Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery

Identifieur interne : 000F64 ( Istex/Corpus ); précédent : 000F63; suivant : 000F65

A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery

Auteurs : Anita A. Ignatius ; Michael Ohnmacht ; Lutz E. Claes ; Joachim Kreidler ; Frank Palm

Source :

RBID : ISTEX:16B4934B8D804169DA6A4F827FC603EBFECFD7E7

English descriptors

Abstract

The aim of the study was the development of a resorbable membrane for guided bone regeneration (GBR) with improved biocompatibility, which should be stiff enough to avoid membrane collapse during bone healing. Combining a bioactive ceramic with a resorbable polymer may improve the biocompatibility and osteoconductivity of resorbable devices. The present article describes the preparation, the mechanical properties, and the in vitro degradation characteristic of a composite membrane made of poly(L, DL‐lactide) and α‐tricalcium phosphate in comparison to a membrane made of pure poly(L, DL‐lactide). The tensile strength and the elastic modulus as well as the molecular weight of the membranes were measured after in vitro degradation in buffer at 37 °C up to 28 weeks. The initial tensile strength of the composite and the polymer membrane was 37.3 ± 2.4 MPa and 27.7 ± 2.3 MPa and the elastic modulus 3106 ± 108 MPa and 3101 ± 104 MPa, respectively. The mechanical properties remained constant up to 8 weeks and then decreased slowly until week 28. The molecular weight of both membranes decreased steadily from 170,000 D to 30,000 D. It was concluded that the mechanical requirements for a membrane for GBR were fulfilled by the composite membrane. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 58: 564–569, 2001

Url:
DOI: 10.1002/jbm.1055

Links to Exploration step

ISTEX:16B4934B8D804169DA6A4F827FC603EBFECFD7E7

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery</title>
<author>
<name sortKey="Ignatius, Anita A" sort="Ignatius, Anita A" uniqKey="Ignatius A" first="Anita A." last="Ignatius">Anita A. Ignatius</name>
<affiliation>
<mods:affiliation>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ohnmacht, Michael" sort="Ohnmacht, Michael" uniqKey="Ohnmacht M" first="Michael" last="Ohnmacht">Michael Ohnmacht</name>
<affiliation>
<mods:affiliation>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Claes, Lutz E" sort="Claes, Lutz E" uniqKey="Claes L" first="Lutz E." last="Claes">Lutz E. Claes</name>
<affiliation>
<mods:affiliation>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kreidler, Joachim" sort="Kreidler, Joachim" uniqKey="Kreidler J" first="Joachim" last="Kreidler">Joachim Kreidler</name>
<affiliation>
<mods:affiliation>Department of Oral and Maxillofacial Surgery, University of Ulm, Bundeswehrkrankenhaus Oberer Eselsberg 40, 89081 Ulm, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Palm, Frank" sort="Palm, Frank" uniqKey="Palm F" first="Frank" last="Palm">Frank Palm</name>
<affiliation>
<mods:affiliation>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:16B4934B8D804169DA6A4F827FC603EBFECFD7E7</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1002/jbm.1055</idno>
<idno type="url">https://api.istex.fr/document/16B4934B8D804169DA6A4F827FC603EBFECFD7E7/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000F64</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000F64</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery</title>
<author>
<name sortKey="Ignatius, Anita A" sort="Ignatius, Anita A" uniqKey="Ignatius A" first="Anita A." last="Ignatius">Anita A. Ignatius</name>
<affiliation>
<mods:affiliation>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ohnmacht, Michael" sort="Ohnmacht, Michael" uniqKey="Ohnmacht M" first="Michael" last="Ohnmacht">Michael Ohnmacht</name>
<affiliation>
<mods:affiliation>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Claes, Lutz E" sort="Claes, Lutz E" uniqKey="Claes L" first="Lutz E." last="Claes">Lutz E. Claes</name>
<affiliation>
<mods:affiliation>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kreidler, Joachim" sort="Kreidler, Joachim" uniqKey="Kreidler J" first="Joachim" last="Kreidler">Joachim Kreidler</name>
<affiliation>
<mods:affiliation>Department of Oral and Maxillofacial Surgery, University of Ulm, Bundeswehrkrankenhaus Oberer Eselsberg 40, 89081 Ulm, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Palm, Frank" sort="Palm, Frank" uniqKey="Palm F" first="Frank" last="Palm">Frank Palm</name>
<affiliation>
<mods:affiliation>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Biomedical Materials Research</title>
<title level="j" type="sub">An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials</title>
<title level="j" type="abbrev">J. Biomed. Mater. Res.</title>
<idno type="ISSN">0021-9304</idno>
<idno type="eISSN">1097-4636</idno>
<imprint>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">58</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="564">564</biblScope>
<biblScope unit="page" to="569">569</biblScope>
</imprint>
<idno type="ISSN">0021-9304</idno>
</series>
<idno type="istex">16B4934B8D804169DA6A4F827FC603EBFECFD7E7</idno>
<idno type="DOI">10.1002/jbm.1055</idno>
<idno type="ArticleID">JBM1055</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0021-9304</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>composite</term>
<term>guided bone regeneration</term>
<term>in vitro degradation</term>
<term>poly(lactide), α‐tricalcium phosphate</term>
<term>resorbable membranes</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The aim of the study was the development of a resorbable membrane for guided bone regeneration (GBR) with improved biocompatibility, which should be stiff enough to avoid membrane collapse during bone healing. Combining a bioactive ceramic with a resorbable polymer may improve the biocompatibility and osteoconductivity of resorbable devices. The present article describes the preparation, the mechanical properties, and the in vitro degradation characteristic of a composite membrane made of poly(L, DL‐lactide) and α‐tricalcium phosphate in comparison to a membrane made of pure poly(L, DL‐lactide). The tensile strength and the elastic modulus as well as the molecular weight of the membranes were measured after in vitro degradation in buffer at 37 °C up to 28 weeks. The initial tensile strength of the composite and the polymer membrane was 37.3 ± 2.4 MPa and 27.7 ± 2.3 MPa and the elastic modulus 3106 ± 108 MPa and 3101 ± 104 MPa, respectively. The mechanical properties remained constant up to 8 weeks and then decreased slowly until week 28. The molecular weight of both membranes decreased steadily from 170,000 D to 30,000 D. It was concluded that the mechanical requirements for a membrane for GBR were fulfilled by the composite membrane. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 58: 564–569, 2001</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Anita A. Ignatius</name>
<affiliations>
<json:string>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Michael Ohnmacht</name>
<affiliations>
<json:string>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Lutz E. Claes</name>
<affiliations>
<json:string>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Joachim Kreidler</name>
<affiliations>
<json:string>Department of Oral and Maxillofacial Surgery, University of Ulm, Bundeswehrkrankenhaus Oberer Eselsberg 40, 89081 Ulm, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Frank Palm</name>
<affiliations>
<json:string>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>resorbable membranes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>guided bone regeneration</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>poly(lactide), α‐tricalcium phosphate</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>composite</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>in vitro degradation</value>
</json:item>
</subject>
<articleId>
<json:string>JBM1055</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The aim of the study was the development of a resorbable membrane for guided bone regeneration (GBR) with improved biocompatibility, which should be stiff enough to avoid membrane collapse during bone healing. Combining a bioactive ceramic with a resorbable polymer may improve the biocompatibility and osteoconductivity of resorbable devices. The present article describes the preparation, the mechanical properties, and the in vitro degradation characteristic of a composite membrane made of poly(L, DL‐lactide) and α‐tricalcium phosphate in comparison to a membrane made of pure poly(L, DL‐lactide). The tensile strength and the elastic modulus as well as the molecular weight of the membranes were measured after in vitro degradation in buffer at 37 °C up to 28 weeks. The initial tensile strength of the composite and the polymer membrane was 37.3 ± 2.4 MPa and 27.7 ± 2.3 MPa and the elastic modulus 3106 ± 108 MPa and 3101 ± 104 MPa, respectively. The mechanical properties remained constant up to 8 weeks and then decreased slowly until week 28. The molecular weight of both membranes decreased steadily from 170,000 D to 30,000 D. It was concluded that the mechanical requirements for a membrane for GBR were fulfilled by the composite membrane. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 58: 564–569, 2001</abstract>
<qualityIndicators>
<score>6.312</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>1338</abstractCharCount>
<pdfWordCount>3732</pdfWordCount>
<pdfCharCount>23105</pdfCharCount>
<pdfPageCount>6</pdfPageCount>
<abstractWordCount>215</abstractWordCount>
</qualityIndicators>
<title>A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>58</volume>
<publisherId>
<json:string>JBM</json:string>
</publisherId>
<pages>
<total>6</total>
<last>569</last>
<first>564</first>
</pages>
<issn>
<json:string>0021-9304</json:string>
</issn>
<issue>5</issue>
<subject>
<json:item>
<value>Research Report</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1097-4636</json:string>
</eissn>
<title>Journal of Biomedical Materials Research</title>
<doi>
<json:string>10.1002/(ISSN)1097-4636</json:string>
</doi>
</host>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1002/jbm.1055</json:string>
</doi>
<id>16B4934B8D804169DA6A4F827FC603EBFECFD7E7</id>
<score>0.050786547</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/16B4934B8D804169DA6A4F827FC603EBFECFD7E7/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/16B4934B8D804169DA6A4F827FC603EBFECFD7E7/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/16B4934B8D804169DA6A4F827FC603EBFECFD7E7/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<availability>
<p>Copyright © 2001 John Wiley & Sons, Inc.</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note>Bundesministerium für Bildung und Forschung, bmb+f</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery</title>
<author xml:id="author-1">
<persName>
<forename type="first">Anita A.</forename>
<surname>Ignatius</surname>
</persName>
<affiliation>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Michael</forename>
<surname>Ohnmacht</surname>
</persName>
<affiliation>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Lutz E.</forename>
<surname>Claes</surname>
</persName>
<note type="correspondence">
<p>Correspondence: Institute of Orthopaedic Research and Biomechanics, Universität Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</p>
</note>
<affiliation>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Joachim</forename>
<surname>Kreidler</surname>
</persName>
<affiliation>Department of Oral and Maxillofacial Surgery, University of Ulm, Bundeswehrkrankenhaus Oberer Eselsberg 40, 89081 Ulm, Germany</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">Frank</forename>
<surname>Palm</surname>
</persName>
<affiliation>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Biomedical Materials Research</title>
<title level="j" type="sub">An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials</title>
<title level="j" type="abbrev">J. Biomed. Mater. Res.</title>
<idno type="pISSN">0021-9304</idno>
<idno type="eISSN">1097-4636</idno>
<idno type="DOI">10.1002/(ISSN)1097-4636</idno>
<imprint>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="2001"></date>
<biblScope unit="volume">58</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="564">564</biblScope>
<biblScope unit="page" to="569">569</biblScope>
</imprint>
</monogr>
<idno type="istex">16B4934B8D804169DA6A4F827FC603EBFECFD7E7</idno>
<idno type="DOI">10.1002/jbm.1055</idno>
<idno type="ArticleID">JBM1055</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>The aim of the study was the development of a resorbable membrane for guided bone regeneration (GBR) with improved biocompatibility, which should be stiff enough to avoid membrane collapse during bone healing. Combining a bioactive ceramic with a resorbable polymer may improve the biocompatibility and osteoconductivity of resorbable devices. The present article describes the preparation, the mechanical properties, and the in vitro degradation characteristic of a composite membrane made of poly(L, DL‐lactide) and α‐tricalcium phosphate in comparison to a membrane made of pure poly(L, DL‐lactide). The tensile strength and the elastic modulus as well as the molecular weight of the membranes were measured after in vitro degradation in buffer at 37 °C up to 28 weeks. The initial tensile strength of the composite and the polymer membrane was 37.3 ± 2.4 MPa and 27.7 ± 2.3 MPa and the elastic modulus 3106 ± 108 MPa and 3101 ± 104 MPa, respectively. The mechanical properties remained constant up to 8 weeks and then decreased slowly until week 28. The molecular weight of both membranes decreased steadily from 170,000 D to 30,000 D. It was concluded that the mechanical requirements for a membrane for GBR were fulfilled by the composite membrane. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 58: 564–569, 2001</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>resorbable membranes</term>
</item>
<item>
<term>guided bone regeneration</term>
</item>
<item>
<term>poly(lactide), α‐tricalcium phosphate</term>
</item>
<item>
<term>composite</term>
</item>
<item>
<term>in vitro degradation</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Report</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001-01-23">Received</change>
<change when="2001-05-24">Registration</change>
<change when="2001">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/16B4934B8D804169DA6A4F827FC603EBFECFD7E7/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Inc.</publisherName>
<publisherLoc>New York</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1097-4636</doi>
<issn type="print">0021-9304</issn>
<issn type="electronic">1097-4636</issn>
<idGroup>
<id type="product" value="JBM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF BIOMEDICAL MATERIALS RESEARCH">Journal of Biomedical Materials Research</title>
<title type="subtitle">An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials</title>
<title type="short">J. Biomed. Mater. Res.</title>
</titleGroup>
<selfCitationGroup>
<citation type="ancestor" xml:id="cit1">
<journalTitle>Journal of Applied Biomaterials</journalTitle>
<accessionId ref="info:x-wiley/issn/10454861">1045-4861</accessionId>
<pubYear year="1995">1995</pubYear>
<vol>6</vol>
<issue>4</issue>
</citation>
</selfCitationGroup>
</publicationMeta>
<publicationMeta level="part" position="50">
<doi origin="wiley" registered="yes">10.1002/jbm.v58:5</doi>
<numberingGroup>
<numbering type="journalVolume" number="58">58</numbering>
<numbering type="journalIssue">5</numbering>
</numberingGroup>
<coverDate startDate="2001">2001</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="140" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jbm.1055</doi>
<idGroup>
<id type="unit" value="JBM1055"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="6"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Report</title>
<title type="tocHeading1">Research Reports</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2001 John Wiley & Sons, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2001-01-23"></event>
<event type="manuscriptRevised" date="2001-05-18"></event>
<event type="manuscriptAccepted" date="2001-05-24"></event>
<event type="firstOnline" date="2001-08-08"></event>
<event type="publishedOnlineFinalForm" date="2002-07-31"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.6 mode:FullText source:FullText result:FullText" date="2010-05-18"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-28"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">564</numbering>
<numbering type="pageLast">569</numbering>
</numberingGroup>
<correspondenceTo>Institute of Orthopaedic Research and Biomechanics, Universität Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JBM.JBM1055.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="7"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="36"></count>
<count type="wordTotal" number="4111"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery</title>
<title type="short" xml:lang="en">A Resorbable Composite Membrane for Guided Bone Regeneration</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Anita A.</givenNames>
<familyName>Ignatius</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Michael</givenNames>
<familyName>Ohnmacht</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Lutz E.</givenNames>
<familyName>Claes</familyName>
</personName>
<contactDetails>
<email normalForm="lutz.claes@medizin.uni-ulm.de">lutz.claes@medizin.uni‐ulm.de</email>
</contactDetails>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Joachim</givenNames>
<familyName>Kreidler</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Frank</givenNames>
<familyName>Palm</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="DE" type="organization">
<unparsedAffiliation>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="DE" type="organization">
<unparsedAffiliation>Department of Oral and Maxillofacial Surgery, University of Ulm, Bundeswehrkrankenhaus Oberer Eselsberg 40, 89081 Ulm, Germany</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">resorbable membranes</keyword>
<keyword xml:id="kwd2">guided bone regeneration</keyword>
<keyword xml:id="kwd3">poly(lactide), α‐tricalcium phosphate</keyword>
<keyword xml:id="kwd4">composite</keyword>
<keyword xml:id="kwd5">
<i>in vitro</i>
degradation</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Bundesministerium für Bildung und Forschung, bmb+f</fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>The aim of the study was the development of a resorbable membrane for guided bone regeneration (GBR) with improved biocompatibility, which should be stiff enough to avoid membrane collapse during bone healing. Combining a bioactive ceramic with a resorbable polymer may improve the biocompatibility and osteoconductivity of resorbable devices. The present article describes the preparation, the mechanical properties, and the
<i>in vitro</i>
degradation characteristic of a composite membrane made of poly(L, DL‐lactide) and α‐tricalcium phosphate in comparison to a membrane made of pure poly(L, DL‐lactide). The tensile strength and the elastic modulus as well as the molecular weight of the membranes were measured after
<i>in vitro</i>
degradation in buffer at 37 °C up to 28 weeks. The initial tensile strength of the composite and the polymer membrane was 37.3 ± 2.4 MPa and 27.7 ± 2.3 MPa and the elastic modulus 3106 ± 108 MPa and 3101 ± 104 MPa, respectively. The mechanical properties remained constant up to 8 weeks and then decreased slowly until week 28. The molecular weight of both membranes decreased steadily from 170,000 D to 30,000 D. It was concluded that the mechanical requirements for a membrane for GBR were fulfilled by the composite membrane. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 58: 564–569, 2001</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>A Resorbable Composite Membrane for Guided Bone Regeneration</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anita A.</namePart>
<namePart type="family">Ignatius</namePart>
<affiliation>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Ohnmacht</namePart>
<affiliation>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lutz E.</namePart>
<namePart type="family">Claes</namePart>
<affiliation>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</affiliation>
<description>Correspondence: Institute of Orthopaedic Research and Biomechanics, Universität Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joachim</namePart>
<namePart type="family">Kreidler</namePart>
<affiliation>Department of Oral and Maxillofacial Surgery, University of Ulm, Bundeswehrkrankenhaus Oberer Eselsberg 40, 89081 Ulm, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank</namePart>
<namePart type="family">Palm</namePart>
<affiliation>Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>John Wiley & Sons, Inc.</publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2001</dateIssued>
<dateCaptured encoding="w3cdtf">2001-01-23</dateCaptured>
<dateValid encoding="w3cdtf">2001-05-24</dateValid>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">7</extent>
<extent unit="references">36</extent>
<extent unit="words">4111</extent>
</physicalDescription>
<abstract lang="en">The aim of the study was the development of a resorbable membrane for guided bone regeneration (GBR) with improved biocompatibility, which should be stiff enough to avoid membrane collapse during bone healing. Combining a bioactive ceramic with a resorbable polymer may improve the biocompatibility and osteoconductivity of resorbable devices. The present article describes the preparation, the mechanical properties, and the in vitro degradation characteristic of a composite membrane made of poly(L, DL‐lactide) and α‐tricalcium phosphate in comparison to a membrane made of pure poly(L, DL‐lactide). The tensile strength and the elastic modulus as well as the molecular weight of the membranes were measured after in vitro degradation in buffer at 37 °C up to 28 weeks. The initial tensile strength of the composite and the polymer membrane was 37.3 ± 2.4 MPa and 27.7 ± 2.3 MPa and the elastic modulus 3106 ± 108 MPa and 3101 ± 104 MPa, respectively. The mechanical properties remained constant up to 8 weeks and then decreased slowly until week 28. The molecular weight of both membranes decreased steadily from 170,000 D to 30,000 D. It was concluded that the mechanical requirements for a membrane for GBR were fulfilled by the composite membrane. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 58: 564–569, 2001</abstract>
<note type="funding">Bundesministerium für Bildung und Forschung, bmb+f</note>
<subject lang="en">
<genre>keywords</genre>
<topic>resorbable membranes</topic>
<topic>guided bone regeneration</topic>
<topic>poly(lactide), α‐tricalcium phosphate</topic>
<topic>composite</topic>
<topic>in vitro degradation</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Biomedical Materials Research</title>
<subTitle>An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Biomed. Mater. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Report</topic>
</subject>
<identifier type="ISSN">0021-9304</identifier>
<identifier type="eISSN">1097-4636</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-4636</identifier>
<identifier type="PublisherID">JBM</identifier>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>58</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>564</start>
<end>569</end>
<total>6</total>
</extent>
</part>
</relatedItem>
<relatedItem type="preceding">
<titleInfo>
<title>Journal of Applied Biomaterials</title>
</titleInfo>
<identifier type="ISSN">1045-4861</identifier>
<part>
<date point="end">1995</date>
<detail type="volume">
<caption>last vol.</caption>
<number>6</number>
</detail>
<detail type="issue">
<caption>last no.</caption>
<number>4</number>
</detail>
</part>
</relatedItem>
<identifier type="istex">16B4934B8D804169DA6A4F827FC603EBFECFD7E7</identifier>
<identifier type="DOI">10.1002/jbm.1055</identifier>
<identifier type="ArticleID">JBM1055</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2001 John Wiley & Sons, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Inc.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F64 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000F64 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:16B4934B8D804169DA6A4F827FC603EBFECFD7E7
   |texte=   A composite polymer/tricalcium phosphate membrane for guided bone regeneration in maxillofacial surgery
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024