Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vitamin requirement study techniques

Identifieur interne : 000E33 ( Istex/Corpus ); précédent : 000E32; suivant : 000E34

Vitamin requirement study techniques

Auteurs : J. E. Halver

Source :

RBID : ISTEX:A9A6FE5ECCD252BE8492EAEF1355BA8CB2EE18F8

Abstract

Vitamin requirement studies have been conducted for 50 years using growth and clinical signs of deficiency for quantitative studies. Histological confirmation of apparent signs confirm and establish subclinical measurements for deficiency. Test diets for these studies with positive experimental control over the test vitamin have been developed using varying degrees of vitamin‐free ingredients in the formulations. Haematology values and microanatomical changes reflect failures of a metabolic system and provide convincing data for requirements. Quantitative studies have used specific test diets plus increasing aliquots of the test vitamin, coupled with growth response, tissue storage analysis, and specific enzyme system activity. Results have been reported for levels which support normal growth, clinical enzyme saturation, and maximum liver or other tissue storage levels. Megavitamin intake studies have been correlated with improved resistance to stress and certain fish diseases. Statistical measurement of response to various parameters used become essential for quantitative vitamin requirement determinations. Early studies using vitamin analysis of feedstuffs mixtures coupled with growth response, absence of deficiency signs, and liver or tissue storage have been superseded by diets with more positive control of all nutrients, including the vitamin to be tested. Sparing effects of one vitamin upon another can be demonstrated. Various vitamer forms may have different activity to supply physiological requirements for the vitamin. Most water‐soluble vitamins act as co‐enzymes in metabolic systems. Some fat‐soluble vitamins have molecular functions acting as hormones, free radical traps, intracellular reducing agents, pigments, antioxidants, etc. A guide for vitamin requirements or dietary allowances should be followed when research plans are made to conduct vitamin requirement studies.

Url:
DOI: 10.1111/j.1439-0426.1995.tb00021.x

Links to Exploration step

ISTEX:A9A6FE5ECCD252BE8492EAEF1355BA8CB2EE18F8

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Vitamin requirement study techniques</title>
<author>
<name sortKey="Halver, J E" sort="Halver, J E" uniqKey="Halver J" first="J. E." last="Halver">J. E. Halver</name>
<affiliation>
<mods:affiliation>School of Fisheries HF‐15, University of Washington, Seattle, WA 98195, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A9A6FE5ECCD252BE8492EAEF1355BA8CB2EE18F8</idno>
<date when="1995" year="1995">1995</date>
<idno type="doi">10.1111/j.1439-0426.1995.tb00021.x</idno>
<idno type="url">https://api.istex.fr/document/A9A6FE5ECCD252BE8492EAEF1355BA8CB2EE18F8/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E33</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E33</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Vitamin requirement study techniques</title>
<author>
<name sortKey="Halver, J E" sort="Halver, J E" uniqKey="Halver J" first="J. E." last="Halver">J. E. Halver</name>
<affiliation>
<mods:affiliation>School of Fisheries HF‐15, University of Washington, Seattle, WA 98195, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Applied Ichthyology</title>
<idno type="ISSN">0175-8659</idno>
<idno type="eISSN">1439-0426</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1995-12">1995-12</date>
<biblScope unit="volume">11</biblScope>
<biblScope unit="issue">3‐4</biblScope>
<biblScope unit="page" from="215">215</biblScope>
<biblScope unit="page" to="224">224</biblScope>
</imprint>
<idno type="ISSN">0175-8659</idno>
</series>
<idno type="istex">A9A6FE5ECCD252BE8492EAEF1355BA8CB2EE18F8</idno>
<idno type="DOI">10.1111/j.1439-0426.1995.tb00021.x</idno>
<idno type="ArticleID">JAI215</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0175-8659</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Vitamin requirement studies have been conducted for 50 years using growth and clinical signs of deficiency for quantitative studies. Histological confirmation of apparent signs confirm and establish subclinical measurements for deficiency. Test diets for these studies with positive experimental control over the test vitamin have been developed using varying degrees of vitamin‐free ingredients in the formulations. Haematology values and microanatomical changes reflect failures of a metabolic system and provide convincing data for requirements. Quantitative studies have used specific test diets plus increasing aliquots of the test vitamin, coupled with growth response, tissue storage analysis, and specific enzyme system activity. Results have been reported for levels which support normal growth, clinical enzyme saturation, and maximum liver or other tissue storage levels. Megavitamin intake studies have been correlated with improved resistance to stress and certain fish diseases. Statistical measurement of response to various parameters used become essential for quantitative vitamin requirement determinations. Early studies using vitamin analysis of feedstuffs mixtures coupled with growth response, absence of deficiency signs, and liver or tissue storage have been superseded by diets with more positive control of all nutrients, including the vitamin to be tested. Sparing effects of one vitamin upon another can be demonstrated. Various vitamer forms may have different activity to supply physiological requirements for the vitamin. Most water‐soluble vitamins act as co‐enzymes in metabolic systems. Some fat‐soluble vitamins have molecular functions acting as hormones, free radical traps, intracellular reducing agents, pigments, antioxidants, etc. A guide for vitamin requirements or dietary allowances should be followed when research plans are made to conduct vitamin requirement studies.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>J. E. Halver</name>
<affiliations>
<json:string>School of Fisheries HF‐15, University of Washington, Seattle, WA 98195, USA</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>JAI215</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Vitamin requirement studies have been conducted for 50 years using growth and clinical signs of deficiency for quantitative studies. Histological confirmation of apparent signs confirm and establish subclinical measurements for deficiency. Test diets for these studies with positive experimental control over the test vitamin have been developed using varying degrees of vitamin‐free ingredients in the formulations. Haematology values and microanatomical changes reflect failures of a metabolic system and provide convincing data for requirements. Quantitative studies have used specific test diets plus increasing aliquots of the test vitamin, coupled with growth response, tissue storage analysis, and specific enzyme system activity. Results have been reported for levels which support normal growth, clinical enzyme saturation, and maximum liver or other tissue storage levels. Megavitamin intake studies have been correlated with improved resistance to stress and certain fish diseases. Statistical measurement of response to various parameters used become essential for quantitative vitamin requirement determinations. Early studies using vitamin analysis of feedstuffs mixtures coupled with growth response, absence of deficiency signs, and liver or tissue storage have been superseded by diets with more positive control of all nutrients, including the vitamin to be tested. Sparing effects of one vitamin upon another can be demonstrated. Various vitamer forms may have different activity to supply physiological requirements for the vitamin. Most water‐soluble vitamins act as co‐enzymes in metabolic systems. Some fat‐soluble vitamins have molecular functions acting as hormones, free radical traps, intracellular reducing agents, pigments, antioxidants, etc. A guide for vitamin requirements or dietary allowances should be followed when research plans are made to conduct vitamin requirement studies.</abstract>
<qualityIndicators>
<score>7.35</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>468 x 684 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1914</abstractCharCount>
<pdfWordCount>3850</pdfWordCount>
<pdfCharCount>24616</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>261</abstractWordCount>
</qualityIndicators>
<title>Vitamin requirement study techniques</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>11</volume>
<publisherId>
<json:string>JAI</json:string>
</publisherId>
<pages>
<total>10</total>
<last>224</last>
<first>215</first>
</pages>
<issn>
<json:string>0175-8659</json:string>
</issn>
<issue>3‐4</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1439-0426</json:string>
</eissn>
<title>Journal of Applied Ichthyology</title>
<doi>
<json:string>10.1111/(ISSN)1439-0426</json:string>
</doi>
</host>
<publicationDate>1995</publicationDate>
<copyrightDate>1995</copyrightDate>
<doi>
<json:string>10.1111/j.1439-0426.1995.tb00021.x</json:string>
</doi>
<id>A9A6FE5ECCD252BE8492EAEF1355BA8CB2EE18F8</id>
<score>0.05555873</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/A9A6FE5ECCD252BE8492EAEF1355BA8CB2EE18F8/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/A9A6FE5ECCD252BE8492EAEF1355BA8CB2EE18F8/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/A9A6FE5ECCD252BE8492EAEF1355BA8CB2EE18F8/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Vitamin requirement study techniques</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>1995</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Vitamin requirement study techniques</title>
<author xml:id="author-1">
<persName>
<forename type="first">J. E.</forename>
<surname>Halver</surname>
</persName>
<affiliation>School of Fisheries HF‐15, University of Washington, Seattle, WA 98195, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Applied Ichthyology</title>
<idno type="pISSN">0175-8659</idno>
<idno type="eISSN">1439-0426</idno>
<idno type="DOI">10.1111/(ISSN)1439-0426</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1995-12"></date>
<biblScope unit="volume">11</biblScope>
<biblScope unit="issue">3‐4</biblScope>
<biblScope unit="page" from="215">215</biblScope>
<biblScope unit="page" to="224">224</biblScope>
</imprint>
</monogr>
<idno type="istex">A9A6FE5ECCD252BE8492EAEF1355BA8CB2EE18F8</idno>
<idno type="DOI">10.1111/j.1439-0426.1995.tb00021.x</idno>
<idno type="ArticleID">JAI215</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1995</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Vitamin requirement studies have been conducted for 50 years using growth and clinical signs of deficiency for quantitative studies. Histological confirmation of apparent signs confirm and establish subclinical measurements for deficiency. Test diets for these studies with positive experimental control over the test vitamin have been developed using varying degrees of vitamin‐free ingredients in the formulations. Haematology values and microanatomical changes reflect failures of a metabolic system and provide convincing data for requirements. Quantitative studies have used specific test diets plus increasing aliquots of the test vitamin, coupled with growth response, tissue storage analysis, and specific enzyme system activity. Results have been reported for levels which support normal growth, clinical enzyme saturation, and maximum liver or other tissue storage levels. Megavitamin intake studies have been correlated with improved resistance to stress and certain fish diseases. Statistical measurement of response to various parameters used become essential for quantitative vitamin requirement determinations. Early studies using vitamin analysis of feedstuffs mixtures coupled with growth response, absence of deficiency signs, and liver or tissue storage have been superseded by diets with more positive control of all nutrients, including the vitamin to be tested. Sparing effects of one vitamin upon another can be demonstrated. Various vitamer forms may have different activity to supply physiological requirements for the vitamin. Most water‐soluble vitamins act as co‐enzymes in metabolic systems. Some fat‐soluble vitamins have molecular functions acting as hormones, free radical traps, intracellular reducing agents, pigments, antioxidants, etc. A guide for vitamin requirements or dietary allowances should be followed when research plans are made to conduct vitamin requirement studies.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1995-12">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-10-24">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/A9A6FE5ECCD252BE8492EAEF1355BA8CB2EE18F8/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley component found">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1439-0426</doi>
<issn type="print">0175-8659</issn>
<issn type="electronic">1439-0426</issn>
<idGroup>
<id type="product" value="JAI"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="JOURNAL OF APPLIED ICHTHYOLOGY">Journal of Applied Ichthyology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="12003">
<doi origin="wiley">10.1111/jai.1995.11.issue-3-4</doi>
<numberingGroup>
<numbering type="journalVolume" number="11">11</numbering>
<numbering type="journalIssue">3‐4</numbering>
</numberingGroup>
<coverDate startDate="1995-12">December 1995</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="0021500" status="forIssue">
<doi origin="wiley">10.1111/j.1439-0426.1995.tb00021.x</doi>
<idGroup>
<id type="unit" value="JAI215"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="10"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Articles</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2007-07-26"></event>
<event type="publishedOnlineFinalForm" date="2007-07-26"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.2 mode:FullText source:Header result:Header" date="2010-03-15"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-28"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="215">215</numbering>
<numbering type="pageLast" number="224">224</numbering>
</numberingGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JAI.JAI215.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received: August 15, 1994 Accepted: March 27, 1995</unparsedEditorialHistory>
<countGroup>
<count type="referenceTotal" number="0"></count>
<count type="linksCrossRef" number="1"></count>
</countGroup>
<titleGroup>
<title type="main">Vitamin requirement study techniques</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>J. E.</givenNames>
<familyName>Halver</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="US">
<unparsedAffiliation>School of Fisheries HF‐15, University of Washington, Seattle, WA 98195, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>Vitamin requirement studies have been conducted for 50 years using growth and clinical signs of deficiency for quantitative studies. Histological confirmation of apparent signs confirm and establish subclinical measurements for deficiency. Test diets for these studies with positive experimental control over the test vitamin have been developed using varying degrees of vitamin‐free ingredients in the formulations. Haematology values and microanatomical changes reflect failures of a metabolic system and provide convincing data for requirements. Quantitative studies have used specific test diets plus increasing aliquots of the test vitamin, coupled with growth response, tissue storage analysis, and specific enzyme system activity. Results have been reported for levels which support normal growth, clinical enzyme saturation, and maximum liver or other tissue storage levels. Megavitamin intake studies have been correlated with improved resistance to stress and certain fish diseases. Statistical measurement of response to various parameters used become essential for quantitative vitamin requirement determinations. Early studies using vitamin analysis of feedstuffs mixtures coupled with growth response, absence of deficiency signs, and liver or tissue storage have been superseded by diets with more positive control of all nutrients, including the vitamin to be tested. Sparing effects of one vitamin upon another can be demonstrated. Various vitamer forms may have different activity to supply physiological requirements for the vitamin. Most water‐soluble vitamins act as co‐enzymes in metabolic systems. Some fat‐soluble vitamins have molecular functions acting as hormones, free radical traps, intracellular reducing agents, pigments, antioxidants, etc. A guide for vitamin requirements or dietary allowances should be followed when research plans are made to conduct vitamin requirement studies.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Vitamin requirement study techniques</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Vitamin requirement study techniques</title>
</titleInfo>
<name type="personal">
<namePart type="given">J. E.</namePart>
<namePart type="family">Halver</namePart>
<affiliation>School of Fisheries HF‐15, University of Washington, Seattle, WA 98195, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1995-12</dateIssued>
<edition>Received: August 15, 1994 Accepted: March 27, 1995</edition>
<copyrightDate encoding="w3cdtf">1995</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract lang="en">Vitamin requirement studies have been conducted for 50 years using growth and clinical signs of deficiency for quantitative studies. Histological confirmation of apparent signs confirm and establish subclinical measurements for deficiency. Test diets for these studies with positive experimental control over the test vitamin have been developed using varying degrees of vitamin‐free ingredients in the formulations. Haematology values and microanatomical changes reflect failures of a metabolic system and provide convincing data for requirements. Quantitative studies have used specific test diets plus increasing aliquots of the test vitamin, coupled with growth response, tissue storage analysis, and specific enzyme system activity. Results have been reported for levels which support normal growth, clinical enzyme saturation, and maximum liver or other tissue storage levels. Megavitamin intake studies have been correlated with improved resistance to stress and certain fish diseases. Statistical measurement of response to various parameters used become essential for quantitative vitamin requirement determinations. Early studies using vitamin analysis of feedstuffs mixtures coupled with growth response, absence of deficiency signs, and liver or tissue storage have been superseded by diets with more positive control of all nutrients, including the vitamin to be tested. Sparing effects of one vitamin upon another can be demonstrated. Various vitamer forms may have different activity to supply physiological requirements for the vitamin. Most water‐soluble vitamins act as co‐enzymes in metabolic systems. Some fat‐soluble vitamins have molecular functions acting as hormones, free radical traps, intracellular reducing agents, pigments, antioxidants, etc. A guide for vitamin requirements or dietary allowances should be followed when research plans are made to conduct vitamin requirement studies.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Applied Ichthyology</title>
</titleInfo>
<genre type="journal">journal</genre>
<identifier type="ISSN">0175-8659</identifier>
<identifier type="eISSN">1439-0426</identifier>
<identifier type="DOI">10.1111/(ISSN)1439-0426</identifier>
<identifier type="PublisherID">JAI</identifier>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>11</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3‐4</number>
</detail>
<extent unit="pages">
<start>215</start>
<end>224</end>
<total>10</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">A9A6FE5ECCD252BE8492EAEF1355BA8CB2EE18F8</identifier>
<identifier type="DOI">10.1111/j.1439-0426.1995.tb00021.x</identifier>
<identifier type="ArticleID">JAI215</identifier>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E33 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000E33 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:A9A6FE5ECCD252BE8492EAEF1355BA8CB2EE18F8
   |texte=   Vitamin requirement study techniques
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024