inf>2</inf>
and CoN
<inf>5</inf>
O</entry>
<entry align="char">−4.0</entry>
<entry>Asymmetric tridentate</entry>
<entry>
<citref idrefs="cit17" position="baseline">17</citref>
</entry>
</row>
</tbody>
</tgroup>
</table>
</table-entry>
</subsect1>
</section>
<section>
<title>Experimental</title>
<subsect1>
<title>Synthesis of K[Co
<inf>3</inf>
(CN)
<inf>6</inf>
(ox)(H
<inf>2</inf>
O)
<inf>2</inf>
]·H
<inf>2</inf>
O (
<compoundref idrefs="chem1">1</compoundref>
)</title>
<p>A mixture of K
<inf>3</inf>
[Co(CN)
<inf>6</inf>
] (0.14 g, 0.42 mmol), CoCl
<inf>2</inf>
·6H
<inf>2</inf>
O (0.10 g, 0.42 mmol), pymca (0.058 g, 0.42 mmol) and water (10 mL) was added to a Teflon-lined stainless steel Parr acid digestion vessel and heated at 180 °C for 48 h under autogenous pressure. Slow cooling of the resulting solution to room temperature afforded red crystals of
<compoundref idrefs="chem1">1</compoundref>
. Yield: 35% (based on Co). Anal. Calcd for C
<inf>8</inf>
H
<inf>6</inf>
N
<inf>6</inf>
O
<inf>7</inf>
KCo
<inf>3</inf>
: C, 18,69; H, 1.18; N, 16.35. Found: C, 18.98; H, 1.31; N, 16.16%. The Co/K ratio was determined by SEM measurements to be 2.98.</p>
</subsect1>
<subsect1>
<title>Physical characterisation</title>
<p>Elemental analyses were carried out at the Instrumentation Scientific Centre of the University of Granada on a Fisons-Carlo Erba analyser model EA 1108. SEM measurements were performed on a electronic microscope Zeiss DSM 950. The IR spectra on powdered samples were recorded with a ThermoNicolet IR200FTIR by using KBr pellets. Magnetisation and variable-temperature (1.9–300 K) magnetic susceptibility measurements on polycrystalline samples were carried out with a MPMS XL-5 Quantum Design SQUID operating at different magnetic fields. Magnetization
<it>versus</it>
applied field measurements, were carried out at 2.0 K in the field range 0–5 T. The experimental susceptibilities were corrected for the diamagnetism of the constituent atoms by using Pascal's tables.</p>
</subsect1>
<subsect1>
<title>Crystallography</title>
<p>Single-crystal diffraction data for
<compoundref idrefs="chem1">1</compoundref>
were measured on a Bruker Smart Apex diffractometer, using graphite monochromated Mo-Kα radiation. Data were corrected for Lorentz and polarization effects. A total of 1782 reflections giving 1140 unique reflections were collected. The structure was solved by direct methods and refined on
<it>F</it>
<sup>2</sup>
by the SHELXL97 program.
<citref idrefs="cit19">19</citref>
Non-hydrogen atoms were refined with anisotropic displacement parameters and the hydrogen atoms could not be reliably positioned. Final
<it>R</it>
(
<it>F</it>
),
<it>wR</it>
(
<it>F</it>
<sup>2</sup>
), and goodness of fit agreement factors, as well as details on data collection and analyses for
<compoundref idrefs="chem1">1</compoundref>
and
<compoundref idrefs="chem2">2</compoundref>
can be found in
<tableref idrefs="tab3">Table 3</tableref>
.</p>
<p>CCDC reference number 631619.</p>
<p>For crystallographic data in CIF or other electronic format see DOI:
<url>10.1039/b618479k</url>
</p>
<table-entry id="tab3">
<title>Crystallographic data and refinement parameters of
<compoundref idrefs="chem1">1</compoundref>
</title>
<table>
<tgroup cols="2">
<colspec colname="1"></colspec>
<colspec colname="2"></colspec>
<tfoot>
<row>
<entry namest="1" nameend="2">
<footnote id="tab3fna">
<it>R</it>
(
<it>F</it>
) = ∑‖
<it>F</it>
<inf>o</inf>
| − |
<it>F</it>
<inf>c</inf>
‖/∑|
<it>F</it>
<inf>o</inf>
|,
<it>wR</it>
(
<it>F</it>
<sup>2</sup>
) = [∑
<it>w</it>
(
<it>F</it>
<inf>o</inf>
<sup>2</sup>
<it>F</it>
<inf>c</inf>
<sup>2</sup>
)
<sup>2</sup>
/∑
<it>wF</it>
<sup>4</sup>
]
<sup>1/2</sup>
.</footnote>
</entry>
</row>
</tfoot>
<tbody>
<row>
<entry>Formula</entry>
<entry>C
<inf>8</inf>
H
<inf>6</inf>
Co
<inf>3</inf>
KN
<inf>6</inf>
O
<inf>7</inf>
</entry>
</row>
<row>
<entry>
<it>M</it>
<inf>r</inf>
/g mol
<sup>−1</sup>
</entry>
<entry>514.08</entry>
</row>
<row>
<entry>Crystal system</entry>
<entry>Orthorhombic</entry>
</row>
<row>
<entry>Space group</entry>
<entry>
<it>Pnma</it>
</entry>
</row>
<row>
<entry>
<it>a</it>
</entry>
<entry>23.065(5)</entry>
</row>
<row>
<entry>
<it>b</it>
</entry>
<entry>7.4423(1)</entry>
</row>
<row>
<entry>
<it>c</it>
</entry>
<entry>9.846(2)</entry>
</row>
<row>
<entry>
<it>V</it>
<sup>3</sup>
</entry>
<entry>1690.1(6)</entry>
</row>
<row>
<entry>
<it>Z</it>
</entry>
<entry>4</entry>
</row>
<row>
<entry>
<it>T</it>
/K</entry>
<entry>293(1)</entry>
</row>
<row>
<entry>
<it>λ</it>
</entry>
<entry>0.71073</entry>
</row>
<row>
<entry>
<it>ρ</it>
<inf>calcd</inf>
/g cm
<sup>−3</sup>
</entry>
<entry>2.020</entry>
</row>
<row>
<entry>
<it>µ</it>
/mm
<sup>−1</sup>
</entry>
<entry>3.200</entry>
</row>
<row>
<entry>
<it>F</it>
(000)</entry>
<entry>1008</entry>
</row>
<row>
<entry>2
<it>θ</it>
range/°</entry>
<entry>3.54–51.88</entry>
</row>
<row>
<entry>
<it>h</it>
range/°</entry>
<entry>−28 <
<it>h</it>
< 28</entry>
</row>
<row>
<entry>
<it>k</it>
range/°</entry>
<entry>−8 <
<it>k</it>
< 9</entry>
</row>
<row>
<entry>
<it>l</it>
range/°</entry>
<entry>−12 <
<it>l</it>
< 9</entry>
</row>
<row>
<entry>
<it>N</it>
<inf>data</inf>
</entry>
<entry>1782</entry>
</row>
<row>
<entry>
<it>N</it>
<inf>obs</inf>
</entry>
<entry>1140</entry>
</row>
<row>
<entry>Data/restraints/parameters</entry>
<entry>1782/6/133</entry>
</row>
<row>
<entry>
<it>R</it>
(
<it>F</it>
)
<fnoteref idrefs="tab3fna"></fnoteref>
[
<it>I</it>
> 2
<it>σ</it>
(
<it>I</it>
)]</entry>
<entry>0.0639</entry>
</row>
<row>
<entry>
<it>wR</it>
(
<it>F</it>
<sup>2</sup>
)
<fnoteref idrefs="tab3fna"></fnoteref>
[
<it>I</it>
> 2
<it>σ</it>
(
<it>I</it>
)]</entry>
<entry>0.1693</entry>
</row>
<row>
<entry>Highest peak, deepest hole/e Å
<sup>−3</sup>
</entry>
<entry>1.18, −1.58</entry>
</row>
</tbody>
</tgroup>
</table>
</table-entry>
</subsect1>
</section>
</art-body>
<art-back>
<ack>
<p>This work was supported by the Spanish Ministerio de Ciencia y Tecnología through Project CTQ2005/0935 and Junta de Andalucia. A.R. thanks the Ramón Areces Foundation for a predoctoral fellowship.</p>
</ack>
<biblist>
<citgroup id="cit1">
<journalcit>
<citauth>
<fname>S.</fname>
<surname>Tanase</surname>
</citauth>
<citauth>
<fname>F.</fname>
<surname>Tuna</surname>
</citauth>
<citauth>
<fname>P.</fname>
<surname>Guionneau</surname>
</citauth>
<citauth>
<fname>T.</fname>
<surname>Maris</surname>
</citauth>
<citauth>
<fname>G.</fname>
<surname>Rombaut</surname>
</citauth>
<citauth>
<fname>C.</fname>
<surname>Mathionière</surname>
</citauth>
<citauth>
<fname>M.</fname>
<surname>Andruh</surname>
</citauth>
<citauth>
<fname>O.</fname>
<surname>Khan</surname>
</citauth>
<citauth>
<fname>J. P.</fname>
<surname>Sutter</surname>
</citauth>
<title>Inorg. Chem.</title>
<year>2003</year>
<volumeno>42</volumeno>
<pages>
<fpage>1625</fpage>
</pages>
</journalcit>
<citext> and references therein</citext>
</citgroup>
<citgroup id="cit2">
<journalcit>
<citauth>
<fname>J. M.</fname>
<surname>Herrera</surname>
</citauth>
<citauth>
<fname>V.</fname>
<surname>Marvaud</surname>
</citauth>
<citauth>
<fname>M.</fname>
<surname>Verdaguer</surname>
</citauth>
<citauth>
<fname>J.</fname>
<surname>Marrot</surname>
</citauth>
<citauth>
<fname>M.</fname>
<surname>Kalisz</surname>
</citauth>
<citauth>
<fname>C.</fname>
<surname>Mathoniere</surname>
</citauth>
<title>Angew. Chem., Int. Ed.</title>
<year>2004</year>
<volumeno>43</volumeno>
<pages>
<fpage>5468</fpage>
</pages>
</journalcit>
<citext> and references therein</citext>
</citgroup>
<citgroup id="cit3">
<citgroup id="cit3a">
<journalcit>
<citauth>
<fname>Y.</fname>
<surname>García</surname>
</citauth>
<citauth>
<fname>V.</fname>
<surname>Niel</surname>
</citauth>
<citauth>
<fname>M. C.</fname>
<surname>Muñoz</surname>
</citauth>
<citauth>
<fname>J. A.</fname>
<surname>Real</surname>
</citauth>
<title>Top. Curr. Chem.</title>
<year>2004</year>
<volumeno>233</volumeno>
<pages>
<fpage>229</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit3b">
<journalcit>
<citauth>
<fname>C. P.</fname>
<surname>Berlinguette</surname>
</citauth>
<citauth>
<fname>A.</fname>
<surname>Dragulescu-Andrasi</surname>
</citauth>
<citauth>
<fname>A.</fname>
<surname>Sieber</surname>
</citauth>
<citauth>
<fname>J. R.</fname>
<surname>Galán-Mascarós</surname>
</citauth>
<citauth>
<fname>H.-U.</fname>
<surname>Güdel</surname>
</citauth>
<citauth>
<fname>C.</fname>
<surname>Achim</surname>
</citauth>
<citauth>
<fname>K. R.</fname>
<surname>Dunbar</surname>
</citauth>
<title>J. Am. Chem. Soc.</title>
<year>2004</year>
<volumeno>126</volumeno>
<pages>
<fpage>6222</fpage>
</pages>
</journalcit>
</citgroup>
</citgroup>
<citgroup id="cit4">
<journalcit>
<citauth>
<fname>J. Y.</fname>
<surname>Yang</surname>
</citauth>
<citauth>
<fname>M. P.</fname>
<surname>Shores</surname>
</citauth>
<citauth>
<fname>J. J.</fname>
<surname>Sokol</surname>
</citauth>
<citauth>
<fname>J. R.</fname>
<surname>Long</surname>
</citauth>
<title>Inorg. Chem.</title>
<year>2003</year>
<volumeno>42</volumeno>
<pages>
<fpage>1403</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit5">
<journalcit>
<citauth>
<fname>J.</fname>
<surname>Lefebvre</surname>
</citauth>
<citauth>
<fname>R. J.</fname>
<surname>Batchelor</surname>
</citauth>
<citauth>
<fname>D. B.</fname>
<surname>Leznoff</surname>
</citauth>
<title>J. Am. Chem. Soc.</title>
<year>2004</year>
<volumeno>126</volumeno>
<pages>
<fpage>16117</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit6">
<citgroup id="cit6a">
<citation type="book">
<citauth>
<fname>K.</fname>
<surname>Inoue</surname>
</citauth>
,
<citauth>
<fname>S.</fname>
<surname>Ohkoshi</surname>
</citauth>
and
<citauth>
<fname>H.</fname>
<surname>Imai</surname>
</citauth>
,
<title>Magnetism: Molecules to Materials</title>
, ed.
<editor>J. S. Miller</editor>
and
<editor>M. Drillon</editor>
,
<citpub>Wiley-VCH</citpub>
,
<pubplace>Weinheim</pubplace>
,
<year>2005</year>
, vol. 5,
<biblscope>p. 41</biblscope>
and references therein</citation>
</citgroup>
<citgroup id="cit6b">
<journalcit>
<citauth>
<fname>E.</fname>
<surname>Coronado</surname>
</citauth>
<citauth>
<fname>C.</fname>
<surname>Giménez-Saiz</surname>
</citauth>
<citauth>
<fname>J. M.</fname>
<surname>Martínez-Agudo</surname>
</citauth>
<citauth>
<fname>A.</fname>
<surname>Nuez</surname>
</citauth>
<citauth>
<fname>F. M.</fname>
<surname>Romero</surname>
</citauth>
<citauth>
<fname>H.</fname>
<surname>Stoeckli-Evans</surname>
</citauth>
<title>Polyhedron</title>
<year>2003</year>
<volumeno>22</volumeno>
<pages>
<fpage>2435</fpage>
</pages>
</journalcit>
</citgroup>
</citgroup>
<citgroup id="cit7">
<citgroup id="cit7a">
<journalcit>
<citauth>
<fname>E.</fname>
<surname>Colacio</surname>
</citauth>
<citauth>
<fname>J. M.</fname>
<surname>Domínguez-Vera</surname>
</citauth>
<citauth>
<fname>F.</fname>
<surname>Lloret</surname>
</citauth>
<citauth>
<fname>J. M.</fname>
<surname>Moreno-Sánchez</surname>
</citauth>
<citauth>
<fname>R.</fname>
<surname>Kivekäs</surname>
</citauth>
<citauth>
<fname>A.</fname>
<surname>Rodríguez</surname>
</citauth>
<citauth>
<fname>R.</fname>
<surname>Sillanpää</surname>
</citauth>
<title>Inorg. Chem.</title>
<year>2003</year>
<volumeno>42</volumeno>
<pages>
<fpage>4209</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit7b">
<journalcit>
<citauth>
<fname>E.</fname>
<surname>Colacio</surname>
</citauth>
<citauth>
<fname>A.</fname>
<surname>Debdoubi</surname>
</citauth>
<citauth>
<fname>R.</fname>
<surname>Kivekäs</surname>
</citauth>
<citauth>
<fname>A.</fname>
<surname>Rodríguez</surname>
</citauth>
<title>Eur. J. Inorg. Chem.</title>
<year>2005</year>
<pages>
<fpage>2860</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit7c">
<journalcit>
<citauth>
<fname>A.</fname>
<surname>Rodríguez</surname>
</citauth>
<citauth>
<fname>H.</fname>
<surname>Sakiyama</surname>
</citauth>
<citauth>
<fname>N.</fname>
<surname>Masciocchi</surname>
</citauth>
<citauth>
<fname>S.</fname>
<surname>Galli</surname>
</citauth>
<citauth>
<fname>N.</fname>
<surname>Gálvez</surname>
</citauth>
<citauth>
<fname>F.</fname>
<surname>Lloret</surname>
</citauth>
<citauth>
<fname>E.</fname>
<surname>Colacio</surname>
</citauth>
<title>Inorg. Chem.</title>
<year>2005</year>
<volumeno>44</volumeno>
<pages>
<fpage>8399</fpage>
</pages>
</journalcit>
</citgroup>
</citgroup>
<citgroup id="cit8">
<journalcit>
<citauth>
<fname>J.-H.</fname>
<surname>Yu</surname>
</citauth>
<citauth>
<fname>J.-Q.</fname>
<surname>Xu</surname>
</citauth>
<citauth>
<fname>Q.-X.</fname>
<surname>Yang</surname>
</citauth>
<citauth>
<fname>L.-Y.</fname>
<surname>Pan</surname>
</citauth>
<citauth>
<fname>T.-G.</fname>
<surname>Wang</surname>
</citauth>
<citauth>
<fname>C.-H.</fname>
<surname></surname>
</citauth>
<citauth>
<fname>T.-H.</fname>
<surname>Ma</surname>
</citauth>
<title>J. Mol. Struct.</title>
<year>2003</year>
<volumeno>658</volumeno>
<pages>
<fpage>1</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit9">
<citgroup id="cit9a">
<journalcit>
<citauth>
<fname>A.</fname>
<surname>Ludi</surname>
</citauth>
<citauth>
<fname>H.</fname>
<surname>Güdel</surname>
</citauth>
<title>Helv. Chim. Acta</title>
<year>2006</year>
<volumeno>51</volumeno>
<pages>
<fpage>1968</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit9b">
<journalcit>
<citauth>
<fname>G. W.</fname>
<surname>Beall</surname>
</citauth>
<citauth>
<fname>D. F.</fname>
<surname>Mullica</surname>
</citauth>
<citauth>
<fname>W. O.</fname>
<surname>Mulligan</surname>
</citauth>
<title>Inorg. Chem.</title>
<year>1980</year>
<volumeno>19</volumeno>
<pages>
<fpage>2876</fpage>
</pages>
</journalcit>
</citgroup>
</citgroup>
<citgroup id="cit10">
<citation type="other">
<citauth>
<fname>M.</fname>
<surname>Shatruk</surname>
</citauth>
,
<citauth>
<fname>K.</fname>
<surname>Chambers</surname>
</citauth>
,
<citauth>
<fname>A. V.</fname>
<surname>Prosvirin</surname>
</citauth>
and
<citauth>
<fname>K. R.</fname>
<surname>Dunbar</surname>
</citauth>
,
<title>Inorg. Chem.</title>
,
<link type="doi">10.1021/ic061856t</link>
</citation>
</citgroup>
<citgroup id="cit11">
<journalcit>
<citauth>
<fname>J. Y.</fname>
<surname>Lu</surname>
</citauth>
<citauth>
<fname>J.</fname>
<surname>Macías</surname>
</citauth>
<citauth>
<fname>J.</fname>
<surname>Lu</surname>
</citauth>
<citauth>
<fname>J. E.</fname>
<surname>Cmaidalka</surname>
</citauth>
<title>Cryst. Growth Des.</title>
<year>2002</year>
<volumeno>6</volumeno>
<pages>
<fpage>485</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit12">
<journalcit>
<citauth>
<fname>A.</fname>
<surname>Rodríguez-Diéguez</surname>
</citauth>
<citauth>
<fname>E.</fname>
<surname>Colacio</surname>
</citauth>
<title>Chem. Commun.</title>
<year>2006</year>
<pages>
<fpage>4140</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit13">
<citgroup id="cit13a">
<journalcit>
<citauth>
<fname>Y.-Q.</fname>
<surname>Tian</surname>
</citauth>
<citauth>
<fname>C.-X.</fname>
<surname>Cai</surname>
</citauth>
<citauth>
<fname>X.-M.</fname>
<surname>Ren</surname>
</citauth>
<citauth>
<fname>C.-Y.</fname>
<surname>Duan</surname>
</citauth>
<citauth>
<fname>Y.</fname>
<surname>Xu</surname>
</citauth>
<citauth>
<fname>S.</fname>
<surname>Gao</surname>
</citauth>
<citauth>
<fname>X.-Z.</fname>
<surname>You</surname>
</citauth>
<title>Chem.–Eur. J.</title>
<year>2003</year>
<volumeno>9</volumeno>
<pages>
<fpage>5673</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit13b">
<journalcit>
<citauth>
<fname>X.-Y.</fname>
<surname>Wang</surname>
</citauth>
<citauth>
<fname>L.</fname>
<surname>Gan</surname>
</citauth>
<citauth>
<fname>S.-W.</fname>
<surname>Zhang</surname>
</citauth>
<citauth>
<fname>S.</fname>
<surname>Gao</surname>
</citauth>
<title>Inorg. Chem.</title>
<year>2004</year>
<volumeno>434</volumeno>
<pages>
<fpage>621</fpage>
</pages>
</journalcit>
</citgroup>
</citgroup>
<citgroup id="cit14">
<journalcit>
<citauth>
<fname>H.</fname>
<surname>Sakiyama</surname>
</citauth>
<title>Inorg. Chim. Acta</title>
<year>2006</year>
<volumeno>359</volumeno>
<pages>
<fpage>2097</fpage>
</pages>
</journalcit>
<journalcit>
<citauth>
<fname>H.</fname>
<surname>Sakiyama</surname>
</citauth>
<title>Inorg. Chim. Acta</title>
<year>2007</year>
<volumeno>360</volumeno>
<pages>
<fpage>715</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit15">
<journalcit>
<citauth>
<fname>P.</fname>
<surname>Román</surname>
</citauth>
<citauth>
<fname>C.</fname>
<surname>Guzmán-Miralles</surname>
</citauth>
<citauth>
<fname>A.</fname>
<surname>Luque</surname>
</citauth>
<citauth>
<fname>J. I.</fname>
<surname>Beitia</surname>
</citauth>
<citauth>
<fname>J.</fname>
<surname>Cano</surname>
</citauth>
<citauth>
<fname>F.</fname>
<surname>Lloret</surname>
</citauth>
<citauth>
<fname>M.</fname>
<surname>Julve</surname>
</citauth>
<citauth>
<fname>S.</fname>
<surname>Alvarez</surname>
</citauth>
<title>Inorg. Chem.</title>
<year>1996</year>
<volumeno>35</volumeno>
<pages>
<fpage>3741</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit16">
<journalcit>
<citauth>
<fname>J.</fname>
<surname>Glerup</surname>
</citauth>
<citauth>
<fname>P. A.</fname>
<surname>Goodson</surname>
</citauth>
<citauth>
<fname>D. J.</fname>
<surname>Hodgson</surname>
</citauth>
<citauth>
<fname>K.</fname>
<surname>Michelsen</surname>
</citauth>
<title>Inorg. Chem.</title>
<year>1995</year>
<volumeno>34</volumeno>
<pages>
<fpage>6255</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit17">
<journalcit>
<citauth>
<fname>V.</fname>
<surname>Kusigerski</surname>
</citauth>
<citauth>
<fname>V. V.</fname>
<surname>Spasojevic</surname>
</citauth>
<citauth>
<fname>N.</fname>
<surname>Dj. Lazarov</surname>
</citauth>
<citauth>
<fname>D. S.</fname>
<surname>Markovic</surname>
</citauth>
<citauth>
<fname>V. M.</fname>
<surname>Matic</surname>
</citauth>
<citauth>
<fname>S. P.</fname>
<surname>Sovilij</surname>
</citauth>
<citauth>
<fname>M.</fname>
<surname>Guillot</surname>
</citauth>
<title>Solid State Commun.</title>
<year>2003</year>
<volumeno>126</volumeno>
<pages>
<fpage>319</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit18">
<journalcit>
<citauth>
<fname>G.</fname>
<surname>Demunno</surname>
</citauth>
<citauth>
<fname>M.</fname>
<surname>Julve</surname>
</citauth>
<citauth>
<fname>F.</fname>
<surname>Lloret</surname>
</citauth>
<citauth>
<fname>J.</fname>
<surname>Faus</surname>
</citauth>
<citauth>
<fname>A.</fname>
<surname>Caneschi</surname>
</citauth>
<title>J. Chem. Soc., Dalton Trans.</title>
<year>1994</year>
<pages>
<fpage>1175</fpage>
</pages>
</journalcit>
</citgroup>
<citgroup id="cit19">
<citation type="software">
<citauth>
<fname>G. M.</fname>
<surname>Sheldrick</surname>
</citauth>
,
<title>SHELX97</title>
,
<citpub>University of Göttingen</citpub>
,
<pubplace>Germany</pubplace>
,
<year>1997</year>
</citation>
</citgroup>
</biblist>
<compoundgrp>
<compound id="chem1"></compound>
<compound id="chem2"></compound>
<compound id="chem3"></compound>
<compound id="chem4"></compound>
<compound id="chem5"></compound>
</compoundgrp>
<annotationgrp></annotationgrp>
<datagrp></datagrp>
<resourcegrp></resourcegrp>
</art-back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>A novel 3D cyano-bridged mixed-valence CoII/CoIII canted antiferromagnet constructed from defective cubanes. Synthesis, X-ray structure and magnetic properties</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>A novel 3D cyano-bridged mixed-valence CoII/CoIII canted antiferromagnet constructed from defective cubanes. Synthesis, X-ray structure and magnetic properties</title>
</titleInfo>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Rodríguez-Diéguez</namePart>
<affiliation>Departamento de Química Inorgánica, Universidad de Granada, 18071, Avenida Fuente nueva s/n, Granada, Spain</affiliation>
<affiliation>E-mail: ecolacio@ugr.es</affiliation>
</name>
<name type="personal">
<namePart type="given">Raikko</namePart>
<namePart type="family">Kivekäs</namePart>
<affiliation>Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 55, FIN-00014, University of Helsinki, Finland</affiliation>
</name>
<name type="personal">
<namePart type="given">Hiroshi</namePart>
<namePart type="family">Sakiyama</namePart>
<affiliation>Department of Material and Biological Chemistry, Faculty of Science, Yamagata UniVersity, 990-8560, Kojirakawa, 1-4-12, Yamagata, Japan</affiliation>
</name>
<name type="personal">
<namePart type="given">Ahderrahmane</namePart>
<namePart type="family">Debdoubi</namePart>
<affiliation>Unité de Calorimétrie et Materiaux, Université Abdelmalek Essaadi, Faculté des Sciences, 93002, P. O. Box 2121, Tétouan, Morocco</affiliation>
</name>
<name type="personal">
<namePart type="given">Enrique</namePart>
<namePart type="family">Colacio</namePart>
<affiliation>Departamento de Química Inorgánica, Universidad de Granada, 18071, Avenida Fuente nueva s/n, Granada, Spain</affiliation>
<affiliation>E-mail: ecolacio@ugr.es</affiliation>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="ART"></genre>
<originInfo>
<publisher>The Royal Society of Chemistry.</publisher>
<dateIssued encoding="w3cdtf">2007</dateIssued>
<copyrightDate encoding="w3cdtf">2007</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>The hydrothermal reaction of 2-pyrimidine-carboxamide, CoCl2·6H2O and K3[Co(CN)6] affords a novel mixed-valence CoII/CoIII 3D complex K[Co3(CN)6(ox)(H2O)2]·H2O, which contains cyano-bridged Co7 defective cubanes connected by oxalate and cyanide bridging groups and behaves as a canted antiferromagnet with Tc = 17.5 K.</abstract>
<note>The 3D mixed-valence CoII/CoIII complex K[Co3(CN)6(ox)(H2O)2]·H2O, which contains cyano-bridged Co7 defective cubanes connected by oxalate and cyanide bridging groups, behaves as a canted antiferromagnet with Tc = 17.5 K. [b618479k-ga.tif]</note>
<relatedItem type="host">
<titleInfo>
<title>Dalton Transactions</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Dalton Trans.</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<publisher>The Royal Society of Chemistry.</publisher>
</originInfo>
<identifier type="ISSN">1477-9226</identifier>
<identifier type="eISSN">1477-9234</identifier>
<identifier type="coden">ICHBD9</identifier>
<identifier type="RSC sercode">DT</identifier>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>0</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>21</number>
</detail>
<extent unit="pages">
<start>2145</start>
<end>2149</end>
<total>5</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">9AD92438DBD37D997642B0911E897383463C4E4C</identifier>
<identifier type="DOI">10.1039/b618479k</identifier>
<identifier type="ms-id">b618479k</identifier>
<accessCondition type="use and reproduction" contentType="copyright">This journal is © The Royal Society of Chemistry</accessCondition>
<recordInfo>
<recordContentSource>RSC Journals</recordContentSource>
<recordOrigin>The Royal Society of Chemistry</recordOrigin>
</recordInfo>
</mods>
</metadata>
<annexes>
<json:item>
<original>true</original>
<mimetype>image/gif</mimetype>
<extension>gif</extension>
<uri>https://api.istex.fr/document/9AD92438DBD37D997642B0911E897383463C4E4C/annexes/gif</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001225 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001225 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:9AD92438DBD37D997642B0911E897383463C4E4C
   |texte=   A novel 3D cyano-bridged mixed-valence CoII/CoIII canted antiferromagnet constructed from defective cubanes. Synthesis, X-ray structure and magnetic properties
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024