Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Visible and far-infrared spectroscopic studies of Co-doped (80x)Sb2O320Na2OxWO3 glasses

Identifieur interne : 000E61 ( Istex/Corpus ); précédent : 000E60; suivant : 000E62

Visible and far-infrared spectroscopic studies of Co-doped (80x)Sb2O320Na2OxWO3 glasses

Auteurs : P. Petkova ; M T Soltani ; S. Petkov ; J. Tacheva ; V. Nedkov

Source :

RBID : ISTEX:7D69DDA8C105FE71ECEB3803DBB801D3DC3BE875

Abstract

We investigate the absorption of the glasses (80x)Sb2O320Na2OxWO3 (x mol of WO3) in the spectral regions 1250028571 and 20007800cm1. The samples are doped with 0.01, 0.03 or 0.05mol of Co3O4 and x30. The observed absorption band is due to the Co impurity in the visible spectral region. This absorption band of glasses does not contain information on the exact energy position of the Co levels. Therefore, we have calculated the second derivative of absorption. It has been established that Co2 ions are surrounded by distorted octahedral coordination in the investigated glasses. The energy level structure of the Co2 ion in the samples is also presented. We have calculated the crystal field parameter Dq and the Racah parameters B and C.

Url:
DOI: 10.1088/0031-8949/2012/T149/014057

Links to Exploration step

ISTEX:7D69DDA8C105FE71ECEB3803DBB801D3DC3BE875

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Visible and far-infrared spectroscopic studies of Co-doped (80x)Sb2O320Na2OxWO3 glasses</title>
<author>
<name sortKey="Petkova, P" sort="Petkova, P" uniqKey="Petkova P" first="P" last="Petkova">P. Petkova</name>
<affiliation>
<mods:affiliation>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: Petya232@abv.bg</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Soltani, M T" sort="Soltani, M T" uniqKey="Soltani M" first="M T" last="Soltani">M T Soltani</name>
<affiliation>
<mods:affiliation>Department of Physics, Faculty of Sciences and Engineering Sciences, University of Biskra, Algeria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Petkov, S" sort="Petkov, S" uniqKey="Petkov S" first="S" last="Petkov">S. Petkov</name>
<affiliation>
<mods:affiliation>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tacheva, J" sort="Tacheva, J" uniqKey="Tacheva J" first="J" last="Tacheva">J. Tacheva</name>
<affiliation>
<mods:affiliation>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nedkov, V" sort="Nedkov, V" uniqKey="Nedkov V" first="V" last="Nedkov">V. Nedkov</name>
<affiliation>
<mods:affiliation>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7D69DDA8C105FE71ECEB3803DBB801D3DC3BE875</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1088/0031-8949/2012/T149/014057</idno>
<idno type="url">https://api.istex.fr/document/7D69DDA8C105FE71ECEB3803DBB801D3DC3BE875/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E61</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E61</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Visible and far-infrared spectroscopic studies of Co-doped (80x)Sb2O320Na2OxWO3 glasses</title>
<author>
<name sortKey="Petkova, P" sort="Petkova, P" uniqKey="Petkova P" first="P" last="Petkova">P. Petkova</name>
<affiliation>
<mods:affiliation>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: Petya232@abv.bg</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Soltani, M T" sort="Soltani, M T" uniqKey="Soltani M" first="M T" last="Soltani">M T Soltani</name>
<affiliation>
<mods:affiliation>Department of Physics, Faculty of Sciences and Engineering Sciences, University of Biskra, Algeria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Petkov, S" sort="Petkov, S" uniqKey="Petkov S" first="S" last="Petkov">S. Petkov</name>
<affiliation>
<mods:affiliation>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tacheva, J" sort="Tacheva, J" uniqKey="Tacheva J" first="J" last="Tacheva">J. Tacheva</name>
<affiliation>
<mods:affiliation>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nedkov, V" sort="Nedkov, V" uniqKey="Nedkov V" first="V" last="Nedkov">V. Nedkov</name>
<affiliation>
<mods:affiliation>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Physica Scripta</title>
<title level="j" type="abbrev">Phys. Scr.</title>
<idno type="ISSN">0031-8949</idno>
<imprint>
<publisher>IOP Publishing</publisher>
<date type="published" when="2012">2012</date>
<biblScope unit="volume">T149</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="4">4</biblScope>
<biblScope unit="production">Printed in the UK</biblScope>
</imprint>
<idno type="ISSN">0031-8949</idno>
</series>
<idno type="istex">7D69DDA8C105FE71ECEB3803DBB801D3DC3BE875</idno>
<idno type="DOI">10.1088/0031-8949/2012/T149/014057</idno>
<idno type="articleID">420065</idno>
<idno type="articleNumber">014057</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0031-8949</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">We investigate the absorption of the glasses (80x)Sb2O320Na2OxWO3 (x mol of WO3) in the spectral regions 1250028571 and 20007800cm1. The samples are doped with 0.01, 0.03 or 0.05mol of Co3O4 and x30. The observed absorption band is due to the Co impurity in the visible spectral region. This absorption band of glasses does not contain information on the exact energy position of the Co levels. Therefore, we have calculated the second derivative of absorption. It has been established that Co2 ions are surrounded by distorted octahedral coordination in the investigated glasses. The energy level structure of the Co2 ion in the samples is also presented. We have calculated the crystal field parameter Dq and the Racah parameters B and C.</div>
</front>
</TEI>
<istex>
<corpusName>iop</corpusName>
<author>
<json:item>
<name>P Petkova</name>
<affiliations>
<json:string>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</json:string>
<json:string>E-mail: Petya232@abv.bg</json:string>
</affiliations>
</json:item>
<json:item>
<name>M T Soltani</name>
<affiliations>
<json:string>Department of Physics, Faculty of Sciences and Engineering Sciences, University of Biskra, Algeria</json:string>
</affiliations>
</json:item>
<json:item>
<name>S Petkov</name>
<affiliations>
<json:string>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</json:string>
</affiliations>
</json:item>
<json:item>
<name>J Tacheva</name>
<affiliations>
<json:string>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</json:string>
</affiliations>
</json:item>
<json:item>
<name>V Nedkov</name>
<affiliations>
<json:string>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</json:string>
</affiliations>
</json:item>
</author>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>paper</json:string>
</originalGenre>
<abstract>We investigate the absorption of the glasses (80x)Sb2O320Na2OxWO3 (x mol of WO3) in the spectral regions 1250028571 and 20007800cm1. The samples are doped with 0.01, 0.03 or 0.05mol of Co3O4 and x30. The observed absorption band is due to the Co impurity in the visible spectral region. This absorption band of glasses does not contain information on the exact energy position of the Co levels. Therefore, we have calculated the second derivative of absorption. It has been established that Co2 ions are surrounded by distorted octahedral coordination in the investigated glasses. The energy level structure of the Co2 ion in the samples is also presented. We have calculated the crystal field parameter Dq and the Racah parameters B and C.</abstract>
<qualityIndicators>
<score>3.847</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>595.276 x 841.89 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>740</abstractCharCount>
<pdfWordCount>1907</pdfWordCount>
<pdfCharCount>10489</pdfCharCount>
<pdfPageCount>4</pdfPageCount>
<abstractWordCount>120</abstractWordCount>
</qualityIndicators>
<title>Visible and far-infrared spectroscopic studies of Co-doped (80x)Sb2O320Na2OxWO3 glasses</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>T149</volume>
<publisherId>
<json:string>ps</json:string>
</publisherId>
<pages>
<total>4</total>
<last>4</last>
<first>1</first>
</pages>
<issn>
<json:string>0031-8949</json:string>
</issn>
<issue>1</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Physica Scripta</title>
</host>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1088/0031-8949/2012/T149/014057</json:string>
</doi>
<id>7D69DDA8C105FE71ECEB3803DBB801D3DC3BE875</id>
<score>0.054417383</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/7D69DDA8C105FE71ECEB3803DBB801D3DC3BE875/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/7D69DDA8C105FE71ECEB3803DBB801D3DC3BE875/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/7D69DDA8C105FE71ECEB3803DBB801D3DC3BE875/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Visible and far-infrared spectroscopic studies of Co-doped (80x)Sb2O320Na2OxWO3 glasses</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>IOP Publishing</publisher>
<availability>
<p>2012 The Royal Swedish Academy of Sciences</p>
</availability>
<date>2012</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Visible and far-infrared spectroscopic studies of Co-doped (80x)Sb2O320Na2OxWO3 glasses</title>
<author xml:id="author-1">
<persName>
<forename type="first">P</forename>
<surname>Petkova</surname>
</persName>
<email>Petya232@abv.bg</email>
<affiliation>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">M T</forename>
<surname>Soltani</surname>
</persName>
<affiliation>Department of Physics, Faculty of Sciences and Engineering Sciences, University of Biskra, Algeria</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">S</forename>
<surname>Petkov</surname>
</persName>
<affiliation>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">J</forename>
<surname>Tacheva</surname>
</persName>
<affiliation>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</affiliation>
</author>
<author xml:id="author-5">
<persName>
<forename type="first">V</forename>
<surname>Nedkov</surname>
</persName>
<affiliation>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Physica Scripta</title>
<title level="j" type="abbrev">Phys. Scr.</title>
<idno type="pISSN">0031-8949</idno>
<imprint>
<publisher>IOP Publishing</publisher>
<date type="published" when="2012"></date>
<biblScope unit="volume">T149</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="1">1</biblScope>
<biblScope unit="page" to="4">4</biblScope>
<biblScope unit="production">Printed in the UK</biblScope>
</imprint>
</monogr>
<idno type="istex">7D69DDA8C105FE71ECEB3803DBB801D3DC3BE875</idno>
<idno type="DOI">10.1088/0031-8949/2012/T149/014057</idno>
<idno type="articleID">420065</idno>
<idno type="articleNumber">014057</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2012</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>We investigate the absorption of the glasses (80x)Sb2O320Na2OxWO3 (x mol of WO3) in the spectral regions 1250028571 and 20007800cm1. The samples are doped with 0.01, 0.03 or 0.05mol of Co3O4 and x30. The observed absorption band is due to the Co impurity in the visible spectral region. This absorption band of glasses does not contain information on the exact energy position of the Co levels. Therefore, we have calculated the second derivative of absorption. It has been established that Co2 ions are surrounded by distorted octahedral coordination in the investigated glasses. The energy level structure of the Co2 ion in the samples is also presented. We have calculated the crystal field parameter Dq and the Racah parameters B and C.</p>
</abstract>
<textClass>
<classCode scheme="">42.50.Nn</classCode>
<classCode scheme="">42.70.Ce</classCode>
<classCode scheme="">63.50.x</classCode>
<classCode scheme="">78.40.q</classCode>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2012">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/7D69DDA8C105FE71ECEB3803DBB801D3DC3BE875/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus iop not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="ISO-8859-1" </istex:xmlDeclaration>
<istex:docType SYSTEM="http://ej.iop.org/dtd/iopv1_5_2.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article artid="pscr420065">
<article-metadata>
<jnl-data jnlid="ps">
<jnl-fullname>Physica Scripta</jnl-fullname>
<jnl-abbreviation>Phys. Scr.</jnl-abbreviation>
<jnl-shortname>PhysScr</jnl-shortname>
<jnl-issn>0031-8949</jnl-issn>
<jnl-coden>PHSTBO</jnl-coden>
<jnl-imprint>IOP Publishing</jnl-imprint>
<jnl-web-address>stacks.iop.org/PhysScr</jnl-web-address>
</jnl-data>
<volume-data>
<year-publication>2012</year-publication>
<volume-number>T149</volume-number>
</volume-data>
<issue-data>
<issue-number>1</issue-number>
<coverdate>May 2012</coverdate>
</issue-data>
<article-data>
<article-type type="paper" sort="regular"></article-type>
<type-number type="paper" numbering="article" artnum="014057">014057</type-number>
<article-number>420065</article-number>
<first-page>1</first-page>
<last-page>4</last-page>
<length>4</length>
<pii></pii>
<doi>10.1088/0031-8949/2012/T149/014057</doi>
<copyright>2012 The Royal Swedish Academy of Sciences</copyright>
<ccc>0031-8949/12/014057+04$33.00</ccc>
<printed>Printed in the UK</printed>
</article-data>
</article-metadata>
<header>
<title-group>
<title>Visible and far-infrared spectroscopic studies of Co-doped (80–
<italic>x</italic>
)Sb
<sub>2</sub>
O
<sub>3</sub>
–20Na
<sub>2</sub>
O–
<italic>x</italic>
WO
<sub>3</sub>
glasses</title>
<short-title>Visible and far-infrared spectroscopic studies of Co-doped (80–
<italic>x</italic>
)Sb
<sub>2</sub>
O
<sub>3</sub>
–20Na
<sub>2</sub>
O–
<italic>x</italic>
WO
<sub>3</sub>
glasses</short-title>
<ej-title>Visible and far-infrared spectroscopic studies of Co-doped (80–x)Sb2O3–20Na2O–xWO3 glasses</ej-title>
</title-group>
<author-group>
<author address="pscr420065ad1" email="pscr420065ea1">
<first-names>P</first-names>
<second-name>Petkova</second-name>
</author>
<author address="pscr420065ad2">
<first-names>M T</first-names>
<second-name>Soltani</second-name>
</author>
<author address="pscr420065ad1">
<first-names>S</first-names>
<second-name>Petkov</second-name>
</author>
<author address="pscr420065ad1">
<first-names>J</first-names>
<second-name>Tacheva</second-name>
</author>
<author address="pscr420065ad1">
<first-names>V</first-names>
<second-name>Nedkov</second-name>
</author>
<short-author-list>P Petkova
<italic>et al</italic>
</short-author-list>
</author-group>
<address-group>
<address id="pscr420065ad1" showid="yes">
<orgname>Shumen University</orgname>
, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen,
<country>Bulgaria</country>
</address>
<address id="pscr420065ad2" showid="yes">Department of Physics, Faculty of Sciences and Engineering Sciences,
<orgname>University of Biskra</orgname>
,
<country>Algeria</country>
</address>
<e-address id="pscr420065ea1">
<email mailto="Petya232@abv.bg">Petya232@abv.bg</email>
</e-address>
</address-group>
<history received="26 August 2011" accepted="8 November 2011" online="27 April 2012"></history>
<abstract-group>
<abstract>
<heading>Abstract</heading>
<p indent="no">We investigate the absorption of the glasses (80–
<italic>x</italic>
)
<inline-eqn>
<math-text>
<upright>Sb</upright>
<sub>2</sub>
<upright>O</upright>
<sub>3</sub>
–20
<upright>Na</upright>
<sub>2</sub>
<upright>O</upright>
<italic>x</italic>
<upright>WO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
(
<italic>x</italic>
mol% of
<inline-eqn>
<math-text>
<upright>WO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
) in the spectral regions
<inline-eqn>
<math-text>12 500–28 571</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>2000–7800 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
. The samples are doped with 0.01, 0.03 or 0.05 mol% of
<inline-eqn>
<math-text>
<upright>Co</upright>
<sub>3</sub>
<upright>O</upright>
<sub>4</sub>
</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>
<italic>x</italic>
=30%</math-text>
</inline-eqn>
. The observed absorption band is due to the Co impurity in the visible spectral region. This absorption band of glasses does not contain information on the exact energy position of the Co levels. Therefore, we have calculated the second derivative of absorption. It has been established that
<inline-eqn>
<math-text>
<upright>Co</upright>
<sup>2+</sup>
</math-text>
</inline-eqn>
ions are surrounded by distorted octahedral coordination in the investigated glasses. The energy level structure of the
<inline-eqn>
<math-text>
<upright>Co</upright>
<sup>2+</sup>
</math-text>
</inline-eqn>
ion in the samples is also presented. We have calculated the crystal field parameter Dq and the Racah parameters
<italic>B</italic>
and
<italic>C</italic>
.</p>
</abstract>
</abstract-group>
<classifications>
<class-codes scheme="pacs">
<code>42.50.Nn</code>
<code>42.70.Ce</code>
<code>63.50.−x</code>
<code>78.40.−q</code>
</class-codes>
</classifications>
</header>
<body refstyle="numeric">
<sec-level1 id="pscr420065s1" label="1">
<heading>Introduction</heading>
<p indent="no">In recent years, antimony oxide, one of the heavy metal oxide glasses, has attracted interest among researchers. These glasses have low energy of photons and high refractive indices and it is conducive to study them in the infrared (IR) region [
<cite linkend="pscr420065bib1">1</cite>
,
<cite linkend="pscr420065bib2">2</cite>
]. Antimony oxide glasses doped with transition metals (TM) are ideal materials for various applications in nonlinear optics. In particular, they are used for passive modulation of a laser beam, as luminescent materials for laser sources and for optical amplification in telecommunication fibers [
<cite linkend="pscr420065bib3" range="pscr420065bib3,pscr420065bib4,pscr420065bib5">3–5</cite>
] because of their strong luminescence in the visible and near-IR regions. TM ions are used to obtain information on the symmetry of the crystal field and the influence of their surrounding ligands. Spectroscopic studies of TM-doped glasses have been implemented in the scope of active applications, while the ability of tungsten to have several oxidation states opens up the possibilities for electro-optical applications. This is the reason for investigating Co-doped (80–
<italic>x</italic>
)
<inline-eqn>
<math-text>
<upright>Sb</upright>
<sub>2</sub>
<upright>O</upright>
<sub>3</sub>
–20
<upright>Na</upright>
<sub>2</sub>
<upright>O</upright>
<italic>x</italic>
<upright>WO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
in this work.</p>
</sec-level1>
<sec-level1 id="pscr420065s2" label="2">
<heading>Experiment and results</heading>
<p indent="no">Cobalt-doped glasses were synthesized in silicate crucibles. The content of 0.01, 0.03 or 0.05 mol%
<inline-eqn>
<math-text>
<upright>Co</upright>
<sub>3</sub>
<upright>O</upright>
<sub>4</sub>
</math-text>
</inline-eqn>
was added to the combination
<inline-eqn>
<math-text>
<upright>Sb</upright>
<sub>2</sub>
<upright>O</upright>
<sub>3</sub>
<upright>WO</upright>
<sub>3</sub>
<upright>Na</upright>
<sub>2</sub>
<upright>O</upright>
</math-text>
</inline-eqn>
 [
<cite linkend="pscr420065bib6">6</cite>
]. The glasses were synthesized by mixing and melting the starting materials at room temperature. Co was used as the coloring agent [
<cite linkend="pscr420065bib7">7</cite>
]. Undoped glasses are yellow and Co-doped glasses are blue. The experimental setup for the measurement of the absorption spectra consists of a halogen lamp with a stabilized rectifier 3H-7, a monochromator SPM-2, a system of quartz lenses, a polarizer, a crystal holder with a sample and a Hamamatsu S2281-01 detector. Measurements in the far-IR region are carried out by the use of an IR Affinity-1 Shimadzu Fourier transform infrared spectrophotometer. The investigated glasses are of two series: undoped (80–
<italic>x</italic>
)
<inline-eqn>
<math-text>
<upright>Sb</upright>
<sub>2</sub>
<upright>O</upright>
<sub>3</sub>
–20
<upright>Na</upright>
<sub>2</sub>
<upright>O</upright>
<italic>x</italic>
<upright>WO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
and those doped with 0.01, 0.03 or 0.05 mol%
<inline-eqn>
<math-text>
<upright>Co</upright>
<sub>3</sub>
<upright>O</upright>
<sub>4</sub>
</math-text>
</inline-eqn>
. Note that
<inline-eqn>
<math-text>
<italic>x</italic>
=30</math-text>
</inline-eqn>
 mol%
<inline-eqn>
<math-text>
<upright>WO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
. The thickness of the glasses varies between 2.52 and 2.69 mm. The absorption spectra of Co-doped glasses are presented in the spectral region
<inline-eqn>
<math-text>12 500–28 571 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
, where the Co structure is observed (figure 
<figref linkend="pscr420065fig1">1</figref>
, first row). It is seen that the cobalt structure is complicated and its shape does not give in formation on the number of electron transitions in
<inline-eqn>
<math-text>
<upright>Co</upright>
<sup>2+</sup>
</math-text>
</inline-eqn>
ions.</p>
<figure id="pscr420065fig1" parts="single" width="page" position="float" pageposition="top" printstyle="normal" orientation="port">
<graphic position="indented">
<graphic-file version="print" format="EPS" width="35.0pc" printcolour="no" filename="physscr12_T149_014057eps/pscr420065fig1.eps"></graphic-file>
<graphic-file version="ej" format="JPEG" printcolour="no" filename="physscr12_T149_014057img/pscr420065fig1.jpg"></graphic-file>
</graphic>
<caption type="figure" id="pscr420065fc1" label="Figure 1">
<p indent="no">The absorption spectra of Co-doped (80–
<italic>x</italic>
)
<inline-eqn>
<math-text>
<upright>Sb</upright>
<sub>2</sub>
<upright>O</upright>
<sub>3</sub>
–20
<upright>Na</upright>
<sub>2</sub>
<upright>O</upright>
<italic>x</italic>
<upright>WO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
(
<inline-eqn>
<math-text>
<italic>x</italic>
=30 
<upright>mol</upright>
<upright>WO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
) in the spectral region
<inline-eqn>
<math-text>12 500–28 571 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
; the calculated first derivative of the absorption coefficient (
<inline-eqn>
<math-text>
<upright>d</upright>
α/
<upright>d</upright>
<italic>E</italic>
</math-text>
</inline-eqn>
) in the this spectral region; the calculated second derivative of the absorption coefficient (
<inline-eqn>
<math-text>
<upright>d</upright>
<sup>2</sup>
α/
<upright>d</upright>
<italic>E</italic>
<sup>2</sup>
</math-text>
</inline-eqn>
) in the same spectral region. Column A is connected with 0.1% Co, column B refers to 0.3% Co and column C is a characteristic of 0.5% Co.</p>
</caption>
</figure>
<p>The energy level diagram of
<inline-eqn>
<math-text>
<upright>Co</upright>
<sup>2+</sup>
</math-text>
</inline-eqn>
ions in octahedral positions is presented in figure 
<figref linkend="pscr420065fig2">2</figref>
. The absorption of pure glasses and that of Co-doped glasses are compared in the spectral region
<inline-eqn>
<math-text>2000–4000 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
(figure 
<figref linkend="pscr420065fig3">3</figref>
). The absorption spectra of pure and Co-doped glasses are also presented in the spectral region
<inline-eqn>
<math-text>4000–7800 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
(figure 
<figref linkend="pscr420065fig4">4</figref>
).</p>
<figure id="pscr420065fig2" parts="single" width="column" position="float" pageposition="top" printstyle="normal" orientation="port">
<graphic position="indented">
<graphic-file version="print" format="EPS" width="14.9pc" printcolour="no" filename="physscr12_T149_014057eps/pscr420065fig2.eps"></graphic-file>
<graphic-file version="ej" format="JPEG" printcolour="no" filename="physscr12_T149_014057img/pscr420065fig2.jpg"></graphic-file>
</graphic>
<caption type="figure" id="pscr420065fc2" label="Figure 2">
<p indent="no">The energetic diagram of
<inline-eqn>
<math-text>
<upright>Co</upright>
<sup>2+</sup>
</math-text>
</inline-eqn>
in
<inline-eqn>
<math-text>
<upright>O</upright>
<sub>
<upright>h</upright>
</sub>
</math-text>
</inline-eqn>
symmetry.</p>
</caption>
</figure>
<figure id="pscr420065fig3" parts="single" width="column" position="float" pageposition="top" printstyle="normal" orientation="port">
<graphic position="indented">
<graphic-file version="print" format="EPS" width="15.0pc" printcolour="no" filename="physscr12_T149_014057eps/pscr420065fig3.eps"></graphic-file>
<graphic-file version="ej" format="JPEG" printcolour="no" filename="physscr12_T149_014057img/pscr420065fig3.jpg"></graphic-file>
</graphic>
<caption type="figure" id="pscr420065fc3" label="Figure 3">
<p indent="no">The absorption spectra in the IR region (
<inline-eqn>
<math-text>2000–4000 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
) of the pure and Co-doped glasses.</p>
</caption>
</figure>
<figure id="pscr420065fig4" parts="single" width="column" position="float" pageposition="top" printstyle="normal" orientation="port">
<graphic position="indented">
<graphic-file version="print" format="EPS" width="15.5pc" printcolour="no" filename="physscr12_T149_014057eps/pscr420065fig4.eps"></graphic-file>
<graphic-file version="ej" format="JPEG" printcolour="no" filename="physscr12_T149_014057img/pscr420065fig4.jpg"></graphic-file>
</graphic>
<caption type="figure" id="pscr420065fc4" label="Figure 4">
<p indent="no">The absorption spectra in the far-IR region (
<inline-eqn>
<math-text>4000–7800 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
) of the pure and Co-doped glasses.</p>
</caption>
</figure>
</sec-level1>
<sec-level1 id="pscr420065s3" label="3">
<heading>Discussion</heading>
<p indent="no">It is seen that the Co structure splits into five components (figure 
<figref linkend="pscr420065fig1">1</figref>
), which means that the number of 3d electron transitions in the Co ion is five. The investigations reported in [
<cite linkend="pscr420065bib8">8</cite>
] show that
<inline-eqn>
<math-text>
<upright>WO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
does not exhibit the structure in the visible spectral region. The distribution of electrons in Co-doped glasses with 0.1 and 0.3% Co is shown in figure 
<figref linkend="pscr420065fig2">2</figref>
(A)). The second column B shows the same distribution in the sample with 0.5% Co. The components of the impurity structure that are connected with the electron transitions are
<inline-eqn>
<math-text>
<sup>4</sup>
<upright>T</upright>
<sub>1</sub>
(
<sup>4</sup>
<upright>F</upright>
)→
<sup>4</sup>
<upright>A</upright>
<sub>2</sub>
(
<sup>4</sup>
<upright>F</upright>
)</math-text>
</inline-eqn>
,
<inline-eqn>
<math-text>
<sup>4</sup>
<upright>T</upright>
<sub>1</sub>
(
<sup>4</sup>
<upright>F</upright>
)→
<sup>2</sup>
<upright>T</upright>
<sub>2</sub>
(
<sup>2</sup>
<upright>G</upright>
)</math-text>
</inline-eqn>
,
<inline-eqn>
<math-text>
<sup>4</sup>
<upright>T</upright>
<sub>1</sub>
(
<sup>4</sup>
<upright>F</upright>
)→
<sup>2</sup>
<upright>T</upright>
<sub>1</sub>
(
<sup>2</sup>
<upright>G</upright>
)</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>
<sup>4</sup>
<upright>T</upright>
<sub>1</sub>
(
<sup>4</sup>
<upright>F</upright>
)→
<sup>4</sup>
<upright>T</upright>
<sub>1</sub>
(
<sup>4</sup>
<upright>P</upright>
)</math-text>
</inline-eqn>
(figure 
<figref linkend="pscr420065fig2">2</figref>
). The energetic position of the first component varies between 14 288 and
<inline-eqn>
<math-text>16 494 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
(1.77–2.05 eV) for Co-doped glasses (
<inline-eqn>
<math-text>
<italic>x</italic>
=30 
<upright>mol</upright>
</math-text>
</inline-eqn>
%
<inline-eqn>
<math-text>
<upright>WO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
). The energy of the second component is between 17 905 and
<inline-eqn>
<math-text>18 400 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
(2.22–2.28 eV), the energy of the third component is between 18 914 and
<inline-eqn>
<math-text>19 306 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
(2.34–2.39 eV) and the energy of the fourth component is between
<inline-eqn>
<math-text>19 738 
<upright>and</upright>
 20 986 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
(2.45–2.6 eV). The first and fourth components of the impurity band can be determined as the spin-allowed transitions. The two bands that are connected with the doublet states
<inline-eqn>
<math-text>
<sup>2</sup>
<upright>T</upright>
<sub>1</sub>
(
<sup>2</sup>
<upright>G</upright>
)</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>
<sup>2</sup>
<upright>T</upright>
<sub>2</sub>
(
<sup>2</sup>
<upright>G</upright>
)</math-text>
</inline-eqn>
are spin forbidden. These two states are situated very close to the state
<inline-eqn>
<math-text>
<sup>4</sup>
<upright>T</upright>
<sub>1</sub>
(
<sup>4</sup>
<upright>P</upright>
)</math-text>
</inline-eqn>
. The 3d electron transitions on the doublet states are allowed owing to some mixing of their wave functions with those of
<inline-eqn>
<math-text>
<sup>4</sup>
<upright>T</upright>
<sub>1</sub>
(
<sup>4</sup>
<upright>P</upright>
)</math-text>
</inline-eqn>
. The magnitude of the intensities of these four bands in the visible range strongly depends on the energy separation of the doublet states from the
<inline-eqn>
<math-text>
<sup>4</sup>
<upright>T</upright>
<sub>1</sub>
(
<sup>4</sup>
<upright>P</upright>
)</math-text>
</inline-eqn>
and therefore on the crystal field splitting.</p>
<p>Although the glass composition has a small influence on the magnitude of crystal field splitting, very subtle changes in the environment of the
<inline-eqn>
<math-text>
<upright>Co</upright>
<sup>2+</sup>
</math-text>
</inline-eqn>
ion can be detected using the crystal field spectra. The crystal field parameter Dq and the Racah parameters
<italic>B</italic>
and
<italic>C</italic>
are calculated for Co-doped glasses (
<inline-eqn>
<math-text>
<italic>x</italic>
=30 
<upright>mol</upright>
<upright>WO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
). The value of
<italic>B</italic>
is
<inline-eqn>
<math-text>970 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
. The value of the parameter
<italic>C</italic>
is
<inline-eqn>
<math-text>4569 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
. The value of the crystal field parameter Dq is
<inline-eqn>
<math-text>873 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
. In this paper, we discuss the electronic structure of 3d valence electrons of Co, embedded in a metallic glass host. It is convenient to introduce the exchange interaction
<italic>J</italic>
(dd) here, describing the intrashell exchange attraction between parallel spins [
<cite linkend="pscr420065bib9">9</cite>
]:
<inline-eqn>
<math-text>
<italic>J</italic>
(
<upright>dd</upright>
)=1/14(
<italic>F</italic>
<sup>2</sup>
+
<italic>F</italic>
<sup>4</sup>
),</math-text>
</inline-eqn>
and the additional parameter describing the angular part of the multiplet splitting is
<inline-eqn>
<math-text>
<italic>C</italic>
(
<upright>dd</upright>
)=1/14(9/7
<italic>F</italic>
<sup>2</sup>
−5/7
<italic>F</italic>
<sup>4</sup>
)</math-text>
</inline-eqn>
.
<italic>J</italic>
and
<italic>C</italic>
are especially useful when describing the lowest state of an
<inline-eqn>
<math-text>
<italic>l</italic>
<sup>
<italic>n</italic>
</sup>
</math-text>
</inline-eqn>
multiplet. For d electrons,
<inline-eqn>
<math-text>
<italic>l</italic>
=2</math-text>
</inline-eqn>
. According to Hund's rule this is always the state with the highest possible spin quantum number.</p>
<p>The next equations are fulfilled for our glass systems
<inline-eqn>
<math-text>
<italic>F</italic>
<sup>2</sup>
=49
<italic>F</italic>
<sub>2</sub>
</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>
<italic>F</italic>
<sup>4</sup>
=441
<italic>F</italic>
<sub>4</sub>
</math-text>
</inline-eqn>
, where
<inline-eqn>
<math-text>
<italic>F</italic>
<sub>2</sub>
</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>
<italic>F</italic>
<sub>4</sub>
</math-text>
</inline-eqn>
are the Condon–Shortley parameters. The energy of levels
<inline-eqn>
<math-text>
<sup>4</sup>
<italic>F</italic>
</math-text>
</inline-eqn>
,
<inline-eqn>
<math-text>
<sup>2</sup>
<italic>G</italic>
</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>
<sup>4</sup>
<italic>P</italic>
</math-text>
</inline-eqn>
from the experiment is connected with
<inline-eqn>
<math-text>
<italic>F</italic>
<sub>0</sub>
</math-text>
</inline-eqn>
,
<inline-eqn>
<math-text>
<italic>F</italic>
<sub>2</sub>
</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>
<italic>F</italic>
<sub>4</sub>
</math-text>
</inline-eqn>
as follows [
<cite linkend="pscr420065bib10">10</cite>
]:
<inline-eqn>
<math-text>
<italic>E</italic>
(
<sup>4</sup>
<italic>F</italic>
)=3
<italic>F</italic>
<sub>0</sub>
−15
<italic>F</italic>
<sub>2</sub>
−72
<italic>F</italic>
<sub>4</sub>
</math-text>
</inline-eqn>
,
<inline-eqn>
<math-text>
<italic>E</italic>
(
<sup>2</sup>
<italic>G</italic>
)=3
<italic>F</italic>
<sub>0</sub>
−11
<italic>F</italic>
<sub>2</sub>
+13
<italic>F</italic>
<sub>4</sub>
</math-text>
</inline-eqn>
,
<inline-eqn>
<math-text>
<italic>F</italic>
(
<sup>4</sup>
<italic>P</italic>
)=3
<italic>F</italic>
<sub>0</sub>
−147
<italic>F</italic>
<sub>4</sub>
</math-text>
</inline-eqn>
. In our case, the values of
<italic>J</italic>
(dd) and
<italic>C</italic>
(dd) are, respectively, between
<inline-eqn>
<math-text>1824 
<upright>and</upright>
 3875 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
and between 1344 and
<inline-eqn>
<math-text>1842 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
. The work by Chandra and Gupta [
<cite linkend="pscr420065bib11">11</cite>
] informs us of the nephelauxetic parameter
<inline-eqn>
<math-text>β=
<italic>B</italic>
</math-text>
</inline-eqn>
(complex)/
<italic>B</italic>
(free ion). If the value of
<inline-eqn>
<math-text>β</math-text>
</inline-eqn>
lies in the range 0.54–0.81, it manifests a metal ligand
<inline-eqn>
<math-text>σ</math-text>
</inline-eqn>
bond. In the case of Co-doped glasses (
<inline-eqn>
<math-text>
<italic>x</italic>
=30 
<upright>mol</upright>
<upright>WO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
) the ligand bond is
<inline-eqn>
<math-text>π</math-text>
</inline-eqn>
, because
<inline-eqn>
<math-text>β=1</math-text>
</inline-eqn>
. The matrices of the pure glasses manifest two maxima around
<inline-eqn>
<math-text>3284</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>5578 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
(figures 
<figref linkend="pscr420065fig3">3</figref>
and 
<figref linkend="pscr420065fig4">4</figref>
). The maximum around
<inline-eqn>
<math-text>3280 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
is attributed to the presence of
<inline-eqn>
<math-text>
<upright>OH</upright>
<sup></sup>
</math-text>
</inline-eqn>
groups and it is an extrinsic band due to the presence of water vapor during the synthesis or the absorbed water molecules in the final melt of the glass. Generally,
<inline-eqn>
<math-text>
<upright>OH</upright>
<sup></sup>
</math-text>
</inline-eqn>
is always present in oxide glasses. Its presence is detrimental to the optical properties of the glass and its elimination is needed. The maximum at
<inline-eqn>
<math-text>3284 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
is shifted to lower frequencies for doped samples with 0.3 and 0.5% Co and this maximum is not manifested in the same spectral region for the doped glass with 0.1% Co (figure 
<figref linkend="pscr420065fig3">3</figref>
). This spectral structure has the biggest absorption coefficient in the case of the doped glass with 0.3% Co. The doped samples with 0.3 and 0.5% Co give two additional maxima, respectively, at
<inline-eqn>
<math-text>2221</math-text>
</inline-eqn>
and
<inline-eqn>
<math-text>2530 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
. The other maximum at
<inline-eqn>
<math-text>5578 
<upright>cm</upright>
<sup>−1</sup>
</math-text>
</inline-eqn>
for the pure glass is shifted to lower frequencies for doped glasses with 0.1, 0.3 or 0.5% Co (figure 
<figref linkend="pscr420065fig4">4</figref>
). The absorption coefficient of this spectral structure has a lower value for the doped sample with 0.1% Co and is bigger in the case of doped samples with 0.5 and 0.3% Co.</p>
</sec-level1>
<sec-level1 id="pscr420065s4" label="4">
<heading>Conclusions</heading>
<p indent="no">We have determined the subtle changes in the
<italic>J</italic>
(dd) and
<italic>C</italic>
(dd) parameters for doped glasses with 0.1%, 0.3 or 0.5% Co (
<inline-eqn>
<math-text>
<italic>x</italic>
=30 
<upright>mol</upright>
<upright>WO</upright>
<sub>3</sub>
</math-text>
</inline-eqn>
). The calculation of these parameters shows a manifestation of the strong spin–orbit interaction in the Co complexes. The value of the nephelauxetic parameter
<inline-eqn>
<math-text>β</math-text>
</inline-eqn>
shows that the metal ligand bond is
<inline-eqn>
<math-text>π</math-text>
</inline-eqn>
in all Co-doped glasses.</p>
</sec-level1>
</body>
<back>
<references>
<heading>References</heading>
<reference-list type="numeric">
<journal-ref id="pscr420065bib1" num="1">
<authors>
<au>
<second-name>Abritta</second-name>
<first-names>T</first-names>
</au>
<au>
<second-name>Black</second-name>
<first-names>F H</first-names>
</au>
</authors>
<year>1991</year>
<jnl-title>J. Lumin.</jnl-title>
<volume>48</volume>
<pages>558</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/0022-2313(91)90192-X</cr_doi>
<cr_issn type="print">00222313</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="pscr420065bib2" num="2">
<authors>
<au>
<second-name>Camargo</second-name>
<first-names>M B</first-names>
</au>
<au>
<second-name>Stultz</second-name>
<first-names>R D</first-names>
</au>
<au>
<second-name>Birnbaum</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Kokta</second-name>
<first-names>M</first-names>
</au>
</authors>
<year>1995</year>
<jnl-title>Opt. Lett.</jnl-title>
<volume>20</volume>
<pages>339</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1364/OL.20.000339</cr_doi>
<cr_issn type="print">0146-9592</cr_issn>
<cr_issn type="electronic">1539-4794</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="pscr420065bib3" num="3">
<authors>
<au>
<second-name>Dumbaugh</second-name>
<first-names>W H</first-names>
</au>
<au>
<second-name>Lapp</second-name>
<first-names>J C</first-names>
</au>
</authors>
<year>1992</year>
<jnl-title>J. Am. Ceram. Soc.</jnl-title>
<volume>75</volume>
<pages>2315</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1111/jace.1992.75.issue-9</cr_doi>
<cr_issn type="print">0002-7820</cr_issn>
<cr_issn type="electronic">1551-2916</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="pscr420065bib4" num="4">
<authors>
<au>
<second-name>Hall</second-name>
<first-names>D W</first-names>
</au>
<au>
<second-name>Newhouse</second-name>
<first-names>M A</first-names>
</au>
<au>
<second-name>Borelli</second-name>
<first-names>M A</first-names>
</au>
<au>
<second-name>Dumbaugh</second-name>
<first-names>W H</first-names>
</au>
<au>
<second-name>Weidman</second-name>
<first-names>D L</first-names>
</au>
</authors>
<year>1989</year>
<jnl-title>Appl. Phys. Lett.</jnl-title>
<volume>54</volume>
<pages>1293</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.100697</cr_doi>
<cr_issn type="print">00036951</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="pscr420065bib5" num="5">
<authors>
<au>
<second-name>De Araujo</second-name>
<first-names>E</first-names>
</au>
<au>
<second-name>De Araujo</second-name>
<first-names>C B</first-names>
</au>
<au>
<second-name>Poirier</second-name>
<first-names>G</first-names>
</au>
<au>
<second-name>Poulain</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Messaddeq</second-name>
<first-names>Y</first-names>
</au>
</authors>
<year>2002</year>
<jnl-title>Appl. Phys. Lett.</jnl-title>
<volume>8</volume>
<pages>4694</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.1529310</cr_doi>
<cr_issn type="print">00036951</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="pscr420065bib6" num="6">
<authors>
<au>
<second-name>Sudarsan</second-name>
<first-names>V</first-names>
</au>
<au>
<second-name>Kulshreshtha</second-name>
<first-names>S K</first-names>
</au>
</authors>
<year>2001</year>
<jnl-title>J. Non-Cryst. Solids</jnl-title>
<volume>286</volume>
<pages>99–107</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/S0022-3093(01)00502-6</cr_doi>
<cr_issn type="print">00223093</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="pscr420065bib7" num="7">
<authors>
<au>
<second-name>Ancora</second-name>
<first-names>B</first-names>
</au>
<au>
<second-name>Magini</second-name>
<first-names>M</first-names>
</au>
<au>
<second-name>Sedda</second-name>
<first-names>A F</first-names>
</au>
</authors>
<year>1988</year>
<jnl-title>J. Chem. Phys.</jnl-title>
<volume>88</volume>
<pages>2015</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1063/1.454075</cr_doi>
<cr_issn type="print">00219606</cr_issn>
</crossref>
</journal-ref>
<journal-ref id="pscr420065bib8" num="8">
<authors>
<au>
<second-name>El-Kheshen</second-name>
<first-names>A A</first-names>
</au>
<au>
<second-name>El-Batal</second-name>
<first-names>F H</first-names>
</au>
<au>
<second-name>Marzouk</second-name>
<first-names>S Y</first-names>
</au>
</authors>
<year>2008</year>
<jnl-title>Indian J. Pure Appl. Phys.</jnl-title>
<volume>46</volume>
<pages>225</pages>
</journal-ref>
<journal-ref id="pscr420065bib9" num="9">
<authors>
<au>
<second-name>van der Marel</second-name>
<first-names>D</first-names>
</au>
<au>
<second-name>Sawatzky</second-name>
<first-names>G A</first-names>
</au>
</authors>
<year>1988</year>
<jnl-title>Phys. Rev.</jnl-title>
<part>B</part>
<volume>37</volume>
<pages>10674–84</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1103/PhysRevB.37.10674</cr_doi>
<cr_issn type="print">0163-1829</cr_issn>
</crossref>
</journal-ref>
<book-ref id="pscr420065bib10" num="10">
<authors>
<au>
<second-name>Ballhausen</second-name>
<first-names>C J</first-names>
</au>
</authors>
<year>1964</year>
<book-title>Introduction to Ligand Field Theory</book-title>
<publication>
<place>New York</place>
<publisher>McGraw-Hill</publisher>
</publication>
</book-ref>
<journal-ref id="pscr420065bib11" num="11">
<authors>
<au>
<second-name>Chandra</second-name>
<first-names>S</first-names>
</au>
<au>
<second-name>Gupta</second-name>
<first-names>L</first-names>
</au>
</authors>
<year>2005</year>
<jnl-title>Spectrochim. Acta</jnl-title>
<part>A</part>
<volume>62</volume>
<pages>1125–30</pages>
<crossref>
<cr_doi>http://dx.doi.org/10.1016/j.saa.2005.03.029</cr_doi>
<cr_issn type="print">13861425</cr_issn>
</crossref>
</journal-ref>
</reference-list>
</references>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="eng">
<title>Visible and far-infrared spectroscopic studies of Co-doped (80x)Sb2O320Na2OxWO3 glasses</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Visible and far-infrared spectroscopic studies of Co-doped (80x)Sb2O320Na2OxWO3 glasses</title>
</titleInfo>
<titleInfo type="alternative" lang="eng">
<title>Visible and far-infrared spectroscopic studies of Co-doped (80x)Sb2O320Na2OxWO3 glasses</title>
</titleInfo>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Petkova</namePart>
<affiliation>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</affiliation>
<affiliation>E-mail: Petya232@abv.bg</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M T</namePart>
<namePart type="family">Soltani</namePart>
<affiliation>Department of Physics, Faculty of Sciences and Engineering Sciences, University of Biskra, Algeria</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Petkov</namePart>
<affiliation>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Tacheva</namePart>
<affiliation>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">V</namePart>
<namePart type="family">Nedkov</namePart>
<affiliation>Shumen University, Konstantin Preslavski, 115 Universitetska Street, 9712 Shumen, Bulgaria</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="paper">paper</genre>
<originInfo>
<publisher>IOP Publishing</publisher>
<dateIssued encoding="w3cdtf">2012</dateIssued>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<note type="production">Printed in the UK</note>
</physicalDescription>
<abstract>We investigate the absorption of the glasses (80x)Sb2O320Na2OxWO3 (x mol of WO3) in the spectral regions 1250028571 and 20007800cm1. The samples are doped with 0.01, 0.03 or 0.05mol of Co3O4 and x30. The observed absorption band is due to the Co impurity in the visible spectral region. This absorption band of glasses does not contain information on the exact energy position of the Co levels. Therefore, we have calculated the second derivative of absorption. It has been established that Co2 ions are surrounded by distorted octahedral coordination in the investigated glasses. The energy level structure of the Co2 ion in the samples is also presented. We have calculated the crystal field parameter Dq and the Racah parameters B and C.</abstract>
<classification authority="pacs">42.50.Nn</classification>
<classification authority="pacs">42.70.Ce</classification>
<classification authority="pacs">63.50.x</classification>
<classification authority="pacs">78.40.q</classification>
<relatedItem type="host">
<titleInfo>
<title>Physica Scripta</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Phys. Scr.</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0031-8949</identifier>
<identifier type="PublisherID">ps</identifier>
<identifier type="CODEN">PHSTBO</identifier>
<identifier type="URL">stacks.iop.org/PhysScr</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>T149</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>4</end>
<total>4</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">7D69DDA8C105FE71ECEB3803DBB801D3DC3BE875</identifier>
<identifier type="DOI">10.1088/0031-8949/2012/T149/014057</identifier>
<identifier type="articleID">420065</identifier>
<identifier type="articleNumber">014057</identifier>
<accessCondition type="use and reproduction" contentType="copyright">2012 The Royal Swedish Academy of Sciences</accessCondition>
<recordInfo>
<recordContentSource>IOP</recordContentSource>
<recordOrigin>2012 The Royal Swedish Academy of Sciences</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E61 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000E61 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:7D69DDA8C105FE71ECEB3803DBB801D3DC3BE875
   |texte=   Visible and far-infrared spectroscopic studies of Co-doped (80x)Sb2O320Na2OxWO3 glasses
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024