Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synthése, caractérisation et thermochimie d’apatites calco-magnésiennes hydroxylées et fluorées

Identifieur interne : 001148 ( Istex/Corpus ); précédent : 001147; suivant : 001149

Synthése, caractérisation et thermochimie d’apatites calco-magnésiennes hydroxylées et fluorées

Auteurs : S. Ben Abdelkader ; I. Khattech ; C. Rey ; M. Jemal

Source :

RBID : ISTEX:CDD81D18F9F6473967C28AD0B950C9318FB48EAE

English descriptors

Abstract

Calcium-magnesium hydroxyapatite and fluorapatite solid solutions with the general formula Ca(10−x)Mgx(PO4)6X2, where X=F or OH were synthesized by precipitation in an ammonia medium. They have been characterized by infrared spectroscopy, X ray diffraction and chemical analysis. The nature of phases precipitated and the limit of magnesium substitution and formula of solid solutions were determined. Calcium-magnesium hydroxyapatite is obtained for a magnesium atomic fraction Mg/(Ca+Mg) up to 0.066. For more amount of magnesium, whitlockite (Ca18Mg2H2(PO4)14) and MgPO4NH4·H2O appear. Fluorapatite solid solutions were obtained for fraction of magnesium up to 0.101. Beyond this limit, MgPO4NH4·H2O phase appears. Using an isoperibol calorimeter the heats of solution of these products in a 9% weight nitric acid solution were determined. Combining these results with crystallographic ones allows to determine the substitution limits of magnesium in these products. This limit is in the range 0.066–0.084 for hydroxyapatites and 0.073–0.101 for fluorapatites.

Url:
DOI: 10.1016/S0040-6031(01)00565-2

Links to Exploration step

ISTEX:CDD81D18F9F6473967C28AD0B950C9318FB48EAE

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="fr">Synthése, caractérisation et thermochimie d’apatites calco-magnésiennes hydroxylées et fluorées</title>
<author>
<name sortKey="Ben Abdelkader, S" sort="Ben Abdelkader, S" uniqKey="Ben Abdelkader S" first="S." last="Ben Abdelkader">S. Ben Abdelkader</name>
<affiliation>
<mods:affiliation>Unité de Thermodynamique Appliquée, Faculté des Sciences de Tunis, Département de Chimie, Campus Universitaire, Tunis 1060, Tunisia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khattech, I" sort="Khattech, I" uniqKey="Khattech I" first="I." last="Khattech">I. Khattech</name>
<affiliation>
<mods:affiliation>Unité de Thermodynamique Appliquée, Faculté des Sciences de Tunis, Département de Chimie, Campus Universitaire, Tunis 1060, Tunisia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rey, C" sort="Rey, C" uniqKey="Rey C" first="C." last="Rey">C. Rey</name>
<affiliation>
<mods:affiliation>Institut National Polytechnique de Toulouse, Ecole Nationale Supérieure de Chimie des solides, U.R.A C.N.R.S. No. 445, 38, rue des 36 Ponts, Toulouse 31400, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jemal, M" sort="Jemal, M" uniqKey="Jemal M" first="M." last="Jemal">M. Jemal</name>
<affiliation>
<mods:affiliation>E-mail: jemal@planet.tn</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Unité de Thermodynamique Appliquée, Faculté des Sciences de Tunis, Département de Chimie, Campus Universitaire, Tunis 1060, Tunisia</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CDD81D18F9F6473967C28AD0B950C9318FB48EAE</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0040-6031(01)00565-2</idno>
<idno type="url">https://api.istex.fr/document/CDD81D18F9F6473967C28AD0B950C9318FB48EAE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001148</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001148</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="fr">Synthése, caractérisation et thermochimie d’apatites calco-magnésiennes hydroxylées et fluorées</title>
<author>
<name sortKey="Ben Abdelkader, S" sort="Ben Abdelkader, S" uniqKey="Ben Abdelkader S" first="S." last="Ben Abdelkader">S. Ben Abdelkader</name>
<affiliation>
<mods:affiliation>Unité de Thermodynamique Appliquée, Faculté des Sciences de Tunis, Département de Chimie, Campus Universitaire, Tunis 1060, Tunisia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khattech, I" sort="Khattech, I" uniqKey="Khattech I" first="I." last="Khattech">I. Khattech</name>
<affiliation>
<mods:affiliation>Unité de Thermodynamique Appliquée, Faculté des Sciences de Tunis, Département de Chimie, Campus Universitaire, Tunis 1060, Tunisia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rey, C" sort="Rey, C" uniqKey="Rey C" first="C." last="Rey">C. Rey</name>
<affiliation>
<mods:affiliation>Institut National Polytechnique de Toulouse, Ecole Nationale Supérieure de Chimie des solides, U.R.A C.N.R.S. No. 445, 38, rue des 36 Ponts, Toulouse 31400, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jemal, M" sort="Jemal, M" uniqKey="Jemal M" first="M." last="Jemal">M. Jemal</name>
<affiliation>
<mods:affiliation>E-mail: jemal@planet.tn</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Unité de Thermodynamique Appliquée, Faculté des Sciences de Tunis, Département de Chimie, Campus Universitaire, Tunis 1060, Tunisia</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Thermochimica Acta</title>
<title level="j" type="abbrev">TCA</title>
<idno type="ISSN">0040-6031</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">376</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="25">25</biblScope>
<biblScope unit="page" to="36">36</biblScope>
</imprint>
<idno type="ISSN">0040-6031</idno>
</series>
<idno type="istex">CDD81D18F9F6473967C28AD0B950C9318FB48EAE</idno>
<idno type="DOI">10.1016/S0040-6031(01)00565-2</idno>
<idno type="PII">S0040-6031(01)00565-2</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0040-6031</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Calcium-magnesium fluorapatite</term>
<term>Calcium-magnesium hydroxyapatite</term>
<term>Heat of solution</term>
<term>Whitlockite</term>
</keywords>
</textClass>
<langUsage>
<language ident="fr">fr</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="fr">Calcium-magnesium hydroxyapatite and fluorapatite solid solutions with the general formula Ca(10−x)Mgx(PO4)6X2, where X=F or OH were synthesized by precipitation in an ammonia medium. They have been characterized by infrared spectroscopy, X ray diffraction and chemical analysis. The nature of phases precipitated and the limit of magnesium substitution and formula of solid solutions were determined. Calcium-magnesium hydroxyapatite is obtained for a magnesium atomic fraction Mg/(Ca+Mg) up to 0.066. For more amount of magnesium, whitlockite (Ca18Mg2H2(PO4)14) and MgPO4NH4·H2O appear. Fluorapatite solid solutions were obtained for fraction of magnesium up to 0.101. Beyond this limit, MgPO4NH4·H2O phase appears. Using an isoperibol calorimeter the heats of solution of these products in a 9% weight nitric acid solution were determined. Combining these results with crystallographic ones allows to determine the substitution limits of magnesium in these products. This limit is in the range 0.066–0.084 for hydroxyapatites and 0.073–0.101 for fluorapatites.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<author>
<json:item>
<name>S. Ben Abdelkader</name>
<affiliations>
<json:string>Unité de Thermodynamique Appliquée, Faculté des Sciences de Tunis, Département de Chimie, Campus Universitaire, Tunis 1060, Tunisia</json:string>
</affiliations>
</json:item>
<json:item>
<name>I. Khattech</name>
<affiliations>
<json:string>Unité de Thermodynamique Appliquée, Faculté des Sciences de Tunis, Département de Chimie, Campus Universitaire, Tunis 1060, Tunisia</json:string>
</affiliations>
</json:item>
<json:item>
<name>C. Rey</name>
<affiliations>
<json:string>Institut National Polytechnique de Toulouse, Ecole Nationale Supérieure de Chimie des solides, U.R.A C.N.R.S. No. 445, 38, rue des 36 Ponts, Toulouse 31400, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>M. Jemal</name>
<affiliations>
<json:string>E-mail: jemal@planet.tn</json:string>
<json:string>Unité de Thermodynamique Appliquée, Faculté des Sciences de Tunis, Département de Chimie, Campus Universitaire, Tunis 1060, Tunisia</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>fre</json:string>
</lang>
<value>Calcium-magnesium hydroxyapatite</value>
</json:item>
<json:item>
<lang>
<json:string>fre</json:string>
</lang>
<value>Calcium-magnesium fluorapatite</value>
</json:item>
<json:item>
<lang>
<json:string>fre</json:string>
</lang>
<value>Heat of solution</value>
</json:item>
<json:item>
<lang>
<json:string>fre</json:string>
</lang>
<value>Whitlockite</value>
</json:item>
<json:item>
<lang>
<json:string>fre</json:string>
</lang>
<value>Hydroxyapatite calco-magnésienne</value>
</json:item>
<json:item>
<lang>
<json:string>fre</json:string>
</lang>
<value>Fluorapatite calco-magnésienne</value>
</json:item>
<json:item>
<lang>
<json:string>fre</json:string>
</lang>
<value>Enthalpie de dissolution</value>
</json:item>
<json:item>
<lang>
<json:string>fre</json:string>
</lang>
<value>Whitlockite</value>
</json:item>
</subject>
<language>
<json:string>fre</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Calcium-magnesium hydroxyapatite and fluorapatite solid solutions with the general formula Ca(10−x)Mgx(PO4)6X2, where X=F or OH were synthesized by precipitation in an ammonia medium. They have been characterized by infrared spectroscopy, X ray diffraction and chemical analysis. The nature of phases precipitated and the limit of magnesium substitution and formula of solid solutions were determined. Calcium-magnesium hydroxyapatite is obtained for a magnesium atomic fraction Mg/(Ca+Mg) up to 0.066. For more amount of magnesium, whitlockite (Ca18Mg2H2(PO4)14) and MgPO4NH4·H2O appear. Fluorapatite solid solutions were obtained for fraction of magnesium up to 0.101. Beyond this limit, MgPO4NH4·H2O phase appears. Using an isoperibol calorimeter the heats of solution of these products in a 9% weight nitric acid solution were determined. Combining these results with crystallographic ones allows to determine the substitution limits of magnesium in these products. This limit is in the range 0.066–0.084 for hydroxyapatites and 0.073–0.101 for fluorapatites.</abstract>
<qualityIndicators>
<score>5.409</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>522 x 745 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>8</keywordCount>
<abstractCharCount>1063</abstractCharCount>
<pdfWordCount>3669</pdfWordCount>
<pdfCharCount>25662</pdfCharCount>
<pdfPageCount>12</pdfPageCount>
<abstractWordCount>145</abstractWordCount>
</qualityIndicators>
<title>Synthése, caractérisation et thermochimie d’apatites calco-magnésiennes hydroxylées et fluorées</title>
<pii>
<json:string>S0040-6031(01)00565-2</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>376</volume>
<pii>
<json:string>S0040-6031(00)X0139-6</json:string>
</pii>
<pages>
<last>36</last>
<first>25</first>
</pages>
<issn>
<json:string>0040-6031</json:string>
</issn>
<issue>1</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Thermochimica Acta</title>
<publicationDate>2001</publicationDate>
</host>
<categories>
<wos>
<json:string>CHEMISTRY, ANALYTICAL</json:string>
<json:string>CHEMISTRY, PHYSICAL</json:string>
</wos>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1016/S0040-6031(01)00565-2</json:string>
</doi>
<id>CDD81D18F9F6473967C28AD0B950C9318FB48EAE</id>
<score>0.046177804</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/CDD81D18F9F6473967C28AD0B950C9318FB48EAE/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/CDD81D18F9F6473967C28AD0B950C9318FB48EAE/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/CDD81D18F9F6473967C28AD0B950C9318FB48EAE/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="fr">Synthése, caractérisation et thermochimie d’apatites calco-magnésiennes hydroxylées et fluorées</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©2001 Elsevier Science B.V.</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: Spectres d’absorption infrarouge des phosphates calco-magnésiens précipités. R est le rapport atomique Mg/(Ca+Mg) de la solution. ν1, élongation symétrique des ions PO43−; ν2, déformation symétrique des ions PO43−; ν3, élongation antisymétrique des ions PO43−; ν4, déformation antisymétrique des PO43−; νS, vibration de valence symétrique des ions OH−; νL, libration des ions OH−.</note>
<note type="content">Fig. 2: Spectres d’absorption infrarouge des phosphates calco-magnésiens précipités en présence de fluor. R est le rapport atomique Mg/(Ca+Mg) de la solution. ν1, élongation symétrique des ions PO43−; ν2, déformation symétrique des ions PO43−; ν3, élongation antisymétrique des ions PO43−; ν4, déformation antisymétrique des PO43−.</note>
<note type="content">Fig. 3: Diagrammes RX du solide précipité pour différentes valeurs de R. (∗) whitlockite; λ=1,78892Å.</note>
<note type="content">Fig. 4: Variation du volume de la maille (a) et de l’enthalpie de dissolution; (b) en fonction de la fraction atomique Mg/(Ca+Mg) du solide des produits hydroxylés.</note>
<note type="content">Fig. 5: Variation du volume de la maille (a) et de l’enthalpie de dissolution; (b) en fonction de la fraction atomique Mg/(Ca+Mg) du solide des produits fluorés.</note>
<note type="content">Tableau 1: Dosage chimique et formules proposées pour les hydroxyapatites calco-magnésiennes</note>
<note type="content">Tableau 2: Dosage chimique et formules proposées pour les fluorapatites calco-magnésiennes</note>
<note type="content">Tableau 3: Variation des paramètres cristallins en fonction du rapport atomique Mg/(Ca + Mg) dans les produits hydroxylés</note>
<note type="content">Tableau 4: Variation des paramètres cristallins en fonction du rapport atomique Mg/(Ca + Mg) du solide dans les produits fluoréés</note>
<note type="content">Tableau 5: Enthalpies de dissolution des hydroxy et fluorapatites calco-magnésiennes dans l’acide nitrique 9% en masse (HNO3; 35,35 H2O)</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="fr">Synthése, caractérisation et thermochimie d’apatites calco-magnésiennes hydroxylées et fluorées</title>
<author xml:id="author-1">
<persName>
<forename type="first">S.</forename>
<surname>Ben Abdelkader</surname>
</persName>
<affiliation>Unité de Thermodynamique Appliquée, Faculté des Sciences de Tunis, Département de Chimie, Campus Universitaire, Tunis 1060, Tunisia</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">I.</forename>
<surname>Khattech</surname>
</persName>
<affiliation>Unité de Thermodynamique Appliquée, Faculté des Sciences de Tunis, Département de Chimie, Campus Universitaire, Tunis 1060, Tunisia</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">C.</forename>
<surname>Rey</surname>
</persName>
<affiliation>Institut National Polytechnique de Toulouse, Ecole Nationale Supérieure de Chimie des solides, U.R.A C.N.R.S. No. 445, 38, rue des 36 Ponts, Toulouse 31400, France</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">M.</forename>
<surname>Jemal</surname>
</persName>
<email>jemal@planet.tn</email>
<note type="correspondence">
<p>Corresponding author. Tel.: +216-1872-020; fax: +216-1885-008</p>
</note>
<affiliation>Unité de Thermodynamique Appliquée, Faculté des Sciences de Tunis, Département de Chimie, Campus Universitaire, Tunis 1060, Tunisia</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Thermochimica Acta</title>
<title level="j" type="abbrev">TCA</title>
<idno type="pISSN">0040-6031</idno>
<idno type="PII">S0040-6031(00)X0139-6</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001"></date>
<biblScope unit="volume">376</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="25">25</biblScope>
<biblScope unit="page" to="36">36</biblScope>
</imprint>
</monogr>
<idno type="istex">CDD81D18F9F6473967C28AD0B950C9318FB48EAE</idno>
<idno type="DOI">10.1016/S0040-6031(01)00565-2</idno>
<idno type="PII">S0040-6031(01)00565-2</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="fr">fr</language>
</langUsage>
<abstract xml:lang="fr">
<p>Calcium-magnesium hydroxyapatite and fluorapatite solid solutions with the general formula Ca(10−x)Mgx(PO4)6X2, where X=F or OH were synthesized by precipitation in an ammonia medium. They have been characterized by infrared spectroscopy, X ray diffraction and chemical analysis. The nature of phases precipitated and the limit of magnesium substitution and formula of solid solutions were determined. Calcium-magnesium hydroxyapatite is obtained for a magnesium atomic fraction Mg/(Ca+Mg) up to 0.066. For more amount of magnesium, whitlockite (Ca18Mg2H2(PO4)14) and MgPO4NH4·H2O appear. Fluorapatite solid solutions were obtained for fraction of magnesium up to 0.101. Beyond this limit, MgPO4NH4·H2O phase appears. Using an isoperibol calorimeter the heats of solution of these products in a 9% weight nitric acid solution were determined. Combining these results with crystallographic ones allows to determine the substitution limits of magnesium in these products. This limit is in the range 0.066–0.084 for hydroxyapatites and 0.073–0.101 for fluorapatites.</p>
</abstract>
<abstract xml:lang="en">
<p>Abstract: Calcium-magnesium hydroxyapatite and fluorapatite solid solutions with the general formula Ca(10−x)Mgx(PO4)6X2, where X=F or OH were synthesized by precipitation in an ammonia medium. They have been characterized by infrared spectroscopy, X ray diffraction and chemical analysis. The nature of phases precipitated and the limit of magnesium substitution and formula of solid solutions were determined. Calcium-magnesium hydroxyapatite is obtained for a magnesium atomic fraction Mg/(Ca+Mg) up to 0.066. For more amount of magnesium, whitlockite (Ca18Mg2H2(PO4)14) and MgPO4NH4·H2O appear. Fluorapatite solid solutions were obtained for fraction of magnesium up to 0.101. Beyond this limit, MgPO4NH4·H2O phase appears. Using an isoperibol calorimeter the heats of solution of these products in a 9% weight nitric acid solution were determined. Combining these results with crystallographic ones allows to determine the substitution limits of magnesium in these products. This limit is in the range 0.066–0.084 for hydroxyapatites and 0.073–0.101 for fluorapatites.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Calcium-magnesium hydroxyapatite</term>
</item>
<item>
<term>Calcium-magnesium fluorapatite</term>
</item>
<item>
<term>Heat of solution</term>
</item>
<item>
<term>Whitlockite</term>
</item>
</list>
</keywords>
</textClass>
<textClass xml:lang="fr">
<keywords scheme="keyword">
<list>
<head>Mots-clé</head>
<item>
<term>Hydroxyapatite calco-magnésienne</term>
</item>
<item>
<term>Fluorapatite calco-magnésienne</term>
</item>
<item>
<term>Enthalpie de dissolution</term>
</item>
<item>
<term>Whitlockite</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001-04-04">Modified</change>
<change when="2001">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/CDD81D18F9F6473967C28AD0B950C9318FB48EAE/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="fr">
<item-info>
<jid>TCA</jid>
<aid>6685</aid>
<ce:pii>S0040-6031(01)00565-2</ce:pii>
<ce:doi>10.1016/S0040-6031(01)00565-2</ce:doi>
<ce:copyright type="full-transfer" year="2001">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>Synthése, caractérisation et thermochimie d’apatites calco-magnésiennes hydroxylées et fluorées</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>S.</ce:given-name>
<ce:surname>Ben Abdelkader</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>I.</ce:given-name>
<ce:surname>Khattech</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>C.</ce:given-name>
<ce:surname>Rey</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>M.</ce:given-name>
<ce:surname>Jemal</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:e-address>jemal@planet.tn</ce:e-address>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Unité de Thermodynamique Appliquée, Faculté des Sciences de Tunis, Département de Chimie, Campus Universitaire, Tunis 1060, Tunisia</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Institut National Polytechnique de Toulouse, Ecole Nationale Supérieure de Chimie des solides, U.R.A C.N.R.S. No. 445, 38, rue des 36 Ponts, Toulouse 31400, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author. Tel.: +216-1872-020; fax: +216-1885-008</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="10" month="11" year="2000"></ce:date-received>
<ce:date-revised day="4" month="4" year="2001"></ce:date-revised>
<ce:date-accepted day="10" month="5" year="2001"></ce:date-accepted>
<ce:abstract xml:lang="en">
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Calcium-magnesium hydroxyapatite and fluorapatite solid solutions with the general formula Ca
<ce:inf>(10−
<ce:italic>x</ce:italic>
)</ce:inf>
Mg
<ce:inf>
<ce:italic>x</ce:italic>
</ce:inf>
(PO
<ce:inf>4</ce:inf>
)
<ce:inf>6</ce:inf>
X
<ce:inf>2</ce:inf>
, where X=F or OH were synthesized by precipitation in an ammonia medium. They have been characterized by infrared spectroscopy, X ray diffraction and chemical analysis. The nature of phases precipitated and the limit of magnesium substitution and formula of solid solutions were determined. Calcium-magnesium hydroxyapatite is obtained for a magnesium atomic fraction Mg/(Ca+Mg) up to 0.066. For more amount of magnesium, whitlockite (Ca
<ce:inf>18</ce:inf>
Mg
<ce:inf>2</ce:inf>
H
<ce:inf>2</ce:inf>
(PO
<ce:inf>4</ce:inf>
)
<ce:inf>14</ce:inf>
) and MgPO
<ce:inf>4</ce:inf>
NH
<ce:inf>4</ce:inf>
·H
<ce:inf>2</ce:inf>
O appear. Fluorapatite solid solutions were obtained for fraction of magnesium up to 0.101. Beyond this limit, MgPO
<ce:inf>4</ce:inf>
NH
<ce:inf>4</ce:inf>
·H
<ce:inf>2</ce:inf>
O phase appears. Using an isoperibol calorimeter the heats of solution of these products in a 9% weight nitric acid solution were determined. Combining these results with crystallographic ones allows to determine the substitution limits of magnesium in these products. This limit is in the range 0.066–0.084 for hydroxyapatites and 0.073–0.101 for fluorapatites.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:abstract>
<ce:section-title>Résumé</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Calcium-magnesium hydroxyapatite and fluorapatite solid solutions with the general formula Ca
<ce:inf>(10−
<ce:italic>x</ce:italic>
)</ce:inf>
Mg
<ce:inf>
<ce:italic>x</ce:italic>
</ce:inf>
(PO
<ce:inf>4</ce:inf>
)
<ce:inf>6</ce:inf>
X
<ce:inf>2</ce:inf>
, where X=F or OH were synthesized by precipitation in an ammonia medium. They have been characterized by infrared spectroscopy, X ray diffraction and chemical analysis. The nature of phases precipitated and the limit of magnesium substitution and formula of solid solutions were determined. Calcium-magnesium hydroxyapatite is obtained for a magnesium atomic fraction Mg/(Ca+Mg) up to 0.066. For more amount of magnesium, whitlockite (Ca
<ce:inf>18</ce:inf>
Mg
<ce:inf>2</ce:inf>
H
<ce:inf>2</ce:inf>
(PO
<ce:inf>4</ce:inf>
)
<ce:inf>14</ce:inf>
) and MgPO
<ce:inf>4</ce:inf>
NH
<ce:inf>4</ce:inf>
·H
<ce:inf>2</ce:inf>
O appear. Fluorapatite solid solutions were obtained for fraction of magnesium up to 0.101. Beyond this limit, MgPO
<ce:inf>4</ce:inf>
NH
<ce:inf>4</ce:inf>
·H
<ce:inf>2</ce:inf>
O phase appears. Using an isoperibol calorimeter the heats of solution of these products in a 9% weight nitric acid solution were determined. Combining these results with crystallographic ones allows to determine the substitution limits of magnesium in these products. This limit is in the range 0.066–0.084 for hydroxyapatites and 0.073–0.101 for fluorapatites.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword" xml:lang="en">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Calcium-magnesium hydroxyapatite</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Calcium-magnesium fluorapatite</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Heat of solution</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Whitlockite</ce:text>
</ce:keyword>
</ce:keywords>
<ce:keywords class="keyword" xml:lang="fr">
<ce:section-title>Mots-clé</ce:section-title>
<ce:keyword>
<ce:text>Hydroxyapatite calco-magnésienne</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Fluorapatite calco-magnésienne</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Enthalpie de dissolution</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Whitlockite</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="fr">
<title>Synthése, caractérisation et thermochimie d’apatites calco-magnésiennes hydroxylées et fluorées</title>
</titleInfo>
<titleInfo type="alternative" lang="fr" contentType="CDATA">
<title>Synthése, caractérisation et thermochimie d’apatites calco-magnésiennes hydroxylées et fluorées</title>
</titleInfo>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Ben Abdelkader</namePart>
<affiliation>Unité de Thermodynamique Appliquée, Faculté des Sciences de Tunis, Département de Chimie, Campus Universitaire, Tunis 1060, Tunisia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">I.</namePart>
<namePart type="family">Khattech</namePart>
<affiliation>Unité de Thermodynamique Appliquée, Faculté des Sciences de Tunis, Département de Chimie, Campus Universitaire, Tunis 1060, Tunisia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C.</namePart>
<namePart type="family">Rey</namePart>
<affiliation>Institut National Polytechnique de Toulouse, Ecole Nationale Supérieure de Chimie des solides, U.R.A C.N.R.S. No. 445, 38, rue des 36 Ponts, Toulouse 31400, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Jemal</namePart>
<affiliation>E-mail: jemal@planet.tn</affiliation>
<affiliation>Unité de Thermodynamique Appliquée, Faculté des Sciences de Tunis, Département de Chimie, Campus Universitaire, Tunis 1060, Tunisia</affiliation>
<description>Corresponding author. Tel.: +216-1872-020; fax: +216-1885-008</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article"></genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
<dateModified encoding="w3cdtf">2001-04-04</dateModified>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">fre</languageTerm>
<languageTerm type="code" authority="rfc3066">fr</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="fr">Calcium-magnesium hydroxyapatite and fluorapatite solid solutions with the general formula Ca(10−x)Mgx(PO4)6X2, where X=F or OH were synthesized by precipitation in an ammonia medium. They have been characterized by infrared spectroscopy, X ray diffraction and chemical analysis. The nature of phases precipitated and the limit of magnesium substitution and formula of solid solutions were determined. Calcium-magnesium hydroxyapatite is obtained for a magnesium atomic fraction Mg/(Ca+Mg) up to 0.066. For more amount of magnesium, whitlockite (Ca18Mg2H2(PO4)14) and MgPO4NH4·H2O appear. Fluorapatite solid solutions were obtained for fraction of magnesium up to 0.101. Beyond this limit, MgPO4NH4·H2O phase appears. Using an isoperibol calorimeter the heats of solution of these products in a 9% weight nitric acid solution were determined. Combining these results with crystallographic ones allows to determine the substitution limits of magnesium in these products. This limit is in the range 0.066–0.084 for hydroxyapatites and 0.073–0.101 for fluorapatites.</abstract>
<abstract lang="en">Abstract: Calcium-magnesium hydroxyapatite and fluorapatite solid solutions with the general formula Ca(10−x)Mgx(PO4)6X2, where X=F or OH were synthesized by precipitation in an ammonia medium. They have been characterized by infrared spectroscopy, X ray diffraction and chemical analysis. The nature of phases precipitated and the limit of magnesium substitution and formula of solid solutions were determined. Calcium-magnesium hydroxyapatite is obtained for a magnesium atomic fraction Mg/(Ca+Mg) up to 0.066. For more amount of magnesium, whitlockite (Ca18Mg2H2(PO4)14) and MgPO4NH4·H2O appear. Fluorapatite solid solutions were obtained for fraction of magnesium up to 0.101. Beyond this limit, MgPO4NH4·H2O phase appears. Using an isoperibol calorimeter the heats of solution of these products in a 9% weight nitric acid solution were determined. Combining these results with crystallographic ones allows to determine the substitution limits of magnesium in these products. This limit is in the range 0.066–0.084 for hydroxyapatites and 0.073–0.101 for fluorapatites.</abstract>
<note type="content">Fig. 1: Spectres d’absorption infrarouge des phosphates calco-magnésiens précipités. R est le rapport atomique Mg/(Ca+Mg) de la solution. ν1, élongation symétrique des ions PO43−; ν2, déformation symétrique des ions PO43−; ν3, élongation antisymétrique des ions PO43−; ν4, déformation antisymétrique des PO43−; νS, vibration de valence symétrique des ions OH−; νL, libration des ions OH−.</note>
<note type="content">Fig. 2: Spectres d’absorption infrarouge des phosphates calco-magnésiens précipités en présence de fluor. R est le rapport atomique Mg/(Ca+Mg) de la solution. ν1, élongation symétrique des ions PO43−; ν2, déformation symétrique des ions PO43−; ν3, élongation antisymétrique des ions PO43−; ν4, déformation antisymétrique des PO43−.</note>
<note type="content">Fig. 3: Diagrammes RX du solide précipité pour différentes valeurs de R. (∗) whitlockite; λ=1,78892Å.</note>
<note type="content">Fig. 4: Variation du volume de la maille (a) et de l’enthalpie de dissolution; (b) en fonction de la fraction atomique Mg/(Ca+Mg) du solide des produits hydroxylés.</note>
<note type="content">Fig. 5: Variation du volume de la maille (a) et de l’enthalpie de dissolution; (b) en fonction de la fraction atomique Mg/(Ca+Mg) du solide des produits fluorés.</note>
<note type="content">Tableau 1: Dosage chimique et formules proposées pour les hydroxyapatites calco-magnésiennes</note>
<note type="content">Tableau 2: Dosage chimique et formules proposées pour les fluorapatites calco-magnésiennes</note>
<note type="content">Tableau 3: Variation des paramètres cristallins en fonction du rapport atomique Mg/(Ca + Mg) dans les produits hydroxylés</note>
<note type="content">Tableau 4: Variation des paramètres cristallins en fonction du rapport atomique Mg/(Ca + Mg) du solide dans les produits fluoréés</note>
<note type="content">Tableau 5: Enthalpies de dissolution des hydroxy et fluorapatites calco-magnésiennes dans l’acide nitrique 9% en masse (HNO3; 35,35 H2O)</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>Calcium-magnesium hydroxyapatite</topic>
<topic>Calcium-magnesium fluorapatite</topic>
<topic>Heat of solution</topic>
<topic>Whitlockite</topic>
</subject>
<subject lang="fr">
<genre>Mots-clé</genre>
<topic>Hydroxyapatite calco-magnésienne</topic>
<topic>Fluorapatite calco-magnésienne</topic>
<topic>Enthalpie de dissolution</topic>
<topic>Whitlockite</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Thermochimica Acta</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>TCA</title>
</titleInfo>
<genre type="journal">journal</genre>
<originInfo>
<dateIssued encoding="w3cdtf">20010809</dateIssued>
</originInfo>
<identifier type="ISSN">0040-6031</identifier>
<identifier type="PII">S0040-6031(00)X0139-6</identifier>
<part>
<date>20010809</date>
<detail type="volume">
<number>376</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1</number>
<caption>no.</caption>
</detail>
<extent unit="issue pages">
<start>1</start>
<end>98</end>
</extent>
<extent unit="pages">
<start>25</start>
<end>36</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">CDD81D18F9F6473967C28AD0B950C9318FB48EAE</identifier>
<identifier type="DOI">10.1016/S0040-6031(01)00565-2</identifier>
<identifier type="PII">S0040-6031(01)00565-2</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2001 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource>ELSEVIER</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©2001</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001148 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001148 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:CDD81D18F9F6473967C28AD0B950C9318FB48EAE
   |texte=   Synthése, caractérisation et thermochimie d’apatites calco-magnésiennes hydroxylées et fluorées
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024