Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fischer–Tropsch-synthesis with nitrogen-rich syngas

Identifieur interne : 001201 ( Istex/Corpus ); précédent : 001200; suivant : 001202

Fischer–Tropsch-synthesis with nitrogen-rich syngas

Auteurs : A. Jess ; R. Popp ; K. Hedden

Source :

RBID : ISTEX:CFA0C6ED555165E4613AF2E79479D8479310601E

English descriptors

Abstract

An option in bringing remote natural gas reserves to the market is its conversion by Fischer–Tropsch (F–T)-synthesis into diesel oil and wax. The use of nitrogen-rich syngas (50vol.%) could be an alternative to classical processes with nitrogen-free syngas because the investment costs are probably lower: syngas is produced by partial oxidation with air, which eliminates the need for an air separation plant, and a process with nitrogen-rich syngas does not utilize a recycle loop and a recycle compressor. For the development of such a process, the kinetics of F–T-synthesis was studied on an Fe-catalyst, indicating that nitrogen only dilutes syngas, and therefore, has no influence on the kinetics if the partial pressures of carbon monoxide and hydrogen are kept constant. Subsequently, the F–T-synthesis with nitrogen-rich syngas was investigated in wall-cooled single tube reactors. Based on the experimental data, a mathematical model for industrial multitubular F–T-reactors was developed. Model calculations indicate that nitrogen plays an important role in the operation of multitubular reactors by helping to remove the heat generated by the F–T-reaction. This leads to an optimum diameter of the tubes of 70mm for nitrogen-rich syngas with respect to a stable and safe operation of the reactor, whereas for nitrogen-free syngas, the diameter is limited to about 45mm. The production rate of diesel oil and wax per tube is, in case of nitrogen-rich syngas, about three times higher, which will decrease the number of tubes and the investment costs of industrial multitubular reactors. Detailed economic studies are still necessary to validate or disprove whether and under which circumstances the proposed process with nitrogen-rich syngas is an attractive alternative to classical processes with nitrogen-free syngas, especially in areas with remote natural gas resources.

Url:
DOI: 10.1016/S0926-860X(99)00152-0

Links to Exploration step

ISTEX:CFA0C6ED555165E4613AF2E79479D8479310601E

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fischer–Tropsch-synthesis with nitrogen-rich syngas</title>
<author>
<name sortKey="Jess, A" sort="Jess, A" uniqKey="Jess A" first="A." last="Jess">A. Jess</name>
<affiliation>
<mods:affiliation>E-mail: jess@itc.rwth-aach.en</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut für Technische Chemie und Makromolekulare Chemie, RWTH Aachen, Worringer Weg 1, D-52074 Aachen, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Popp, R" sort="Popp, R" uniqKey="Popp R" first="R." last="Popp">R. Popp</name>
<affiliation>
<mods:affiliation>Engler-Bunte-Institut, Bereich Gas, Erdöl und Kohle, Universität Karlsruhe (TH), Richard-Willstätter-Allee 5, D-76131 Karlsruhe, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hedden, K" sort="Hedden, K" uniqKey="Hedden K" first="K." last="Hedden">K. Hedden</name>
<affiliation>
<mods:affiliation>Engler-Bunte-Institut, Bereich Gas, Erdöl und Kohle, Universität Karlsruhe (TH), Richard-Willstätter-Allee 5, D-76131 Karlsruhe, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CFA0C6ED555165E4613AF2E79479D8479310601E</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0926-860X(99)00152-0</idno>
<idno type="url">https://api.istex.fr/document/CFA0C6ED555165E4613AF2E79479D8479310601E/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001201</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001201</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Fischer–Tropsch-synthesis with nitrogen-rich syngas</title>
<author>
<name sortKey="Jess, A" sort="Jess, A" uniqKey="Jess A" first="A." last="Jess">A. Jess</name>
<affiliation>
<mods:affiliation>E-mail: jess@itc.rwth-aach.en</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut für Technische Chemie und Makromolekulare Chemie, RWTH Aachen, Worringer Weg 1, D-52074 Aachen, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Popp, R" sort="Popp, R" uniqKey="Popp R" first="R." last="Popp">R. Popp</name>
<affiliation>
<mods:affiliation>Engler-Bunte-Institut, Bereich Gas, Erdöl und Kohle, Universität Karlsruhe (TH), Richard-Willstätter-Allee 5, D-76131 Karlsruhe, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hedden, K" sort="Hedden, K" uniqKey="Hedden K" first="K." last="Hedden">K. Hedden</name>
<affiliation>
<mods:affiliation>Engler-Bunte-Institut, Bereich Gas, Erdöl und Kohle, Universität Karlsruhe (TH), Richard-Willstätter-Allee 5, D-76131 Karlsruhe, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Applied Catalysis A: General</title>
<title level="j" type="abbrev">APCATA</title>
<idno type="ISSN">0926-860X</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">186</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="321">321</biblScope>
<biblScope unit="page" to="342">342</biblScope>
</imprint>
<idno type="ISSN">0926-860X</idno>
</series>
<idno type="istex">CFA0C6ED555165E4613AF2E79479D8479310601E</idno>
<idno type="DOI">10.1016/S0926-860X(99)00152-0</idno>
<idno type="PII">S0926-860X(99)00152-0</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0926-860X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Fischer–Tropsch (F–T)-synthesis</term>
<term>Fixed bed reactor</term>
<term>Iron-catalyst</term>
<term>Multitubular reactor</term>
<term>Nitrogen-rich syngas</term>
<term>Parametric sensitivity</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An option in bringing remote natural gas reserves to the market is its conversion by Fischer–Tropsch (F–T)-synthesis into diesel oil and wax. The use of nitrogen-rich syngas (50vol.%) could be an alternative to classical processes with nitrogen-free syngas because the investment costs are probably lower: syngas is produced by partial oxidation with air, which eliminates the need for an air separation plant, and a process with nitrogen-rich syngas does not utilize a recycle loop and a recycle compressor. For the development of such a process, the kinetics of F–T-synthesis was studied on an Fe-catalyst, indicating that nitrogen only dilutes syngas, and therefore, has no influence on the kinetics if the partial pressures of carbon monoxide and hydrogen are kept constant. Subsequently, the F–T-synthesis with nitrogen-rich syngas was investigated in wall-cooled single tube reactors. Based on the experimental data, a mathematical model for industrial multitubular F–T-reactors was developed. Model calculations indicate that nitrogen plays an important role in the operation of multitubular reactors by helping to remove the heat generated by the F–T-reaction. This leads to an optimum diameter of the tubes of 70mm for nitrogen-rich syngas with respect to a stable and safe operation of the reactor, whereas for nitrogen-free syngas, the diameter is limited to about 45mm. The production rate of diesel oil and wax per tube is, in case of nitrogen-rich syngas, about three times higher, which will decrease the number of tubes and the investment costs of industrial multitubular reactors. Detailed economic studies are still necessary to validate or disprove whether and under which circumstances the proposed process with nitrogen-rich syngas is an attractive alternative to classical processes with nitrogen-free syngas, especially in areas with remote natural gas resources.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>A. Jess</name>
<affiliations>
<json:string>E-mail: jess@itc.rwth-aach.en</json:string>
<json:string>Institut für Technische Chemie und Makromolekulare Chemie, RWTH Aachen, Worringer Weg 1, D-52074 Aachen, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. Popp</name>
<affiliations>
<json:string>Engler-Bunte-Institut, Bereich Gas, Erdöl und Kohle, Universität Karlsruhe (TH), Richard-Willstätter-Allee 5, D-76131 Karlsruhe, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>K. Hedden</name>
<affiliations>
<json:string>Engler-Bunte-Institut, Bereich Gas, Erdöl und Kohle, Universität Karlsruhe (TH), Richard-Willstätter-Allee 5, D-76131 Karlsruhe, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Fischer–Tropsch (F–T)-synthesis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Iron-catalyst</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Nitrogen-rich syngas</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Fixed bed reactor</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Multitubular reactor</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Parametric sensitivity</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>An option in bringing remote natural gas reserves to the market is its conversion by Fischer–Tropsch (F–T)-synthesis into diesel oil and wax. The use of nitrogen-rich syngas (50vol.%) could be an alternative to classical processes with nitrogen-free syngas because the investment costs are probably lower: syngas is produced by partial oxidation with air, which eliminates the need for an air separation plant, and a process with nitrogen-rich syngas does not utilize a recycle loop and a recycle compressor. For the development of such a process, the kinetics of F–T-synthesis was studied on an Fe-catalyst, indicating that nitrogen only dilutes syngas, and therefore, has no influence on the kinetics if the partial pressures of carbon monoxide and hydrogen are kept constant. Subsequently, the F–T-synthesis with nitrogen-rich syngas was investigated in wall-cooled single tube reactors. Based on the experimental data, a mathematical model for industrial multitubular F–T-reactors was developed. Model calculations indicate that nitrogen plays an important role in the operation of multitubular reactors by helping to remove the heat generated by the F–T-reaction. This leads to an optimum diameter of the tubes of 70mm for nitrogen-rich syngas with respect to a stable and safe operation of the reactor, whereas for nitrogen-free syngas, the diameter is limited to about 45mm. The production rate of diesel oil and wax per tube is, in case of nitrogen-rich syngas, about three times higher, which will decrease the number of tubes and the investment costs of industrial multitubular reactors. Detailed economic studies are still necessary to validate or disprove whether and under which circumstances the proposed process with nitrogen-rich syngas is an attractive alternative to classical processes with nitrogen-free syngas, especially in areas with remote natural gas resources.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>6</keywordCount>
<abstractCharCount>1886</abstractCharCount>
<pdfWordCount>10365</pdfWordCount>
<pdfCharCount>59444</pdfCharCount>
<pdfPageCount>22</pdfPageCount>
<abstractWordCount>282</abstractWordCount>
</qualityIndicators>
<title>Fischer–Tropsch-synthesis with nitrogen-rich syngas</title>
<pii>
<json:string>S0926-860X(99)00152-0</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>186</volume>
<pii>
<json:string>S0926-860X(00)X0106-8</json:string>
</pii>
<pages>
<last>342</last>
<first>321</first>
</pages>
<issn>
<json:string>0926-860X</json:string>
</issn>
<issue>1–2</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Applied Catalysis A: General</title>
<publicationDate>1999</publicationDate>
</host>
<categories>
<wos>
<json:string>ENVIRONMENTAL SCIENCES</json:string>
<json:string>CHEMISTRY, PHYSICAL</json:string>
</wos>
</categories>
<publicationDate>1999</publicationDate>
<copyrightDate>1999</copyrightDate>
<doi>
<json:string>10.1016/S0926-860X(99)00152-0</json:string>
</doi>
<id>CFA0C6ED555165E4613AF2E79479D8479310601E</id>
<score>0.045814328</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/CFA0C6ED555165E4613AF2E79479D8479310601E/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/CFA0C6ED555165E4613AF2E79479D8479310601E/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/CFA0C6ED555165E4613AF2E79479D8479310601E/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Fischer–Tropsch-synthesis with nitrogen-rich syngas</title>
<title level="a" type="sub" xml:lang="en">Fundamentals and reactor design aspects</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©1999 Elsevier Science B.V.</p>
</availability>
<date>1999</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Simplified block diagram of the proposed low-cost process for the conversion of natural gas to higher hydrocarbons based on nitrogen-rich syngas.</note>
<note type="content">Fig. 2: Simplified flow scheme of the semi-technical unit for the conversion of natural gas to higher hydrocarbons (R: F–T-reactor, HS: hot separator, S: separator, H: heater, C: condenser; for details of desulphurization and syngas generation see [11,12]; for the F–T-synthesis unit, see [16]).</note>
<note type="content">Fig. 3: Comparison of a common technical multitubular F–T-reactor with the semi-technical single tube reactor used in the experiments.</note>
<note type="content">Fig. 4: Typical product-distribution of F–T-synthesis obtained with the semi-technical F–T-unit as shown in Fig. 2 (Note that CO2 and CH4 already present in syngas are not counted as products; temperature (depending on axial and radial position): 225–260°C; for details see [16,17]).</note>
<note type="content">Fig. 5: Steady state-equations of the model for the F–T-reactor.</note>
<note type="content">Fig. 6: Kinetic data of the three main reactions during F–T-synthesis on the iron-catalyst (ARGE-Lurgi-Ruhrchemie).</note>
<note type="content">Fig. 7: Comparison of computed and experimental results: axial temperature profiles and CO-conversion of the first semi-technical F–T-reactor for different steam contents of syngas and for different total pressures (symbols: measured values; lines: model calculation).</note>
<note type="content">Fig. 8: Axial temperature profiles of a single tube of a multitubular F–T-reactor for nitrogen-free and nitrogen-rich syngas; for comparison, the adiabatic operation in each case is also shown (Tcool=Tin; optimal working temperature Topt=250°C to keep a safe distance to the deactivation temperature Tdeact of 260°C as well as to reach the highest possible CO-conversion).</note>
<note type="content">Fig. 9: Typical radial profiles of temperature and of reaction rate in a single tube of a multitubular F–T-reactor at the axial position z (250°C), where the optimal temperature of 250°C is reached (computed results; conditions see Fig. 8).</note>
<note type="content">Fig. 10: Parametric sensitivity of the F–T-reactor towards Tcool for different tube diameters and nitrogen-free syngas (volume rate of syngas according to τe=25s; other conditions as in Fig. 8; dot-dash lines: hypothetical profiles as T>Tdeact=260°C).</note>
<note type="content">Fig. 11: Parametric sensitivity of the F–T-reactor towards Tcool for different tube diameters and nitrogen-rich syngas (volume rate of syngas according to τe=25s; other conditions as in Fig. 8; dot-dash lines: hypothetical profiles as T>Tdeact=260°C).</note>
<note type="content">Fig. 12: Influence of Tcool on the maximum axial temperature for nitrogen-rich and nitrogen-free syngas and a tube diameter of 70mm (reaction conditions as in Fig. 8).</note>
<note type="content">Fig. 13: Determination of the critical working temperature with respect to a temperature runaway for nitrogen-rich and nitrogen-free syngas and a tube diameter of 70mm (reaction conditions as in Fig. 8).</note>
<note type="content">Fig. 14: Influence of the diameter of the single tubes of a F–T-reactor on the critical maximum temperature for nitrogen-rich and nitrogen-free syngas (volume rate of syngas according to τe=25s; other conditions as in Fig. 8).</note>
<note type="content">Fig. 15: Influence of the superficial gas velocity (with respect to standard conditions) uS,n on the effective radial heat conductivity λrad,eff and on the inner wall heat transfer coefficient αW,i (remarks: αW,iand λeff are within the regions discussed here practically independent of the tube diameter and of the gas composition, i.e. identical for nitrogen-free and nitrogen-rich syngas; both coefficients were calculated with the correlations given in [20–23] for particles (cylinders) with a length of 5mm and a diameter of 2.5mm; for comparison: outer wall heat transfer coefficient αW,o=365W/(m2K).</note>
<note type="content">Fig. 16: Parametric sensitivity of the F–T-reactor towards Tcool for a nitrogen-free syngas at a relative high feed rate of syngas of 85m3 syngas/h (STP) (other reaction conditions as in Fig. 8; dot-dash line: hypothetical profile as T>Tdeact=260°C).</note>
<note type="content">Fig. 17: Data of the technical fixed-bed multitubular ARGE-reactor as operated in South Africa (data were calculated with the reactor model; reaction conditions as given in [24–26]; the ARGE-reactor is equipped with 2052 single tubes with an inner diameter of 46mm).</note>
<note type="content">Fig. 18: Influence of the tube diameter on the production rate of diesel oil and wax per tube (volume rate of syngas according to τe=25s; other conditions as in Fig. 8).</note>
<note type="content">Fig. 19: Flow sheet of the proposed low-cost process for the conversion of natural gas to diesel oil and wax based on nitrogen-rich syngas.</note>
<note type="content">Fig. 20: Influence of the total pressure on the production rate of diesel oil and wax per tube for nitrogen-rich syngas and a tube diameter of 70mm (first multitubular F–T-reactor; volume rate of syngas according to a pressure loss of 2bar, i.e. 33m3/h (STP) at 8bar and 74m3/h (STP) at 40bar; Tcool=Tin; Tmax=Topt=250°C; syngas without steam as in Fig. 8).</note>
<note type="content">Fig. 21: Influence of the steam content of syngas on the critical tube diameter with respect to a temperature runaway of the first multitubular F–T-reactor (Tcool=Tin; Tmax=Topt=250°C; volume rate of syngas according to τe=25s; pt=24bar (nitrogen-rich syngas) and 12bar (nitrogen-free syngas); molar ratios of syngas components as in Fig. 8).</note>
<note type="content">Fig. 22: Influence of the inlet temperature of syngas on the performance of the first multitubular reactor of the proposed low-cost process for the conversion of nitrogen-rich syngas to diesel oil and wax (dT=70mm; Tmax=Topt=250°C; other reaction conditions as in Table 2).</note>
<note type="content">Fig. 23: Axial temperature profiles of the single tubes of the first and second multitubular F–T-reactor of the proposed low-cost process with nitrogen-rich syngas for the conversion of natural gas to higher hydrocarbons (reaction conditions as in Table 2).</note>
<note type="content">Table 1: Global natural gas reserves [2]</note>
<note type="content">Table 2: Basic data of an industrial plant of the proposed low-cost process for the conversion of natural gas to diesel oil and wax on the basis of nitrogen-rich syngas with about 50vol.% nitrogen (availability of the plant: 8000h per annum)</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Fischer–Tropsch-synthesis with nitrogen-rich syngas</title>
<title level="a" type="sub" xml:lang="en">Fundamentals and reactor design aspects</title>
<author xml:id="author-1">
<persName>
<forename type="first">A.</forename>
<surname>Jess</surname>
</persName>
<email>jess@itc.rwth-aach.en</email>
<note type="correspondence">
<p>Corresponding author. Tel.: +49-241-80-6470; fax: +49-241-8888177</p>
</note>
<affiliation>Institut für Technische Chemie und Makromolekulare Chemie, RWTH Aachen, Worringer Weg 1, D-52074 Aachen, Germany</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">R.</forename>
<surname>Popp</surname>
</persName>
<affiliation>Engler-Bunte-Institut, Bereich Gas, Erdöl und Kohle, Universität Karlsruhe (TH), Richard-Willstätter-Allee 5, D-76131 Karlsruhe, Germany</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">K.</forename>
<surname>Hedden</surname>
</persName>
<affiliation>Engler-Bunte-Institut, Bereich Gas, Erdöl und Kohle, Universität Karlsruhe (TH), Richard-Willstätter-Allee 5, D-76131 Karlsruhe, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Applied Catalysis A: General</title>
<title level="j" type="abbrev">APCATA</title>
<idno type="pISSN">0926-860X</idno>
<idno type="PII">S0926-860X(00)X0106-8</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999"></date>
<biblScope unit="volume">186</biblScope>
<biblScope unit="issue">1–2</biblScope>
<biblScope unit="page" from="321">321</biblScope>
<biblScope unit="page" to="342">342</biblScope>
</imprint>
</monogr>
<idno type="istex">CFA0C6ED555165E4613AF2E79479D8479310601E</idno>
<idno type="DOI">10.1016/S0926-860X(99)00152-0</idno>
<idno type="PII">S0926-860X(99)00152-0</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1999</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>An option in bringing remote natural gas reserves to the market is its conversion by Fischer–Tropsch (F–T)-synthesis into diesel oil and wax. The use of nitrogen-rich syngas (50vol.%) could be an alternative to classical processes with nitrogen-free syngas because the investment costs are probably lower: syngas is produced by partial oxidation with air, which eliminates the need for an air separation plant, and a process with nitrogen-rich syngas does not utilize a recycle loop and a recycle compressor. For the development of such a process, the kinetics of F–T-synthesis was studied on an Fe-catalyst, indicating that nitrogen only dilutes syngas, and therefore, has no influence on the kinetics if the partial pressures of carbon monoxide and hydrogen are kept constant. Subsequently, the F–T-synthesis with nitrogen-rich syngas was investigated in wall-cooled single tube reactors. Based on the experimental data, a mathematical model for industrial multitubular F–T-reactors was developed. Model calculations indicate that nitrogen plays an important role in the operation of multitubular reactors by helping to remove the heat generated by the F–T-reaction. This leads to an optimum diameter of the tubes of 70mm for nitrogen-rich syngas with respect to a stable and safe operation of the reactor, whereas for nitrogen-free syngas, the diameter is limited to about 45mm. The production rate of diesel oil and wax per tube is, in case of nitrogen-rich syngas, about three times higher, which will decrease the number of tubes and the investment costs of industrial multitubular reactors. Detailed economic studies are still necessary to validate or disprove whether and under which circumstances the proposed process with nitrogen-rich syngas is an attractive alternative to classical processes with nitrogen-free syngas, especially in areas with remote natural gas resources.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Fischer–Tropsch (F–T)-synthesis</term>
</item>
<item>
<term>Iron-catalyst</term>
</item>
<item>
<term>Nitrogen-rich syngas</term>
</item>
<item>
<term>Fixed bed reactor</term>
</item>
<item>
<term>Multitubular reactor</term>
</item>
<item>
<term>Parametric sensitivity</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1999">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/CFA0C6ED555165E4613AF2E79479D8479310601E/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
<istex:entity SYSTEM="gr10" NDATA="IMAGE" name="gr10"></istex:entity>
<istex:entity SYSTEM="gr11" NDATA="IMAGE" name="gr11"></istex:entity>
<istex:entity SYSTEM="gr12" NDATA="IMAGE" name="gr12"></istex:entity>
<istex:entity SYSTEM="gr13" NDATA="IMAGE" name="gr13"></istex:entity>
<istex:entity SYSTEM="gr14" NDATA="IMAGE" name="gr14"></istex:entity>
<istex:entity SYSTEM="gr15" NDATA="IMAGE" name="gr15"></istex:entity>
<istex:entity SYSTEM="gr16" NDATA="IMAGE" name="gr16"></istex:entity>
<istex:entity SYSTEM="gr17" NDATA="IMAGE" name="gr17"></istex:entity>
<istex:entity SYSTEM="gr18" NDATA="IMAGE" name="gr18"></istex:entity>
<istex:entity SYSTEM="gr19" NDATA="IMAGE" name="gr19"></istex:entity>
<istex:entity SYSTEM="gr20" NDATA="IMAGE" name="gr20"></istex:entity>
<istex:entity SYSTEM="gr21" NDATA="IMAGE" name="gr21"></istex:entity>
<istex:entity SYSTEM="gr22" NDATA="IMAGE" name="gr22"></istex:entity>
<istex:entity SYSTEM="gr23" NDATA="IMAGE" name="gr23"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>APCATA</jid>
<aid>4687</aid>
<ce:pii>S0926-860X(99)00152-0</ce:pii>
<ce:doi>10.1016/S0926-860X(99)00152-0</ce:doi>
<ce:copyright type="full-transfer" year="1999">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>Fischer–Tropsch-synthesis with nitrogen-rich syngas</ce:title>
<ce:subtitle>Fundamentals and reactor design aspects</ce:subtitle>
<ce:author-group>
<ce:author>
<ce:given-name>A.</ce:given-name>
<ce:surname>Jess</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>jess@itc.rwth-aach.en</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>R.</ce:given-name>
<ce:surname>Popp</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>K.</ce:given-name>
<ce:surname>Hedden</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Institut für Technische Chemie und Makromolekulare Chemie, RWTH Aachen, Worringer Weg 1, D-52074 Aachen, Germany</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Engler-Bunte-Institut, Bereich Gas, Erdöl und Kohle, Universität Karlsruhe (TH), Richard-Willstätter-Allee 5, D-76131 Karlsruhe, Germany</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: +49-241-80-6470; fax: +49-241-8888177</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>An option in bringing remote natural gas reserves to the market is its conversion by Fischer–Tropsch (F–T)-synthesis into diesel oil and wax. The use of nitrogen-rich syngas (50
<ce:hsp sp="0.25"></ce:hsp>
vol.%) could be an alternative to classical processes with nitrogen-free syngas because the investment costs are probably lower: syngas is produced by partial oxidation with air, which eliminates the need for an air separation plant, and a process with nitrogen-rich syngas does not utilize a recycle loop and a recycle compressor.</ce:simple-para>
<ce:simple-para>For the development of such a process, the kinetics of F–T-synthesis was studied on an Fe-catalyst, indicating that nitrogen only dilutes syngas, and therefore, has no influence on the kinetics if the partial pressures of carbon monoxide and hydrogen are kept constant. Subsequently, the F–T-synthesis with nitrogen-rich syngas was investigated in wall-cooled single tube reactors.</ce:simple-para>
<ce:simple-para>Based on the experimental data, a mathematical model for industrial multitubular F–T-reactors was developed. Model calculations indicate that nitrogen plays an important role in the operation of multitubular reactors by helping to remove the heat generated by the F–T-reaction. This leads to an optimum diameter of the tubes of 70
<ce:hsp sp="0.25"></ce:hsp>
mm for nitrogen-rich syngas with respect to a stable and safe operation of the reactor, whereas for nitrogen-free syngas, the diameter is limited to about 45
<ce:hsp sp="0.25"></ce:hsp>
mm. The production rate of diesel oil and wax per tube is, in case of nitrogen-rich syngas, about three times higher, which will decrease the number of tubes and the investment costs of industrial multitubular reactors. Detailed economic studies are still necessary to validate or disprove whether and under which circumstances the proposed process with nitrogen-rich syngas is an attractive alternative to classical processes with nitrogen-free syngas, especially in areas with remote natural gas resources.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword" xml:lang="en">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Fischer–Tropsch (F–T)-synthesis</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Iron-catalyst</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Nitrogen-rich syngas</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Fixed bed reactor</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Multitubular reactor</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Parametric sensitivity</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Fischer–Tropsch-synthesis with nitrogen-rich syngas</title>
<subTitle>Fundamentals and reactor design aspects</subTitle>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Fischer–Tropsch-synthesis with nitrogen-rich syngas</title>
<subTitle>Fundamentals and reactor design aspects</subTitle>
</titleInfo>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">Jess</namePart>
<affiliation>E-mail: jess@itc.rwth-aach.en</affiliation>
<affiliation>Institut für Technische Chemie und Makromolekulare Chemie, RWTH Aachen, Worringer Weg 1, D-52074 Aachen, Germany</affiliation>
<description>Corresponding author. Tel.: +49-241-80-6470; fax: +49-241-8888177</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Popp</namePart>
<affiliation>Engler-Bunte-Institut, Bereich Gas, Erdöl und Kohle, Universität Karlsruhe (TH), Richard-Willstätter-Allee 5, D-76131 Karlsruhe, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K.</namePart>
<namePart type="family">Hedden</namePart>
<affiliation>Engler-Bunte-Institut, Bereich Gas, Erdöl und Kohle, Universität Karlsruhe (TH), Richard-Willstätter-Allee 5, D-76131 Karlsruhe, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1999</dateIssued>
<copyrightDate encoding="w3cdtf">1999</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">An option in bringing remote natural gas reserves to the market is its conversion by Fischer–Tropsch (F–T)-synthesis into diesel oil and wax. The use of nitrogen-rich syngas (50vol.%) could be an alternative to classical processes with nitrogen-free syngas because the investment costs are probably lower: syngas is produced by partial oxidation with air, which eliminates the need for an air separation plant, and a process with nitrogen-rich syngas does not utilize a recycle loop and a recycle compressor. For the development of such a process, the kinetics of F–T-synthesis was studied on an Fe-catalyst, indicating that nitrogen only dilutes syngas, and therefore, has no influence on the kinetics if the partial pressures of carbon monoxide and hydrogen are kept constant. Subsequently, the F–T-synthesis with nitrogen-rich syngas was investigated in wall-cooled single tube reactors. Based on the experimental data, a mathematical model for industrial multitubular F–T-reactors was developed. Model calculations indicate that nitrogen plays an important role in the operation of multitubular reactors by helping to remove the heat generated by the F–T-reaction. This leads to an optimum diameter of the tubes of 70mm for nitrogen-rich syngas with respect to a stable and safe operation of the reactor, whereas for nitrogen-free syngas, the diameter is limited to about 45mm. The production rate of diesel oil and wax per tube is, in case of nitrogen-rich syngas, about three times higher, which will decrease the number of tubes and the investment costs of industrial multitubular reactors. Detailed economic studies are still necessary to validate or disprove whether and under which circumstances the proposed process with nitrogen-rich syngas is an attractive alternative to classical processes with nitrogen-free syngas, especially in areas with remote natural gas resources.</abstract>
<note type="content">Fig. 1: Simplified block diagram of the proposed low-cost process for the conversion of natural gas to higher hydrocarbons based on nitrogen-rich syngas.</note>
<note type="content">Fig. 2: Simplified flow scheme of the semi-technical unit for the conversion of natural gas to higher hydrocarbons (R: F–T-reactor, HS: hot separator, S: separator, H: heater, C: condenser; for details of desulphurization and syngas generation see [11,12]; for the F–T-synthesis unit, see [16]).</note>
<note type="content">Fig. 3: Comparison of a common technical multitubular F–T-reactor with the semi-technical single tube reactor used in the experiments.</note>
<note type="content">Fig. 4: Typical product-distribution of F–T-synthesis obtained with the semi-technical F–T-unit as shown in Fig. 2 (Note that CO2 and CH4 already present in syngas are not counted as products; temperature (depending on axial and radial position): 225–260°C; for details see [16,17]).</note>
<note type="content">Fig. 5: Steady state-equations of the model for the F–T-reactor.</note>
<note type="content">Fig. 6: Kinetic data of the three main reactions during F–T-synthesis on the iron-catalyst (ARGE-Lurgi-Ruhrchemie).</note>
<note type="content">Fig. 7: Comparison of computed and experimental results: axial temperature profiles and CO-conversion of the first semi-technical F–T-reactor for different steam contents of syngas and for different total pressures (symbols: measured values; lines: model calculation).</note>
<note type="content">Fig. 8: Axial temperature profiles of a single tube of a multitubular F–T-reactor for nitrogen-free and nitrogen-rich syngas; for comparison, the adiabatic operation in each case is also shown (Tcool=Tin; optimal working temperature Topt=250°C to keep a safe distance to the deactivation temperature Tdeact of 260°C as well as to reach the highest possible CO-conversion).</note>
<note type="content">Fig. 9: Typical radial profiles of temperature and of reaction rate in a single tube of a multitubular F–T-reactor at the axial position z (250°C), where the optimal temperature of 250°C is reached (computed results; conditions see Fig. 8).</note>
<note type="content">Fig. 10: Parametric sensitivity of the F–T-reactor towards Tcool for different tube diameters and nitrogen-free syngas (volume rate of syngas according to τe=25s; other conditions as in Fig. 8; dot-dash lines: hypothetical profiles as T>Tdeact=260°C).</note>
<note type="content">Fig. 11: Parametric sensitivity of the F–T-reactor towards Tcool for different tube diameters and nitrogen-rich syngas (volume rate of syngas according to τe=25s; other conditions as in Fig. 8; dot-dash lines: hypothetical profiles as T>Tdeact=260°C).</note>
<note type="content">Fig. 12: Influence of Tcool on the maximum axial temperature for nitrogen-rich and nitrogen-free syngas and a tube diameter of 70mm (reaction conditions as in Fig. 8).</note>
<note type="content">Fig. 13: Determination of the critical working temperature with respect to a temperature runaway for nitrogen-rich and nitrogen-free syngas and a tube diameter of 70mm (reaction conditions as in Fig. 8).</note>
<note type="content">Fig. 14: Influence of the diameter of the single tubes of a F–T-reactor on the critical maximum temperature for nitrogen-rich and nitrogen-free syngas (volume rate of syngas according to τe=25s; other conditions as in Fig. 8).</note>
<note type="content">Fig. 15: Influence of the superficial gas velocity (with respect to standard conditions) uS,n on the effective radial heat conductivity λrad,eff and on the inner wall heat transfer coefficient αW,i (remarks: αW,iand λeff are within the regions discussed here practically independent of the tube diameter and of the gas composition, i.e. identical for nitrogen-free and nitrogen-rich syngas; both coefficients were calculated with the correlations given in [20–23] for particles (cylinders) with a length of 5mm and a diameter of 2.5mm; for comparison: outer wall heat transfer coefficient αW,o=365W/(m2K).</note>
<note type="content">Fig. 16: Parametric sensitivity of the F–T-reactor towards Tcool for a nitrogen-free syngas at a relative high feed rate of syngas of 85m3 syngas/h (STP) (other reaction conditions as in Fig. 8; dot-dash line: hypothetical profile as T>Tdeact=260°C).</note>
<note type="content">Fig. 17: Data of the technical fixed-bed multitubular ARGE-reactor as operated in South Africa (data were calculated with the reactor model; reaction conditions as given in [24–26]; the ARGE-reactor is equipped with 2052 single tubes with an inner diameter of 46mm).</note>
<note type="content">Fig. 18: Influence of the tube diameter on the production rate of diesel oil and wax per tube (volume rate of syngas according to τe=25s; other conditions as in Fig. 8).</note>
<note type="content">Fig. 19: Flow sheet of the proposed low-cost process for the conversion of natural gas to diesel oil and wax based on nitrogen-rich syngas.</note>
<note type="content">Fig. 20: Influence of the total pressure on the production rate of diesel oil and wax per tube for nitrogen-rich syngas and a tube diameter of 70mm (first multitubular F–T-reactor; volume rate of syngas according to a pressure loss of 2bar, i.e. 33m3/h (STP) at 8bar and 74m3/h (STP) at 40bar; Tcool=Tin; Tmax=Topt=250°C; syngas without steam as in Fig. 8).</note>
<note type="content">Fig. 21: Influence of the steam content of syngas on the critical tube diameter with respect to a temperature runaway of the first multitubular F–T-reactor (Tcool=Tin; Tmax=Topt=250°C; volume rate of syngas according to τe=25s; pt=24bar (nitrogen-rich syngas) and 12bar (nitrogen-free syngas); molar ratios of syngas components as in Fig. 8).</note>
<note type="content">Fig. 22: Influence of the inlet temperature of syngas on the performance of the first multitubular reactor of the proposed low-cost process for the conversion of nitrogen-rich syngas to diesel oil and wax (dT=70mm; Tmax=Topt=250°C; other reaction conditions as in Table 2).</note>
<note type="content">Fig. 23: Axial temperature profiles of the single tubes of the first and second multitubular F–T-reactor of the proposed low-cost process with nitrogen-rich syngas for the conversion of natural gas to higher hydrocarbons (reaction conditions as in Table 2).</note>
<note type="content">Table 1: Global natural gas reserves [2]</note>
<note type="content">Table 2: Basic data of an industrial plant of the proposed low-cost process for the conversion of natural gas to diesel oil and wax on the basis of nitrogen-rich syngas with about 50vol.% nitrogen (availability of the plant: 8000h per annum)</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>Fischer–Tropsch (F–T)-synthesis</topic>
<topic>Iron-catalyst</topic>
<topic>Nitrogen-rich syngas</topic>
<topic>Fixed bed reactor</topic>
<topic>Multitubular reactor</topic>
<topic>Parametric sensitivity</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Applied Catalysis A: General</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>APCATA</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">19991004</dateIssued>
</originInfo>
<identifier type="ISSN">0926-860X</identifier>
<identifier type="PII">S0926-860X(00)X0106-8</identifier>
<part>
<date>19991004</date>
<detail type="volume">
<number>186</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1–2</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>N1</start>
<end>N4</end>
</extent>
<extent unit="issue pages">
<start>1</start>
<end>144</end>
</extent>
<extent unit="pages">
<start>321</start>
<end>342</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">CFA0C6ED555165E4613AF2E79479D8479310601E</identifier>
<identifier type="DOI">10.1016/S0926-860X(99)00152-0</identifier>
<identifier type="PII">S0926-860X(99)00152-0</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1999 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©1999</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001201 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001201 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:CFA0C6ED555165E4613AF2E79479D8479310601E
   |texte=   Fischer–Tropsch-synthesis with nitrogen-rich syngas
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024