Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synergistic effect of methyl red dye and potassium iodide on inhibition of corrosion of carbon steel in 0.5M H2SO4

Identifieur interne : 000A99 ( Istex/Corpus ); précédent : 000A98; suivant : 000B00

Synergistic effect of methyl red dye and potassium iodide on inhibition of corrosion of carbon steel in 0.5M H2SO4

Auteurs : Salah Merah ; Lahcene Larabi ; Omar Benali ; Yahia Harek

Source :

RBID : ISTEX:D925361BDA4B5A39959D218BB5982BE6B73E7662

Abstract

Purpose This paper aims to show the effectiveness of methyl red MR alone and in combination with KI as corrosion inhibitor for carbon steel in 0.5M H2SO4. Designmethodologyapproach Corrosion rates charge transfer resistance values were determined using gravimetric and electrochemical techniques. The efficiency of inhibition was calculated by comparing corrosion rates and charge transfer resistance values in absence and presence of the inhibitor, while the mechanism of inhibition was proposed by considering temperature influence on corrosion and inhibition processes. Findings The inhibition efficiency of MR increased with concentration and synergistically increased in the presence of the KI. Polarisation curves reveal that MR is a mixed type inhibitor. Changes in impedance parameters were indicative of adsorption of MR on the metal surface. The trend of inhibition efficiency with temperature suggests that inhibitor molecules are physically adsorbed on the corroding metal surface in the absence of KI and chemically adsorbed in its presence. MR was found to obey Langmuir adsorption isotherm both with and without KI. Originalityvalue Electrochemical techniques have been used for the first time to study synergistic effect of MR dye and potassium iodide on inhibition of corrosion of carbon steel in H2SO4.The results suggest that the mixture MRKI could find practical application in corrosion control in aqueous acidic environment.

Url:
DOI: 10.1108/03699420810901963

Links to Exploration step

ISTEX:D925361BDA4B5A39959D218BB5982BE6B73E7662

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Synergistic effect of methyl red dye and potassium iodide on inhibition of corrosion of carbon steel in 0.5M H2SO4</title>
<author>
<name sortKey="Merah, Salah" sort="Merah, Salah" uniqKey="Merah S" first="Salah" last="Merah">Salah Merah</name>
<affiliation>
<mods:affiliation>Dpartement de Chimie,Facult des Sciences, Universit Abou Bakr Belkad, Tlemcen, Algrie</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Larabi, Lahcene" sort="Larabi, Lahcene" uniqKey="Larabi L" first="Lahcene" last="Larabi">Lahcene Larabi</name>
<affiliation>
<mods:affiliation>Dpartement de Chimie, Facult des Sciences, Universit Abou Bakr Belkad,Tlemcen, Algrie</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Benali, Omar" sort="Benali, Omar" uniqKey="Benali O" first="Omar" last="Benali">Omar Benali</name>
<affiliation>
<mods:affiliation>Dpartement de Biologie, Centre Universitaire de Sada, Sada, Algrie</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harek, Yahia" sort="Harek, Yahia" uniqKey="Harek Y" first="Yahia" last="Harek">Yahia Harek</name>
<affiliation>
<mods:affiliation>Dpartement de Chimie, Facult des Sciences, Universit Abou Bakr Belkad, Tlemcen, Algrie</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D925361BDA4B5A39959D218BB5982BE6B73E7662</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1108/03699420810901963</idno>
<idno type="url">https://api.istex.fr/document/D925361BDA4B5A39959D218BB5982BE6B73E7662/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000A99</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000A99</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Synergistic effect of methyl red dye and potassium iodide on inhibition of corrosion of carbon steel in 0.5M H2SO4</title>
<author>
<name sortKey="Merah, Salah" sort="Merah, Salah" uniqKey="Merah S" first="Salah" last="Merah">Salah Merah</name>
<affiliation>
<mods:affiliation>Dpartement de Chimie,Facult des Sciences, Universit Abou Bakr Belkad, Tlemcen, Algrie</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Larabi, Lahcene" sort="Larabi, Lahcene" uniqKey="Larabi L" first="Lahcene" last="Larabi">Lahcene Larabi</name>
<affiliation>
<mods:affiliation>Dpartement de Chimie, Facult des Sciences, Universit Abou Bakr Belkad,Tlemcen, Algrie</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Benali, Omar" sort="Benali, Omar" uniqKey="Benali O" first="Omar" last="Benali">Omar Benali</name>
<affiliation>
<mods:affiliation>Dpartement de Biologie, Centre Universitaire de Sada, Sada, Algrie</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harek, Yahia" sort="Harek, Yahia" uniqKey="Harek Y" first="Yahia" last="Harek">Yahia Harek</name>
<affiliation>
<mods:affiliation>Dpartement de Chimie, Facult des Sciences, Universit Abou Bakr Belkad, Tlemcen, Algrie</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Pigment & Resin Technology</title>
<idno type="ISSN">0369-9420</idno>
<imprint>
<publisher>Emerald Group Publishing Limited</publisher>
<date type="published" when="2008-09-12">2008-09-12</date>
<biblScope unit="volume">37</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="291">291</biblScope>
<biblScope unit="page" to="298">298</biblScope>
</imprint>
<idno type="ISSN">0369-9420</idno>
</series>
<idno type="istex">D925361BDA4B5A39959D218BB5982BE6B73E7662</idno>
<idno type="DOI">10.1108/03699420810901963</idno>
<idno type="filenameID">1290370503</idno>
<idno type="original-pdf">1290370503.pdf</idno>
<idno type="href">03699420810901963.pdf</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0369-9420</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Purpose This paper aims to show the effectiveness of methyl red MR alone and in combination with KI as corrosion inhibitor for carbon steel in 0.5M H2SO4. Designmethodologyapproach Corrosion rates charge transfer resistance values were determined using gravimetric and electrochemical techniques. The efficiency of inhibition was calculated by comparing corrosion rates and charge transfer resistance values in absence and presence of the inhibitor, while the mechanism of inhibition was proposed by considering temperature influence on corrosion and inhibition processes. Findings The inhibition efficiency of MR increased with concentration and synergistically increased in the presence of the KI. Polarisation curves reveal that MR is a mixed type inhibitor. Changes in impedance parameters were indicative of adsorption of MR on the metal surface. The trend of inhibition efficiency with temperature suggests that inhibitor molecules are physically adsorbed on the corroding metal surface in the absence of KI and chemically adsorbed in its presence. MR was found to obey Langmuir adsorption isotherm both with and without KI. Originalityvalue Electrochemical techniques have been used for the first time to study synergistic effect of MR dye and potassium iodide on inhibition of corrosion of carbon steel in H2SO4.The results suggest that the mixture MRKI could find practical application in corrosion control in aqueous acidic environment.</div>
</front>
</TEI>
<istex>
<corpusName>emerald</corpusName>
<author>
<json:item>
<name>Salah Merah</name>
<affiliations>
<json:string>Dpartement de Chimie,Facult des Sciences, Universit Abou Bakr Belkad, Tlemcen, Algrie</json:string>
</affiliations>
</json:item>
<json:item>
<name>Lahcene Larabi</name>
<affiliations>
<json:string>Dpartement de Chimie, Facult des Sciences, Universit Abou Bakr Belkad,Tlemcen, Algrie</json:string>
</affiliations>
</json:item>
<json:item>
<name>Omar Benali</name>
<affiliations>
<json:string>Dpartement de Biologie, Centre Universitaire de Sada, Sada, Algrie</json:string>
</affiliations>
</json:item>
<json:item>
<name>Yahia Harek</name>
<affiliations>
<json:string>Dpartement de Chimie, Facult des Sciences, Universit Abou Bakr Belkad, Tlemcen, Algrie</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Steel</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Corrosion inhibitors</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Sulphuric acid</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Purpose This paper aims to show the effectiveness of methyl red MR alone and in combination with KI as corrosion inhibitor for carbon steel in 0.5M H2SO4. Designmethodologyapproach Corrosion rates charge transfer resistance values were determined using gravimetric and electrochemical techniques. The efficiency of inhibition was calculated by comparing corrosion rates and charge transfer resistance values in absence and presence of the inhibitor, while the mechanism of inhibition was proposed by considering temperature influence on corrosion and inhibition processes. Findings The inhibition efficiency of MR increased with concentration and synergistically increased in the presence of the KI. Polarisation curves reveal that MR is a mixed type inhibitor. Changes in impedance parameters were indicative of adsorption of MR on the metal surface. The trend of inhibition efficiency with temperature suggests that inhibitor molecules are physically adsorbed on the corroding metal surface in the absence of KI and chemically adsorbed in its presence. MR was found to obey Langmuir adsorption isotherm both with and without KI. Originalityvalue Electrochemical techniques have been used for the first time to study synergistic effect of MR dye and potassium iodide on inhibition of corrosion of carbon steel in H2SO4.The results suggest that the mixture MRKI could find practical application in corrosion control in aqueous acidic environment.</abstract>
<qualityIndicators>
<score>7.374</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>609 x 788 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>3</keywordCount>
<abstractCharCount>1446</abstractCharCount>
<pdfWordCount>4854</pdfWordCount>
<pdfCharCount>28588</pdfCharCount>
<pdfPageCount>8</pdfPageCount>
<abstractWordCount>210</abstractWordCount>
</qualityIndicators>
<title>Synergistic effect of methyl red dye and potassium iodide on inhibition of corrosion of carbon steel in 0.5M H2SO4</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>37</volume>
<publisherId>
<json:string>prt</json:string>
</publisherId>
<pages>
<last>298</last>
<first>291</first>
</pages>
<issn>
<json:string>0369-9420</json:string>
</issn>
<issue>5</issue>
<subject>
<json:item>
<value>Engineering</value>
</json:item>
<json:item>
<value>Materials science</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<title>Pigment & Resin Technology</title>
<doi>
<json:string>10.1108/prt</json:string>
</doi>
</host>
<publicationDate>2008</publicationDate>
<copyrightDate>2008</copyrightDate>
<doi>
<json:string>10.1108/03699420810901963</json:string>
</doi>
<id>D925361BDA4B5A39959D218BB5982BE6B73E7662</id>
<score>0.06947389</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/D925361BDA4B5A39959D218BB5982BE6B73E7662/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/D925361BDA4B5A39959D218BB5982BE6B73E7662/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/D925361BDA4B5A39959D218BB5982BE6B73E7662/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Synergistic effect of methyl red dye and potassium iodide on inhibition of corrosion of carbon steel in 0.5M H2SO4</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Emerald Group Publishing Limited</publisher>
<availability>
<p>© Emerald Group Publishing Limited</p>
</availability>
<date>2008</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Synergistic effect of methyl red dye and potassium iodide on inhibition of corrosion of carbon steel in 0.5M H2SO4</title>
<author xml:id="author-1">
<persName>
<forename type="first">Salah</forename>
<surname>Merah</surname>
</persName>
<affiliation>Dpartement de Chimie,Facult des Sciences, Universit Abou Bakr Belkad, Tlemcen, Algrie</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Lahcene</forename>
<surname>Larabi</surname>
</persName>
<affiliation>Dpartement de Chimie, Facult des Sciences, Universit Abou Bakr Belkad,Tlemcen, Algrie</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Omar</forename>
<surname>Benali</surname>
</persName>
<affiliation>Dpartement de Biologie, Centre Universitaire de Sada, Sada, Algrie</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Yahia</forename>
<surname>Harek</surname>
</persName>
<affiliation>Dpartement de Chimie, Facult des Sciences, Universit Abou Bakr Belkad, Tlemcen, Algrie</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Pigment & Resin Technology</title>
<idno type="pISSN">0369-9420</idno>
<idno type="DOI">10.1108/prt</idno>
<imprint>
<publisher>Emerald Group Publishing Limited</publisher>
<date type="published" when="2008-09-12"></date>
<biblScope unit="volume">37</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="291">291</biblScope>
<biblScope unit="page" to="298">298</biblScope>
</imprint>
</monogr>
<idno type="istex">D925361BDA4B5A39959D218BB5982BE6B73E7662</idno>
<idno type="DOI">10.1108/03699420810901963</idno>
<idno type="filenameID">1290370503</idno>
<idno type="original-pdf">1290370503.pdf</idno>
<idno type="href">03699420810901963.pdf</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2008</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Purpose This paper aims to show the effectiveness of methyl red MR alone and in combination with KI as corrosion inhibitor for carbon steel in 0.5M H2SO4. Designmethodologyapproach Corrosion rates charge transfer resistance values were determined using gravimetric and electrochemical techniques. The efficiency of inhibition was calculated by comparing corrosion rates and charge transfer resistance values in absence and presence of the inhibitor, while the mechanism of inhibition was proposed by considering temperature influence on corrosion and inhibition processes. Findings The inhibition efficiency of MR increased with concentration and synergistically increased in the presence of the KI. Polarisation curves reveal that MR is a mixed type inhibitor. Changes in impedance parameters were indicative of adsorption of MR on the metal surface. The trend of inhibition efficiency with temperature suggests that inhibitor molecules are physically adsorbed on the corroding metal surface in the absence of KI and chemically adsorbed in its presence. MR was found to obey Langmuir adsorption isotherm both with and without KI. Originalityvalue Electrochemical techniques have been used for the first time to study synergistic effect of MR dye and potassium iodide on inhibition of corrosion of carbon steel in H2SO4.The results suggest that the mixture MRKI could find practical application in corrosion control in aqueous acidic environment.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>Steel</term>
</item>
<item>
<term>Corrosion inhibitors</term>
</item>
<item>
<term>Sulphuric acid</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Emerald Subject Group">
<list>
<label>cat-ENGG</label>
<item>
<term>Engineering</term>
</item>
<label>cat-MATS</label>
<item>
<term>Materials science</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2008-09-12">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/D925361BDA4B5A39959D218BB5982BE6B73E7662/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus emerald not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:document><!-- Auto generated NISO JATS XML created by Atypon out of MCB DTD source files. Do Not Edit! -->
<article dtd-version="1.0" xml:lang="en" article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="publisher-id">prt</journal-id>
<journal-id journal-id-type="doi">10.1108/prt</journal-id>
<journal-title-group>
<journal-title>Pigment & Resin Technology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0369-9420</issn>
<publisher>
<publisher-name>Emerald Group Publishing Limited</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1108/03699420810901963</article-id>
<article-id pub-id-type="original-pdf">1290370503.pdf</article-id>
<article-id pub-id-type="filename">1290370503</article-id>
<article-categories>
<subj-group subj-group-type="type-of-publication">
<compound-subject>
<compound-subject-part content-type="code">research-article</compound-subject-part>
<compound-subject-part content-type="label">Research paper</compound-subject-part>
</compound-subject>
</subj-group>
<subj-group subj-group-type="subject">
<compound-subject>
<compound-subject-part content-type="code">cat-ENGG</compound-subject-part>
<compound-subject-part content-type="label">Engineering</compound-subject-part>
</compound-subject>
<subj-group>
<compound-subject>
<compound-subject-part content-type="code">cat-MATS</compound-subject-part>
<compound-subject-part content-type="label">Materials science</compound-subject-part>
</compound-subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Synergistic effect of methyl red dye and potassium iodide on inhibition of corrosion of carbon steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<string-name>
<given-names>Salah</given-names>
<surname>Merah</surname>
</string-name>
<aff>Département de Chimie,Faculté des Sciences, Université Abou Bakr Belkaïd, Tlemcen, Algérie</aff>
</contrib>
<x></x>
<contrib contrib-type="author">
<string-name>
<given-names>Lahcene</given-names>
<surname>Larabi</surname>
</string-name>
<aff>Département de Chimie, Faculté des Sciences, Université Abou Bakr Belkaïd,Tlemcen, Algérie</aff>
</contrib>
<x></x>
<contrib contrib-type="author">
<string-name>
<given-names>Omar</given-names>
<surname>Benali</surname>
</string-name>
<aff>Département de Biologie, Centre Universitaire de Saïda, Saïda, Algérie</aff>
</contrib>
<x></x>
<contrib contrib-type="author">
<string-name>
<given-names>Yahia</given-names>
<surname>Harek</surname>
</string-name>
<aff>Département de Chimie, Faculté des Sciences, Université Abou Bakr Belkaïd, Tlemcen, Algérie</aff>
</contrib>
</contrib-group>
<pub-date pub-type="ppub">
<day>12</day>
<month>09</month>
<year>2008</year>
</pub-date>
<volume>37</volume>
<issue>5</issue>
<fpage>291</fpage>
<lpage>298</lpage>
<permissions>
<copyright-statement>© Emerald Group Publishing Limited</copyright-statement>
<copyright-year>2008</copyright-year>
<license license-type="publisher">
<license-p></license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="03699420810901963.pdf"></self-uri>
<abstract>
<sec>
<title content-type="abstract-heading">Purpose</title>
<x></x>
<p>This paper aims to show the effectiveness of methyl red (MR) alone and in combination with KI as corrosion inhibitor for carbon steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
.</p>
</sec>
<sec>
<title content-type="abstract-heading">Design/methodology/approach</title>
<x></x>
<p>Corrosion rates charge transfer resistance values were determined using gravimetric and electrochemical techniques. The efficiency of inhibition was calculated by comparing corrosion rates and charge transfer resistance values in absence and presence of the inhibitor, while the mechanism of inhibition was proposed by considering temperature influence on corrosion and inhibition processes.</p>
</sec>
<sec>
<title content-type="abstract-heading">Findings</title>
<x></x>
<p>The inhibition efficiency of MR increased with concentration and synergistically increased in the presence of the KI. Polarisation curves reveal that MR is a mixed type inhibitor. Changes in impedance parameters were indicative of adsorption of MR on the metal surface. The trend of inhibition efficiency with temperature suggests that inhibitor molecules are physically adsorbed on the corroding metal surface in the absence of KI and chemically adsorbed in its presence. MR was found to obey Langmuir adsorption isotherm both with and without KI.</p>
</sec>
<sec>
<title content-type="abstract-heading">Originality/value</title>
<x></x>
<p>Electrochemical techniques have been used for the first time to study synergistic effect of MR dye and potassium iodide on inhibition of corrosion of carbon steel in H
<sub>2</sub>
SO
<sub>4</sub>
.The results suggest that the mixture (MR + KI) could find practical application in corrosion control in aqueous acidic environment.</p>
</sec>
</abstract>
<kwd-group>
<kwd>Steel</kwd>
<x>, </x>
<kwd>Corrosion inhibitors</kwd>
<x>, </x>
<kwd>Sulphuric acid</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>peer-reviewed</meta-name>
<meta-value>yes</meta-value>
</custom-meta>
<custom-meta>
<meta-name>academic-content</meta-name>
<meta-value>yes</meta-value>
</custom-meta>
<custom-meta>
<meta-name>rightslink</meta-name>
<meta-value>included</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec>
<title>Introduction</title>
<p>Study of organic corrosion inhibitor is an attractive field of research due to its usefulness in various industries. Acid solutions are widely used in industry. The more important areas of application are acid pickling, industrial acid cleaning, acid descaling and oil‐well acidising (
<xref ref-type="bibr" rid="b31">Schmitt, 1984</xref>
). Inhibitors are usually used in these processes to control the corrosion of the metal. Most of the well‐known acid inhibitors are organic compounds containing nitrogen, sulphur and oxygen (
<xref ref-type="bibr" rid="b15">El‐Sayed, 1992</xref>
;
<xref ref-type="bibr" rid="b7">Benali
<italic>et al.</italic>
, 2006</xref>
;
<xref ref-type="bibr" rid="b23">Larabi
<italic>et al.</italic>
, 2005</xref>
;
<xref ref-type="bibr" rid="b19">Harek and Larabi, 2004</xref>
;
<xref ref-type="bibr" rid="b3 b4">Ajmal
<italic>et al.</italic>
, 1994, 1999</xref>
;
<xref ref-type="bibr" rid="b8">Bentiss
<italic>et al.</italic>
, 2000</xref>
;
<xref ref-type="bibr" rid="b18">Fouda
<italic>et al.</italic>
, 2000</xref>
;
<xref ref-type="bibr" rid="b11">Cheng
<italic>et al.</italic>
, 1998</xref>
;
<xref ref-type="bibr" rid="b29">Quraishi
<italic>et al.</italic>
, 1997</xref>
;
<xref ref-type="bibr" rid="b2">Agrawal and Namboodhiri, 1990</xref>
;
<xref ref-type="bibr" rid="b21">Kertit and Hammouti, 1996</xref>
). Organic dyes have been reported as effective corrosion inhibitors of mild steel in acidic media (
<xref ref-type="bibr" rid="b27">Oguzie, 2005</xref>
;
<xref ref-type="bibr" rid="b14">Ebenso and Oguzie, 2005</xref>
). Particularly, methyl red (MR) dye has been used as inhibitor of mild steel and iron in binary acid mixtures HCl + HNO
<sub>3</sub>
(
<xref ref-type="bibr" rid="b33">Tandel and Oza, 2002</xref>
) of mild steel in 1 M H
<sub>2</sub>
SO
<sub>4</sub>
(
<xref ref-type="bibr" rid="b10">Chaudhary and Sharma, 1998</xref>
) and of aluminium alloys in aqueous 5 per cent NaCl solution (
<xref ref-type="bibr" rid="b34">Tirbonod and Fiaud, 1978</xref>
). The effect of the halide ions on the inhibition corrosion of mild steel in the presence of MR in H
<sub>2</sub>
SO
<sub>4</sub>
has been also studied using only gravimetric measurements (
<xref ref-type="bibr" rid="b13">Ebenso, 2003</xref>
). In the present investigation, the synergistic influence of iodide ions in the performance of MR as a corrosion inhibitor of carbon steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
has been systematically studied by weight loss measurements, potentiodynamic polarisation studies and impedance measurements. Results are reported and discussed.</p>
</sec>
<sec>
<title>Experimental</title>
<p>MR dye was used as received. Its molecular structure is shown in
<xref ref-type="fig" rid="F_1290370503011">Figure 1</xref>
. A 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
solution was prepared from an analytical reagent grade of H
<sub>2</sub>
SO
<sub>4</sub>
96 per cent and double‐distilled water and was used as corrosion media in the studies. For the weight loss measurements, the experiments were carried out in solution of 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
(uninhibited and inhibited) on carbon steel containing 0.30‐0.35 per cent C, 0.15‐0.35 per cent Si, 0.035 per cent S, 0.5‐1.0 per cent Mn, 0.035 per cent P. Specimens in the form of discs with a diameter of 17 mm and a thickness of 2 mm were used. They were polished successively with different grades of emery paper up 1,200 grade.</p>
<p>Each run was carried out in a glass vessel containing 100 ml test solution. A clean weight mild steel sample was completely immersed at an inclined position in the vessel. After 2 h of immersion in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
with and without addition of inhibitor at different concentrations, the specimen was withdrawn, rinsed with double‐distilled water, washed with acetone, dried and weighed. The weight loss was used to calculate the corrosion rate in milligrams per square centimetre per hour. Electrochemical experiments were carried out in a glass cell (CEC/TH‐Radiometer) with a capacity of 500 ml. A platinum electrode and a saturated calomel electrode (SCE) were used as a counter electrode and a reference electrode. The working electrode was in the form of a disc cut from mild steel under investigation and was embedded in a Teflon rod with an exposed area of 0.5 cm
<sup>2</sup>
.</p>
<p>Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation were conducted in an electrochemical measurement system (VoltaLab 40) which comprises a PGZ301 potentiostat, a personal computer and VoltaMaster4 software. The AC impedance measurements were performed at corrosion potentials (
<italic>E</italic>
<sub>corr</sub>
) over a frequency range of 10 kHz‐20 mHz, with a signal amplitude perturbation of 10 mV. Nyquist plots were obtained from the results of these experiments. The impedance parameters were calculated using software Z‐View, Version 2.80, 2002, Scribner Associates, Inc.</p>
<p>Corrosion current densities were determined by extrapolating the cathodic Tafel regions from the potentiodynamic polarisation curves to the corrosion potential. Inhibition efficiencies
<italic>P</italic>
% were calculated as follows:
<list list-type="bullet">
<list-item>
<label></label>
<p>
<italic>Weight loss measurement</italic>
:
<xref ref-type="fig" rid="F_1290370503001">Equation 1</xref>
where,
<italic>W</italic>
and
<italic>W</italic>
′ are the corrosion rate of steel due to the dissolution in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
in the absence and the presence of definite concentrations of inhibitor, respectively.</p>
</list-item>
<list-item>
<label></label>
<p>
<italic>Polarisation measurement</italic>
:
<xref ref-type="fig" rid="F_1290370503002">Equation 2</xref>
where
<italic>I</italic>
<sub>corr</sub>
and
<italic>I</italic>
<sub>corr</sub>
are the corrosion current densities in the absence and the presence of the inhibitor, respectively.</p>
</list-item>
<list-item>
<label></label>
<p>
<italic>Impedance measurement</italic>
:
<xref ref-type="fig" rid="F_1290370503003">Equation 3</xref>
where
<italic>R</italic>
<sub>t</sub>
and
<italic>R</italic>
<sub>t</sub>
are the charge transfer resistance values without and with inhibitor, respectively.</p>
</list-item>
</list>
For all methods, the tests were performed in non de‐aerated solutions under unstirred conditions.</p>
</sec>
<sec>
<title>Results and discussion</title>
<sec>
<title>Electrochemical impedance spectroscopy</title>
<p>Impedance diagrams obtained for frequencies ranging from 10 kHz to 20 mHz at open circuit potential for mild steel in 0.5M H
<sub>2</sub>
SO
<sub>4</sub>
in the presence of various concentrations of MR are shown in
<xref ref-type="fig" rid="F_1290370503012">Figure 2</xref>
. Theses diagrams are not perfect semicircles. The difference has been attributed to frequency dispersion (
<xref ref-type="bibr" rid="b25">Mansfeld
<italic>et al.</italic>
, 1982</xref>
).</p>
<p>The fact that impedance diagrams have a semicircular appearance shows that the corrosion of steel is controlled by a charge transfer process and the presence of an inhibitor does not alter the mechanism of dissolution of steel in H
<sub>2</sub>
SO
<sub>4</sub>
. The equivalent circuit diagram is suggested as in
<xref ref-type="fig" rid="F_1290370503013">Figure 3</xref>
, where,
<italic>R</italic>
<sub>s</sub>
represents the solution resistance,
<italic>R</italic>
<sub>t</sub>
the charge transfer resistance, and CPE, the constant phase element. The impedance of CPE is given by:
<xref ref-type="fig" rid="F_1290370503004">Equation 4</xref>
where,
<italic>ω</italic>
is the angular frequency. Depending on the value of the exponent
<italic>n</italic>
,
<italic>Q</italic>
may be a resistance,
<italic>R</italic>
(
<italic>n</italic>
=0); a capacitance,
<italic>C</italic>
(
<italic>n</italic>
=1); Warburg impedance,
<italic>W</italic>
(
<italic>n</italic>
=0.5) or an inductance,
<italic>L</italic>
(
<italic>n</italic>
=−1) (
<xref ref-type="bibr" rid="b9">Boukamp, 1989</xref>
). According to
<xref ref-type="bibr" rid="b36">Xiaojuan
<italic>et al.</italic>
(1999)</xref>
, the value of capacitance,
<italic>C</italic>
, can be calculated for a parallel circuit composed of a CPE (
<italic>Q</italic>
) and a resistor (
<italic>R</italic>
<sub>t</sub>
) using the equation (5):
<xref ref-type="fig" rid="F_1290370503005">Equation 5</xref>
<xref ref-type="fig" rid="F_1290370503021">Table I</xref>
gives the values of the charge transfer resistance
<italic>R</italic>
<sub>t</sub>
double layer capacitance
<italic>C</italic>
<sub>dl</sub>
and inhibition efficiency obtained from the above plots. It can be seen that the presence of MR enhances the values of
<italic>R</italic>
<sub>t</sub>
and reduces the
<italic>C</italic>
<sub>dl</sub>
values. The decrease in
<italic>C</italic>
<sub>dl</sub>
may be due to the adsorption of MR to form an adherent film on the metal surface and suggests that the coverage of the metal surface with this film decreases the double layer thickness. On the other hand, the exponential term of the CPE between 0.7 and 0.8 indicate that there is no diffusion process normally evidenced by an exponential term of ca. 0.5.</p>
<p>
<xref ref-type="fig" rid="F_1290370503022">Table II</xref>
gives values of the inhibition efficiency for the corrosion of carbon steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
in the presence of MR at 2.5 × 10
<sup>−3</sup>
M and different concentrations of KI. It can be seen that the maximum synergistic effect is obtained for a KI concentration of 0.1 per cent.</p>
<p>Nyquist plots for mild steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
in the presence of different concentration of MR in combination with 0.1 per cent KI are shown in
<xref ref-type="fig" rid="F_1290370503014">Figure 4</xref>
.</p>
<p>The high‐frequency part of the impedance and phase angles describes the behaviour of an inhomogeneous surface layer, while the low‐frequency contribution shows the kinetic response for the charge transfer reaction (
<xref ref-type="bibr" rid="b22">Khaled
<italic>et al.</italic>
, 2006</xref>
).</p>
<p>The equivalent circuit diagram suggested, in this case, is shown in
<xref ref-type="fig" rid="F_1290370503015">Figure 5</xref>
, where,
<italic>R</italic>
<sub>s</sub>
is the electrolyte resistance,
<italic>R</italic>
<sub>ct</sub>
is charge transfer resistance that corresponds to the reaction at metal/solution interface,
<italic>R</italic>
<sub>f</sub>
is the transfer resistance of the electrons through the monolayer that reflects in protective properties (
<xref ref-type="bibr" rid="b22">Khaled
<italic>et al.</italic>
, 2006</xref>
), and CPE (
<italic>Q</italic>
<sub>t</sub>
,
<italic>Q</italic>
<sub>dl</sub>
) are constants phase elements modelling the capacitance.</p>
<p>
<xref ref-type="fig" rid="F_1290370503023">Table III</xref>
gives the values of the charge transfer resistance
<italic>R</italic>
<sub>t</sub>
obtained from above plots. It is found that the addition of KI further enhances
<italic>R</italic>
<sub>t</sub>
values and reduces
<italic>C</italic>
<sub>dl</sub>
values. This can be attributed to the enhanced adsorption of MR in the presence of KI because of the synergistic effect of iodide ions. The change in
<italic>R</italic>
<sub>t</sub>
values and consequently of inhibition efficiency may be due to the gradual replacement of water molecules by the iodide ions and by the adsorption of the MR molecules on the metal surface, decreasing the extent of dissolution reaction (
<xref ref-type="bibr" rid="b8">Bentiss
<italic>et al.</italic>
, 2000</xref>
).</p>
<p>Note that viewing the impedance results in the format of the Bode plots,
<xref ref-type="fig" rid="F_1290370503016 F_1290370503017">Figures 6 and 7</xref>
show that there is one phase angle in the case of MR alone and two time constants in the case of MR in combination with KI. This observation permitted us to suggest equivalent circuits given above. Moreover, it was observed that the fitted data match the experimental, with an average error of 3 per cent all through.</p>
</sec>
<sec>
<title>Polarisation measurements</title>
<p>
<xref ref-type="fig" rid="F_1290370503018">Figure 8</xref>
shows the polarisation curves of mild steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
blank solution and in the presence of different concentrations (10
<sup>−4</sup>
‐2.5 × 10
<sup>−3</sup>
M) of MR. With the increase of MR concentrations, both anodic and cathodic currents were inhibited. This result shows that the addition of MR inhibitor reduces anodic dissolution and also retards the hydrogen evolution reaction.</p>
<p>Moreover, we observe from
<xref ref-type="fig" rid="F_1290370503018">Figure 8</xref>
two linear portions on the anodic polarisation curves in the presence of MR. Note that the potential values related to the intersection of these two linear portions, characterised by two anodic slopes, were called
<italic>E</italic>
<sub>u</sub>
, the potential of unpolarisability, or
<italic>E</italic>
<sub>d</sub>
, the potential of desorption. This potential indicated the commencement of desorption of adsorbed species on the electrode surface.</p>
<p>With the increase of MR concentration, the values of
<italic>E</italic>
<sub>u</sub>
increase, consequently indicating that desorption potentials of MR are affected by the MR coverage. The shift of
<italic>E</italic>
<sub>u</sub>
is more pronounced in the presence of 2.5 × 10
<sup>−3</sup>
M of MR. This can be attributed to the formation of a complex or a film onto the metal surface. It is worthwhile to note here that the phenomena of inhibitor polymerisation which, is improbable in this work, can also change the
<italic>E</italic>
<sub>u</sub>
values (
<xref ref-type="bibr" rid="b16">Feng
<italic>et al.</italic>
, 1999</xref>
). Moreover,
<xref ref-type="bibr" rid="b24">Lorenz and Mansfeld (1981)</xref>
reported that in cases where the corrosion inhibition depends on the potential of the electrode, the observed inhibition phenomenon generally is described as corrosion inhibition of the interface associated with the formation of a bidimensional layer as adsorbed inhibitor species at the electrode surface.</p>
<p>
<xref ref-type="fig" rid="F_1290370503024">Table IV</xref>
gives the values of kinetic corrosion parameters as the corrosion potential
<italic>E</italic>
<sub>corr</sub>
, corrosion current density
<italic>I</italic>
<sub>corr</sub>
, Tafel slopes
<italic>b</italic>
<sub>
<italic>c</italic>
</sub>
, and inhibition efficiency for the corrosion of carbon steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
with different concentrations of MR in the presence and the absence of 0.1 per cent KI.</p>
<p>From
<xref ref-type="fig" rid="F_1290370503024">Table IV</xref>
, it can be concluded that:
<list list-type="bullet">
<list-item>
<label></label>
<p>The
<italic>E</italic>
<sub>corr</sub>
values are shifted toward the positive. In the presence of 0.1 per cent KI, the values remain almost unchanged.</p>
</list-item>
<list-item>
<label></label>
<p>The
<italic>I</italic>
<sub>corr</sub>
values decrease in the presence of different concentrations of MR. The addition of KI further reduces the
<italic>I</italic>
<sub>corr</sub>
values.</p>
</list-item>
<list-item>
<label></label>
<p>Tafel lines of nearly equal slopes were obtained. This indicates (
<xref ref-type="bibr" rid="b1">Ateya
<italic>et al.</italic>
, 1976</xref>
) that the adsorbed molecules of MR have not effect on the mechanism of hydrogen evolution reaction. The addition of KI affects slightly the values of
<italic>b</italic>
<sub>
<italic>c</italic>
</sub>
.</p>
</list-item>
<list-item>
<label></label>
<p>Values of inhibition efficiency are found to increase with increase in the concentration of MR reaching maximum value at 2.5 × 10
<sup>−3</sup>
M. The addition of KI improved the inhibition efficiency of MR significantly.</p>
</list-item>
</list>
</p>
</sec>
<sec>
<title>Weight loss measurements</title>
<p>Values of the inhibition efficiency obtained from the weight loss measurements of carbon steel for different concentrations of MR in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
at 30°C in the absence and the presence of 0.1 per cent of KI after 2 h of immersion are given in
<xref ref-type="fig" rid="F_1290370503025">Table V</xref>
. This shows that the inhibition efficiency increases with the increasing inhibitor concentration. The optimum concentration required to achieve this efficiency is found to be 2.5 × 10
<sup>−3</sup>
M. The inhibition of corrosion of carbon steel by MR can be explained in terms of adsorption on the metal surface. This compound can be adsorbed on the metal surface by the interaction between lone pair of electrons of nitrogen atoms and oxygen atom of the −N=N− and OH groups, respectively, and the metal surface. This process is facilitated by the presence of vacant orbitals
<italic>d</italic>
of low energy in iron atom, as observed in the transition group metals. Moreover, the formation of positively charged protonated species in acidic solutions facilitates the adsorption of the compound on the metal surface through electrostatic interactions between the organic molecules and the metal surface.</p>
<p>On the other hand, it can be seen from
<xref ref-type="fig" rid="F_1290370503025">Table V</xref>
that the addition of KI in the solution improved the inhibition efficiency of MR significantly. The synergistic effect between MR and KI can be due to coulombic interactions between chemisorbed I
<sup></sup>
and organic polycations MR
<sup>+</sup>
. The stabilisation of adsorbed MR
<sup>+</sup>
on the iron surface which may be caused by electrostatic interactions with I
<sup></sup>
ions leads to more surface coverage and consequently greater corrosion inhibition.</p>
</sec>
<sec>
<title>Synergism parameters</title>
<p>The synergism parameters were calculated using the relationship proposed by
<xref ref-type="bibr" rid="b6">Aramaki and Hackerman (1969)</xref>
:
<xref ref-type="fig" rid="F_1290370503006">Equation 6</xref>
where,
<italic>P</italic>
<sub>1+2</sub>
=(
<italic>P</italic>
<sub>1</sub>
+
<italic>P</italic>
<sub>2</sub>
)−(
<italic>P</italic>
<sub>1</sub>
×
<italic>P</italic>
<sub>2</sub>
);
<italic>P</italic>
<sub>1</sub>
is the inhibition efficiency (no exprimed in per cent) of substance 1 (MR),
<italic>P</italic>
<sub>2</sub>
is the inhibition efficiency of substance 2 (KI),
<italic>P</italic>
<sub>1+2</sub>
is the measured inhibition efficiency for substance 2 in combination with substance 1. Here,
<italic>P</italic>
that is equal to %
<italic>P</italic>
/100 is determined from impedance measurements.
<italic>S</italic>
approaches 1 when no interaction between the inhibitor compounds exists, while
<italic>S</italic>
>1 points to a synergistic effect. In the case of
<italic>S</italic>
<1, the adsorption of each compound antagonizes the others adsorption.</p>
<p>Values of
<italic>S</italic>
are given in
<xref ref-type="fig" rid="F_1290370503026">Table VI</xref>
. It can be seen from this table that most of values are greater than unity. This result suggests that the improvement of inhibition efficiency generated by the addition of KI to MR is generally due to a synergistic effect (
<xref ref-type="bibr" rid="b30">Syed
<italic>et al.</italic>
, 1998</xref>
). However, a careful inspection of this table suggests that a competitive adsorption appears for the high concentrations of MR.</p>
</sec>
<sec>
<title>Effect of temperature</title>
<p>Gravimetric measurements of carbon steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
was performed in the temperature range 25‐50°C in absence and in presence of different additives. The dependence of log
<italic>V</italic>
<sub>corr</sub>
on the reciprocal value of the absolute temperature for a 0.5 M solution of sulphuric acid is shown in
<xref ref-type="fig" rid="F_1290370503019">Figure 9</xref>
for a blank solution and in the presence of MR and (MR + KI). Straight lines with coefficients of correlation in the range 0.978‐0.995, are obtained for the supporting electrolyte and all compounds. The values of the slopes of these straight lines permit the calculation of the Arrhenius activation energy:
<xref ref-type="fig" rid="F_1290370503007">Equation 7</xref>
The value of
<italic>E</italic>
<sub>
<italic>a</italic>
</sub>
<sup> *</sup>
obtained for 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
, 0.5 M without an inhibitor is 42 kJ/mol.</p>
<p>The calculations show that
<italic>E</italic>
<sub>
<italic>a</italic>
</sub>
<sup> *</sup>
increases in the presence of MR (58 kJ/mol) but decreases in the presence of the mixture MR + KI (35 kJ/mol). The decrease of
<italic>E</italic>
<sub>
<italic>a</italic>
</sub>
<sup> *</sup>
in inhibited solutions and the previously considered influence of temperature on the protective effect support the assumption for chemisorption of (MR + KI) on the metal surface.
<xref ref-type="bibr" rid="b17">Foroulis (1990)</xref>
and
<xref ref-type="bibr" rid="b32">Szauer and Brandt (1981)</xref>
declare that the lower activation energy value of the process in the presence of the inhibitor compared to that of in its absence is attributed to its chemisorption, while the opposite is the case with physical adsorption.</p>
<p>
<xref ref-type="fig" rid="F_1290370503027">Table VII</xref>
gives values of the inhibition efficiency for the corrosion of mild steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
at various temperatures in the absence and in presence of 2.5 × 10
<sup>−3</sup>
M of MR with and without KI. It can be seen that, in the case of MR alone, the values of inhibition efficiency decrease with increase in the temperature. However, these values increase with the temperature in the presence of KI. Thus, the addition of KI enhanced the inhibition efficiency of MR significantly at all temperatures.</p>
<p>It is worthwhile to note that the fact that
<italic>P</italic>
(%) increases with temperature is explained by
<xref ref-type="bibr" rid="b5">Ammar and El Khorafi (1973)</xref>
as the likely specific interaction between the iron surface and the inhibitor.
<xref ref-type="bibr" rid="b20">Ivanov (1986)</xref>
states that the increase of
<italic>P</italic>
(%) with temperature increase is due to the change in the nature of adsorption: the inhibitor is adsorbed physically at lower temperature, while chemisorption is favoured as temperature increases. Others authors (
<xref ref-type="bibr" rid="b28">Putilova
<italic>et al.</italic>
, 1960</xref>
) consider this phenomenon as the increase in the surface coverage by an inhibitor. Therefore, at high degree of coverage, the diffusion through the surface layer containing the inhibitor and corrosion products becomes the rate determining step of the metal dissolution process.</p>
</sec>
<sec>
<title>Adsorption isotherm</title>
<p>The adsorption of the organic compounds can be described by two main types of interaction: physical adsorption and chemisorption that are influenced by the charge nature of the metal, the type of the electrolyte and the chemical structure of the inhibitor.</p>
<p>In order to elucidate the character of adsorption of MR, a type of adsorption isotherm describing the process was determined using the data of
<xref ref-type="fig" rid="F_1290370503021 F_1290370503023">Tables I and III</xref>
. The surface coverage
<italic>θ</italic>
of the metal surface by the adsorbed inhibitor was calculated (
<xref ref-type="bibr" rid="b37">Zvauya and Dawson, 1994</xref>
) assuming no change in the mechanism of both the anodic and the cathodic reactions using equation (7):
<xref ref-type="fig" rid="F_1290370503008">Equation 8</xref>
where,
<italic>R</italic>
<sub>t</sub>
and
<italic>R</italic>
<sub>t</sub>
are the charge transfer resistance in the presence and the absence of the inhibitor. Plot of
<italic>C</italic>
/θ versus
<italic>C</italic>
gives straight lines (
<xref ref-type="fig" rid="F_1290370503020">Figure 10</xref>
), showing that the adsorption of MR and (MR + KI) on carbon steel surface from 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
obeys Langmuir's adsorption isotherm:
<xref ref-type="fig" rid="F_1290370503009">Equation 9</xref>
with:
<xref ref-type="fig" rid="F_1290370503010">Equation 10</xref>
where Δ
<italic>G</italic>
<sub>ads</sub>
is the standard free energy of adsorption.</p>
<p>The addition of KI did not change the adsorption behaviour of MR. It can be concluded that the inhibition actions of (MR + KI) are mainly attributed to the adsorption of MR. The MR molecules may have stronger adsorption abilities than iodide ions, as indicated by their inhibition efficiencies.</p>
<p>On the other hand, the values of the free energy of adsorption as calculated from equation (9) in the absence and the presence of KI are −29.5 and −33.9 kJ mol
<sup>−1</sup>
, respectively. The largest negative values of Δ
<italic>G</italic>
<sub>ads</sub>
indicate that MR is strongly adsorbed on the carbon steel surface and this adsorption is greater in the presence of KI. Generally, it is well known that values of −Δ
<italic>G</italic>
<sub>ads</sub>
of the order of 20 kJ/mol or lower indicate a physisorption; those of order of 40 kJ/mol or higher involve charge sharing or a transfer from the inhibitor molecules to the metal surface to form a coordinate type of bond (
<xref ref-type="bibr" rid="b12">Donahue and Nobe, 1965</xref>
). On the other hand,
<xref ref-type="bibr" rid="b26">Metikoš‐Hukovic
<italic>et al.</italic>
(1996)</xref>
describe the interaction between thiourea and iron (Δ
<italic>G</italic>
<sub>ads</sub>
=−39 kJ/mol) as chemisorption. The same conclusion was given by
<xref ref-type="bibr" rid="b35">Wang
<italic>et al.</italic>
(2002)</xref>
concerning the interaction between mercapto‐triazole and mild steel (Δ
<italic>G</italic>
<sub>ads</sub>
=−32 kJ/mol). Thus, the Δ
<italic>G</italic>
<sub>ads</sub>
value obtained here shows that in the presence of 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
, chemisorption of MR may occur. Although, we have proposed a chemisorption mechanism for the action of MR, this may not rule out the physical adsorption mechanism for the inhibition.</p>
</sec>
</sec>
<sec>
<title>Conclusions</title>
<p>The inhibition behaviour of MR and its synergistic effect with potassium iodide for carbon steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
has been studied. It can be concluded as follows:
<list list-type="bullet">
<list-item>
<label></label>
<p>MR inhibits the corrosion of carbon steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
and its action is due to adsorption of MR molecules on the metal surface.</p>
</list-item>
<list-item>
<label></label>
<p>MR affects both anodic and cathodic current, thereby behaving as mixed type inhibitor.</p>
</list-item>
<list-item>
<label></label>
<p>Synergistic effects between MR and KI were observed. The addition of KI in the solutions enhanced the inhibition efficiency of MR. The chemisorption of MR was stabilised by the presence of iodide ions in the solutions.</p>
</list-item>
<list-item>
<label></label>
<p>The adsorption of MR and (MR + KI) on the metal surface obeys Langmuir's adsorption model.</p>
</list-item>
</list>
</p>
</sec>
<sec>
<fig position="float" id="F_1290370503001">
<caption>
<p>Equation 1</p>
</caption>
<graphic xlink:href="1290370503001.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503002">
<caption>
<p>Equation 2</p>
</caption>
<graphic xlink:href="1290370503002.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503003">
<caption>
<p>Equation 3</p>
</caption>
<graphic xlink:href="1290370503003.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503004">
<caption>
<p>Equation 4</p>
</caption>
<graphic xlink:href="1290370503004.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503005">
<caption>
<p>Equation 5</p>
</caption>
<graphic xlink:href="1290370503005.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503006">
<caption>
<p>Equation 6</p>
</caption>
<graphic xlink:href="1290370503006.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503007">
<caption>
<p>Equation 7</p>
</caption>
<graphic xlink:href="1290370503007.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503008">
<caption>
<p>Equation 8</p>
</caption>
<graphic xlink:href="1290370503008.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503009">
<caption>
<p>Equation 9</p>
</caption>
<graphic xlink:href="1290370503009.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503010">
<caption>
<p>Equation 10</p>
</caption>
<graphic xlink:href="1290370503010.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503011">
<label>
<bold>Figure 1
<x> </x>
</bold>
</label>
<caption>
<p>Molecular structure of MR</p>
</caption>
<graphic xlink:href="1290370503011.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503012">
<label>
<bold>Figure 2
<x> </x>
</bold>
</label>
<caption>
<p>Nyquist plots for carbon steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
containing different concentrations of MR</p>
</caption>
<graphic xlink:href="1290370503012.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503013">
<label>
<bold>Figure 3
<x> </x>
</bold>
</label>
<caption>
<p>The equivalent circuit of the impedance spectra obtained for MR in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
</p>
</caption>
<graphic xlink:href="1290370503013.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503014">
<label>
<bold>Figure 4
<x> </x>
</bold>
</label>
<caption>
<p>Nyquist plots for carbon steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
containing different concentrations of MR in the presence of KI 0.1 per cent</p>
</caption>
<graphic xlink:href="1290370503014.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503015">
<label>
<bold>Figure 5
<x> </x>
</bold>
</label>
<caption>
<p>The equivalent circuit of the impedance spectra obtained for MR in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
in the presence of KI 0.1 per cent</p>
</caption>
<graphic xlink:href="1290370503015.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503016">
<label>
<bold>Figure 6
<x> </x>
</bold>
</label>
<caption>
<p>Bode plot for steel in H
<sub>2</sub>
SO
<sub>4</sub>
0.5 M</p>
</caption>
<graphic xlink:href="1290370503016.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503017">
<label>
<bold>Figure 7
<x> </x>
</bold>
</label>
<caption>
<p>Bode plot for steel in H
<sub>2</sub>
SO
<sub>4</sub>
0.5 M: (a) in presence of MR 2.5 × 10
<sup>−3</sup>
M; (b) in combination with KI 0.1 per cent</p>
</caption>
<graphic xlink:href="1290370503017.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503018">
<label>
<bold>Figure 8
<x> </x>
</bold>
</label>
<caption>
<p>Potentiodynamic polarisation curves for carbon steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
containing different concentrations of MR</p>
</caption>
<graphic xlink:href="1290370503018.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503019">
<label>
<bold>Figure 9
<x> </x>
</bold>
</label>
<caption>
<p>ln
<italic>V</italic>
<sub>corr</sub>
vs 1/
<italic>T</italic>
for carbon steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
in the absence and in the presence of 2.5 × 10
<sup>−3</sup>
M MR and 2.5 × 10
<sup>−3</sup>
M MR + 0.1 per cent KI</p>
</caption>
<graphic xlink:href="1290370503019.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503020">
<label>
<bold>Figure 10
<x> </x>
</bold>
</label>
<caption>
<p>Langmuir adsorption isotherm of MR and (MR + KI) on the carbon steel surface in 0.5M H
<sub>2</sub>
SO
<sub>4</sub>
from impedance measurements</p>
</caption>
<graphic xlink:href="1290370503020.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503021">
<label>
<bold>Table I
<x> </x>
</bold>
</label>
<caption>
<p>The electrochemical parameters of carbon steel in the presence of MR in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
solutions deduced from EIS data</p>
</caption>
<graphic xlink:href="1290370503021.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503022">
<label>
<bold>Table II
<x> </x>
</bold>
</label>
<caption>
<p>Inhibition efficiency for different concentrations of KI of carbon steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
in the presence of 2.5 × 10
<sup>−3</sup>
M of MR by impedance measurements at 30°C</p>
</caption>
<graphic xlink:href="1290370503022.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503023">
<label>
<bold>Table III
<x> </x>
</bold>
</label>
<caption>
<p>The electrochemical parameters of carbon steel in the presence of MR in combination with 0.1 per cent of KI in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
solutions deduced from EIS data</p>
</caption>
<graphic xlink:href="1290370503023.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503024">
<label>
<bold>Table IV
<x> </x>
</bold>
</label>
<caption>
<p>Potentiodynamic polarisation parameters for corrosion of carbon steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
with various concentrations of MR in the presence an absence of 0.1 per cent KI at 30°C</p>
</caption>
<graphic xlink:href="1290370503024.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503025">
<label>
<bold>Table V
<x> </x>
</bold>
</label>
<caption>
<p>Inhibition efficiency for corrosion of carbon steel in 0.5M H
<sub>2</sub>
SO
<sub>4</sub>
with different concentrations of MR in the presence of 0.1 per cent KI (from the weight loss measurements)</p>
</caption>
<graphic xlink:href="1290370503025.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503026">
<label>
<bold>Table VI
<x> </x>
</bold>
</label>
<caption>
<p>Values of synergisms parameter (
<italic>S</italic>
) for different concentrations of MR</p>
</caption>
<graphic xlink:href="1290370503026.tif"></graphic>
</fig>
</sec>
<sec>
<fig position="float" id="F_1290370503027">
<label>
<bold>Table VII
<x> </x>
</bold>
</label>
<caption>
<p>Effect of temperature on the inhibition efficiency (
<italic>P</italic>
%) obtained from weight loss measurements</p>
</caption>
<graphic xlink:href="1290370503027.tif"></graphic>
</fig>
</sec>
</body>
<back>
<ref-list>
<title>References</title>
<ref id="b2">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Agrawal</surname>
,
<given-names>R.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Namboodhiri</surname>
,
<given-names>T.K.G.</given-names>
</string-name>
</person-group>
(
<year>1990</year>
), “
<article-title>
<italic>The inhibition of sulphuric acid corrosion of 410 stainless steel by thioureas</italic>
</article-title>
”,
<source>
<italic>Corros. Sci.</italic>
</source>
, Vol.
<volume>30</volume>
No.
<issue>1</issue>
, pp.
<fpage>37</fpage>
<x></x>
<lpage>52</lpage>
.</mixed-citation>
</ref>
<ref id="b3">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Ajmal</surname>
,
<given-names>M.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Mideen</surname>
,
<given-names>A.S.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Quraishi</surname>
,
<given-names>M.A.</given-names>
</string-name>
</person-group>
(
<year>1994</year>
), “
<article-title>
<italic>2‐hydrazino‐6‐methyl‐benzothiazole as an effective inhibitor for the corrosion of mild steel in acidic solutions</italic>
</article-title>
”,
<source>
<italic>Corros. Sci.</italic>
</source>
, Vol.
<volume>36</volume>
No.
<issue>1</issue>
, pp.
<fpage>79</fpage>
<x></x>
<lpage>84</lpage>
.</mixed-citation>
</ref>
<ref id="b4">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Ajmal</surname>
,
<given-names>M.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Rawat</surname>
,
<given-names>J.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Quraishi</surname>
,
<given-names>M.A.</given-names>
</string-name>
</person-group>
(
<year>1999</year>
), “
<article-title>
<italic>Thioamidines as novel class of corrosion inhibitors</italic>
</article-title>
”,
<source>
<italic>Br. Corros. J.</italic>
</source>
, Vol.
<volume>34</volume>
No.
<issue>3</issue>
, pp.
<fpage>220</fpage>
<x></x>
<lpage>4</lpage>
.</mixed-citation>
</ref>
<ref id="b5">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Ammar</surname>
,
<given-names>I.A.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>El Khorafi</surname>
,
<given-names>F.M.</given-names>
</string-name>
</person-group>
(
<year>1973</year>
), “
<article-title>
<italic>Adsorbability of thiourea on iron cathodes</italic>
</article-title>
”,
<source>
<italic>Materials and Corrosion</italic>
</source>
, Vol.
<volume>24</volume>
No.
<issue>8</issue>
, pp.
<fpage>702</fpage>
<x></x>
<lpage>7</lpage>
.</mixed-citation>
</ref>
<ref id="b6">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Aramaki</surname>
,
<given-names>K.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Hackerman</surname>
,
<given-names>N.</given-names>
</string-name>
</person-group>
(
<year>1969</year>
), “
<article-title>
<italic>Inhibition mechanism of medium‐sized polymethyleneimine</italic>
</article-title>
”,
<source>
<italic>J. Electrochem. Soc.</italic>
</source>
, Vol.
<volume>116</volume>
No.
<issue>5</issue>
, pp.
<fpage>569</fpage>
<x></x>
<lpage>74</lpage>
.</mixed-citation>
</ref>
<ref id="b1">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Ateya</surname>
,
<given-names>B.G.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Abo‐Elkhair</surname>
,
<given-names>B.M.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Abdel‐Hamid</surname>
,
<given-names>I.A.</given-names>
</string-name>
</person-group>
(
<year>1976</year>
), “
<article-title>
<italic>Thiosemicarbazide as an inhibitor for the acid corrosion of iron</italic>
</article-title>
”,
<source>
<italic>Corros. Sci.</italic>
</source>
, Vol.
<volume>16</volume>
No.
<issue>3</issue>
, pp.
<fpage>163</fpage>
<x></x>
<lpage>9</lpage>
.</mixed-citation>
</ref>
<ref id="b7">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Benali</surname>
,
<given-names>O.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Larabi</surname>
,
<given-names>L.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Mekelleche</surname>
,
<given-names>S.M.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Harek</surname>
,
<given-names>Y.</given-names>
</string-name>
</person-group>
(
<year>2006</year>
), “
<article-title>
<italic>Influence of substitution of phenyl group by naphthyl in a diphenylthiourea molecule on corrosion inhibition of cold‐rolled steel in 0.5 M H
<sub>2</sub>
SO
<sub>4</sub>
</italic>
</article-title>
”,
<source>
<italic>J. Mater. Sci.</italic>
</source>
, Vol.
<volume>41</volume>
No.
<issue>21</issue>
, pp.
<fpage>7064</fpage>
<x></x>
<lpage>73</lpage>
.</mixed-citation>
</ref>
<ref id="b8">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Bentiss</surname>
,
<given-names>F.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Traisnel</surname>
,
<given-names>M.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Lagrenée</surname>
,
<given-names>M.</given-names>
</string-name>
</person-group>
(
<year>2000</year>
), “
<article-title>
<italic>The substituted 1,3,4‐oxadiazoles: a new class of corrosion inhibitors of mild steel in acidic media</italic>
</article-title>
”,
<source>
<italic>Corros. Sci.</italic>
</source>
, Vol.
<volume>42</volume>
No.
<issue>1</issue>
, pp.
<fpage>127</fpage>
<x></x>
<lpage>46</lpage>
.</mixed-citation>
</ref>
<ref id="b9">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Boukamp</surname>
,
<given-names>B.A.</given-names>
</string-name>
</person-group>
(
<year>1989</year>
),
<source>
<italic>Equivalent Circuit (EQUIVCRT.PAS) Manual</italic>
</source>
,
<edition>2nd ed.</edition>
,
<publisher-name>University of Twente</publisher-name>
,
<publisher-loc>Enschede</publisher-loc>
.</mixed-citation>
</ref>
<ref id="b10">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Chaudhary</surname>
,
<given-names>R.S.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Sharma</surname>
,
<given-names>S.</given-names>
</string-name>
</person-group>
(
<year>1998</year>
), “
<article-title>
<italic>Influence of some dyes on corrosion of mild steel in sulfuric acid solution</italic>
</article-title>
”,
<source>
<italic>Corrosion and Its Control, Proceedings of International Conference on Corrosion, Mumbai</italic>
</source>
, pp.
<fpage>1032</fpage>
<x></x>
<lpage>6</lpage>
.</mixed-citation>
</ref>
<ref id="b11">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Cheng</surname>
,
<given-names>X.L.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Ma</surname>
,
<given-names>H.Y.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Chen</surname>
,
<given-names>S.H.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Yu</surname>
,
<given-names>R.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Chen</surname>
,
<given-names>X.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Yao</surname>
,
<given-names>Z.M.</given-names>
</string-name>
</person-group>
(
<year>1998</year>
), “
<article-title>
<italic>Corrosion of stainless steels in acid solutions with organic sulfur‐containing compounds</italic>
</article-title>
”,
<source>
<italic>Corros. Sci.</italic>
</source>
, Vol.
<volume>41</volume>
No.
<issue>2</issue>
, pp.
<fpage>321</fpage>
<x></x>
<lpage>33</lpage>
.</mixed-citation>
</ref>
<ref id="b12">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Donahue</surname>
,
<given-names>F.M.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Nobe</surname>
,
<given-names>K.</given-names>
</string-name>
</person-group>
(
<year>1965</year>
), “
<article-title>
<italic>Theory of organic corrosion inhibitors</italic>
</article-title>
”,
<source>
<italic>J. Electrochem. Soc.</italic>
</source>
, Vol.
<volume>112</volume>
No.
<issue>9</issue>
, pp.
<fpage>886</fpage>
<x></x>
<lpage>91</lpage>
.</mixed-citation>
</ref>
<ref id="b13">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Ebenso</surname>
,
<given-names>E.E.</given-names>
</string-name>
</person-group>
(
<year>2003</year>
), “
<article-title>
<italic>Effect of halides ions on the corrosion inhibition of mild steel in H
<sub>2</sub>
SO
<sub>4</sub>
using methyl red – Part I</italic>
</article-title>
”,
<source>
<italic>Bull. Electrochem.</italic>
</source>
, Vol.
<volume>19</volume>
No.
<issue>5</issue>
, pp.
<fpage>209</fpage>
<x></x>
<lpage>16</lpage>
.</mixed-citation>
</ref>
<ref id="b14">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Ebenso</surname>
,
<given-names>E.E.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Oguzie</surname>
,
<given-names>E.E.</given-names>
</string-name>
</person-group>
(
<year>2005</year>
), “
<article-title>
<italic>Corrosion inhibition of mild steel in acidic media by some organic dye</italic>
</article-title>
”,
<source>
<italic>Mater. Lett.</italic>
</source>
, Vol.
<volume>59</volume>
No.
<issue>17</issue>
, pp.
<fpage>2163</fpage>
<x></x>
<lpage>5</lpage>
.</mixed-citation>
</ref>
<ref id="b15">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>El‐Sayed</surname>
,
<given-names>A.</given-names>
</string-name>
</person-group>
(
<year>1992</year>
), “
<article-title>
<italic>Phenothiazine as inhibitor of the corrosion of cadmium in acidic solutions</italic>
</article-title>
”,
<source>
<italic>J. Appl. Electrochem</italic>
</source>
, Vol.
<volume>27</volume>
No.
<issue>2</issue>
, pp.
<fpage>193</fpage>
<x></x>
<lpage>200</lpage>
.</mixed-citation>
</ref>
<ref id="b16">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Feng</surname>
,
<given-names>Y.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Siow</surname>
,
<given-names>K.S.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Teo</surname>
,
<given-names>W.K.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Hsieh</surname>
,
<given-names>A.K.</given-names>
</string-name>
</person-group>
(
<year>1999</year>
), “
<article-title>
<italic>The synergistic effects of propargyl alcohol and potassium iodide on the inhibition of mild steel in 0.5 M sulfuric acid solution</italic>
</article-title>
”,
<source>
<italic>Corros. Sci.</italic>
</source>
, Vol.
<volume>41</volume>
No.
<issue>5</issue>
, pp.
<fpage>829</fpage>
<x></x>
<lpage>52</lpage>
.</mixed-citation>
</ref>
<ref id="b17">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Foroulis</surname>
,
<given-names>Z.A.</given-names>
</string-name>
</person-group>
(
<year>1990</year>
), “
<article-title>
<italic>Evaluation of impedance measurements on mild steel corrosion</italic>
</article-title>
”,
<source>
<italic>Proceedings of the 7th European Corrosion Inhibitors, Ferrara</italic>
</source>
, p.
<fpage>149</fpage>
.</mixed-citation>
</ref>
<ref id="b18">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Fouda</surname>
,
<given-names>A.S.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Gouda</surname>
,
<given-names>M.M.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Abd El‐Rahman</surname>
,
<given-names>S.I.</given-names>
</string-name>
</person-group>
(
<year>2000</year>
), “
<article-title>
<italic>2‐Hydroxyacetophenone‐argyl hydrazone derivatives as corrosion inhibitors for copper dissolution in nitric acid solution</italic>
</article-title>
”,
<source>
<italic>Bull. Korean Chem. Soc.</italic>
</source>
, Vol.
<volume>21</volume>
No.
<issue>11</issue>
, pp.
<fpage>1085</fpage>
<x></x>
<lpage>9</lpage>
.</mixed-citation>
</ref>
<ref id="b19">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Harek</surname>
,
<given-names>Y.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Larabi</surname>
,
<given-names>L.</given-names>
</string-name>
</person-group>
(
<year>2004</year>
), “
<article-title>
<italic>Corrosion inhibition of mild steel in 1 mol.dm
<sup>−3</sup>
HCl by oxalic N‐phenylhydrazide N‐phenylthiosemicarbazide</italic>
</article-title>
”,
<source>
<italic>Kem. Ind.</italic>
</source>
, Vol.
<volume>53</volume>
No.
<issue>2</issue>
, pp.
<fpage>55</fpage>
<x></x>
<lpage>61</lpage>
.</mixed-citation>
</ref>
<ref id="b20">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Ivanov</surname>
,
<given-names>E.S.</given-names>
</string-name>
</person-group>
(
<year>1986</year>
),
<source>
<italic>Inhibitors for Metal Corrosion in Acid Media</italic>
</source>
,
<publisher-name>Metallurgy</publisher-name>
,
<publisher-loc>Moscow</publisher-loc>
.</mixed-citation>
</ref>
<ref id="b21">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Kertit</surname>
,
<given-names>S.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Hammouti</surname>
,
<given-names>B.</given-names>
</string-name>
</person-group>
(
<year>1996</year>
), “
<article-title>
<italic>Corrosion inhibition of iron in 1M HCl by l‐phenyl‐5‐mercapto‐1, 2, 3, 4‐tetrazole</italic>
</article-title>
”,
<source>
<italic>Appl. Surf. Sci.</italic>
</source>
, Vol.
<volume>93</volume>
No.
<issue>1</issue>
, pp.
<fpage>59</fpage>
<x></x>
<lpage>66</lpage>
.</mixed-citation>
</ref>
<ref id="b22">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Khaled</surname>
,
<given-names>F.K.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Babić‐Samardžija</surname>
,
<given-names>K.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Hackerman</surname>
,
<given-names>N.</given-names>
</string-name>
</person-group>
(
<year>2006</year>
), “
<article-title>
<italic>Cobalt (III) complexes of macrocyclic‐bidentate type as a new group of corrosion inhibitors for iron in perchloric acid</italic>
</article-title>
”,
<source>
<italic>Corros. Sci.</italic>
</source>
, Vol.
<volume>48</volume>
No.
<issue>10</issue>
, pp.
<fpage>3014</fpage>
<x></x>
<lpage>34</lpage>
.</mixed-citation>
</ref>
<ref id="b23">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Larabi</surname>
,
<given-names>L.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Harek</surname>
,
<given-names>Y.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Benali</surname>
,
<given-names>O.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Ghalem</surname>
,
<given-names>S.</given-names>
</string-name>
</person-group>
(
<year>2005</year>
), “
<article-title>
<italic>Hydrazide derivatives as corrosion inhibitors for mild steel in 1 M HCl</italic>
</article-title>
”,
<source>
<italic>Prog. Org. Coat.</italic>
</source>
, Vol.
<volume>54</volume>
No.
<issue>3</issue>
, pp.
<fpage>256</fpage>
<x></x>
<lpage>62</lpage>
.</mixed-citation>
</ref>
<ref id="b24">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Lorenz</surname>
,
<given-names>W.J.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Mansfeld</surname>
,
<given-names>F.</given-names>
</string-name>
</person-group>
(
<year>1981</year>
), “
<article-title>
<italic>Determination of corrosion rates by electrochemical DC and AC methods</italic>
</article-title>
”,
<source>
<italic>Corros. Sci</italic>
</source>
, Vol.
<volume>21</volume>
Nos
<issue>9‐10</issue>
, pp.
<fpage>647</fpage>
<x></x>
<lpage>72</lpage>
.</mixed-citation>
</ref>
<ref id="b25">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Mansfeld</surname>
,
<given-names>F.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Kending</surname>
,
<given-names>M.W.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Tsai</surname>
,
<given-names>S.</given-names>
</string-name>
</person-group>
(
<year>1982</year>
), “
<article-title>
<italic>Evaluation of corrosion behaviour of coated metals with AC impedance measurements</italic>
</article-title>
”,
<source>
<italic>Corrosion</italic>
</source>
, Vol.
<volume>38</volume>
No.
<issue>9</issue>
, pp.
<fpage>570</fpage>
<x></x>
<lpage>80</lpage>
.</mixed-citation>
</ref>
<ref id="b26">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Metikoš‐Hukovic</surname>
,
<given-names>M.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Babic</surname>
,
<given-names>R.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Grubać</surname>
,
<given-names>Z.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Brinic</surname>
,
<given-names>S.</given-names>
</string-name>
</person-group>
(
<year>1996</year>
), “
<article-title>
<italic>Impedance investigation of corrosion inhibition of Armco iron by thiourea</italic>
</article-title>
”,
<source>
<italic>J. Appl. Electrochem.</italic>
</source>
, Vol.
<volume>26</volume>
No.
<issue>4</issue>
, pp.
<fpage>443</fpage>
<x></x>
<lpage>9</lpage>
.</mixed-citation>
</ref>
<ref id="b27">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Oguzie</surname>
,
<given-names>E.E.</given-names>
</string-name>
</person-group>
(
<year>2005</year>
), “
<article-title>
<italic>Corrosion inhibition of mild steel in hydrochloric acid solution by methylene blue dye</italic>
</article-title>
”,
<source>
<italic>Mater. Lett.</italic>
</source>
, Vol.
<volume>59</volume>
Nos
<issue>8/9</issue>
, pp.
<fpage>1076</fpage>
<x></x>
<lpage>9</lpage>
.</mixed-citation>
</ref>
<ref id="b28">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Putilova</surname>
,
<given-names>L.N.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Balezin</surname>
,
<given-names>S.A.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Barannik</surname>
,
<given-names>V.P.</given-names>
</string-name>
</person-group>
(
<year>1960</year>
),
<source>
<italic>Metallic Corrosion Inhibitors</italic>
</source>
,
<publisher-name>Pergamon Press</publisher-name>
,
<publisher-loc>New York, NY</publisher-loc>
.</mixed-citation>
</ref>
<ref id="b29">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Quraishi</surname>
,
<given-names>M.A.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Wajid Khan</surname>
,
<given-names>M.A.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Ajmal</surname>
,
<given-names>M.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Muralidharan</surname>
,
<given-names>S.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Venkatakrishna</surname>
,
<given-names>I.S.</given-names>
</string-name>
</person-group>
(
<year>1997</year>
), “
<article-title>
<italic>Influence of molecular structure of substituted benzothiazoles on corrosion inhibition and hydrogen permeation through mild steel in sulphuric acid</italic>
</article-title>
”,
<source>
<italic>Br. Corros. J.</italic>
</source>
, Vol.
<volume>32</volume>
No.
<issue>1</issue>
, pp.
<fpage>72</fpage>
<x></x>
<lpage>6</lpage>
.</mixed-citation>
</ref>
<ref id="b31">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Schmitt</surname>
,
<given-names>G.</given-names>
</string-name>
</person-group>
(
<year>1984</year>
), “
<article-title>
<italic>Application of inhibitors in acid media</italic>
</article-title>
”,
<source>
<italic>Br. Corros. J.</italic>
</source>
, Vol.
<volume>19</volume>
No.
<issue>4</issue>
, pp.
<fpage>165</fpage>
<x></x>
<lpage>76</lpage>
.</mixed-citation>
</ref>
<ref id="b30">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Syed</surname>
,
<given-names>A.S.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Muralidharan</surname>
,
<given-names>S.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Venkatakrishna</surname>
,
<given-names>I.S.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Muralidharan</surname>
,
<given-names>B.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Vasudevan</surname>
,
<given-names>T.</given-names>
</string-name>
</person-group>
(
<year>1998</year>
), “
<article-title>
<italic>Synergistic influence of iodide ions on inhibition of corrosion of mild steel in H
<sub>2</sub>
SO
<sub>4</sub>
by N‐phenylthiourea</italic>
</article-title>
”,
<source>
<italic>Br. Corros. J.</italic>
</source>
, Vol.
<volume>33</volume>
No.
<issue>4</issue>
, pp.
<fpage>297</fpage>
<x></x>
<lpage>301</lpage>
.</mixed-citation>
</ref>
<ref id="b32">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Szauer</surname>
,
<given-names>T.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Brandt</surname>
,
<given-names>A.</given-names>
</string-name>
</person-group>
(
<year>1981</year>
), “
<article-title>
<italic>Adsorption of oleates of various amines on iron in acidic solution</italic>
</article-title>
”,
<source>
<italic>Electrochim. Acta</italic>
</source>
, Vol.
<volume>26</volume>
No.
<issue>9</issue>
, pp.
<fpage>1253</fpage>
<x></x>
<lpage>6</lpage>
.</mixed-citation>
</ref>
<ref id="b33">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Tandel</surname>
,
<given-names>P.B.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Oza</surname>
,
<given-names>B.N.</given-names>
</string-name>
</person-group>
(
<year>2002</year>
), “
<article-title>
<italic>Performance of some dyestuffs as inhibitors during corrosion of mild‐steel in binary acid mixtures (HCI + HNO
<sub>3</sub>
)</italic>
</article-title>
”,
<source>
<italic>J. Electrochem. Soc. Ind.</italic>
</source>
, Vol.
<volume>51</volume>
No.
<issue>3</issue>
, pp.
<fpage>105</fpage>
<x></x>
<lpage>10</lpage>
.</mixed-citation>
</ref>
<ref id="b34">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Tirbonod</surname>
,
<given-names>F.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Fiaud</surname>
,
<given-names>C.</given-names>
</string-name>
</person-group>
(
<year>1978</year>
), “
<article-title>
<italic>Inhibition of the corrosion of aluminium alloys by organic dyes</italic>
</article-title>
”,
<source>
<italic>Corros. Sci.</italic>
</source>
, Vol.
<volume>18</volume>
No.
<issue>2</issue>
, pp.
<fpage>139</fpage>
<x></x>
<lpage>49</lpage>
.</mixed-citation>
</ref>
<ref id="b35">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Wang</surname>
,
<given-names>H.L.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Fan</surname>
,
<given-names>H.B.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Zheng</surname>
,
<given-names>J.S.</given-names>
</string-name>
</person-group>
(
<year>2002</year>
), “
<article-title>
<italic>Corrosion inhibition of mild steel in hydrochloric acid solution by a mercapto‐triazole compound</italic>
</article-title>
”,
<source>
<italic>Mater. Chem. Phys.</italic>
</source>
, Vol.
<volume>77</volume>
No.
<issue>3</issue>
, pp.
<fpage>655</fpage>
<x></x>
<lpage>61</lpage>
.</mixed-citation>
</ref>
<ref id="b36">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Xiaojuan</surname>
,
<given-names>W.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Shenhao</surname>
,
<given-names>C.</given-names>
</string-name>
</person-group>
,
<person-group person-group-type="author">
<string-name>
<surname>Zhiyuan</surname>
,
<given-names>X.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Aifen</surname>
,
<given-names>S.</given-names>
</string-name>
</person-group>
(
<year>1999</year>
), “
<article-title>
<italic>General equivalent circuits for faradaic electrode processes under electrochemical reaction control</italic>
</article-title>
”,
<source>
<italic>J. Electrochem. Soc.</italic>
</source>
, Vol.
<volume>146</volume>
No.
<issue>5</issue>
, pp.
<fpage>1847</fpage>
<x></x>
<lpage>54</lpage>
.</mixed-citation>
</ref>
<ref id="b37">
<mixed-citation>
<person-group person-group-type="author">
<string-name>
<surname>Zvauya</surname>
,
<given-names>R.</given-names>
</string-name>
</person-group>
and
<person-group person-group-type="author">
<string-name>
<surname>Dawson</surname>
,
<given-names>J.L.</given-names>
</string-name>
</person-group>
(
<year>1994</year>
), “
<article-title>
<italic>Inhibition studies in sweet corrosion systems by a quaternary ammonium compound</italic>
</article-title>
”,
<source>
<italic>J. Appl. Electrochem.</italic>
</source>
, Vol.
<volume>24</volume>
No.
<issue>9</issue>
, pp.
<fpage>943</fpage>
<x></x>
<lpage>7</lpage>
.</mixed-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Synergistic effect of methyl red dye and potassium iodide on inhibition of corrosion of carbon steel in 0.5M H2SO4</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Synergistic effect of methyl red dye and potassium iodide on inhibition of corrosion of carbon steel in 0.5M H2SO4</title>
</titleInfo>
<name type="personal">
<namePart type="given">Salah</namePart>
<namePart type="family">Merah</namePart>
<affiliation>Dpartement de Chimie,Facult des Sciences, Universit Abou Bakr Belkad, Tlemcen, Algrie</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lahcene</namePart>
<namePart type="family">Larabi</namePart>
<affiliation>Dpartement de Chimie, Facult des Sciences, Universit Abou Bakr Belkad,Tlemcen, Algrie</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Omar</namePart>
<namePart type="family">Benali</namePart>
<affiliation>Dpartement de Biologie, Centre Universitaire de Sada, Sada, Algrie</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yahia</namePart>
<namePart type="family">Harek</namePart>
<affiliation>Dpartement de Chimie, Facult des Sciences, Universit Abou Bakr Belkad, Tlemcen, Algrie</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article"></genre>
<originInfo>
<publisher>Emerald Group Publishing Limited</publisher>
<dateIssued encoding="w3cdtf">2008-09-12</dateIssued>
<copyrightDate encoding="w3cdtf">2008</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Purpose This paper aims to show the effectiveness of methyl red MR alone and in combination with KI as corrosion inhibitor for carbon steel in 0.5M H2SO4. Designmethodologyapproach Corrosion rates charge transfer resistance values were determined using gravimetric and electrochemical techniques. The efficiency of inhibition was calculated by comparing corrosion rates and charge transfer resistance values in absence and presence of the inhibitor, while the mechanism of inhibition was proposed by considering temperature influence on corrosion and inhibition processes. Findings The inhibition efficiency of MR increased with concentration and synergistically increased in the presence of the KI. Polarisation curves reveal that MR is a mixed type inhibitor. Changes in impedance parameters were indicative of adsorption of MR on the metal surface. The trend of inhibition efficiency with temperature suggests that inhibitor molecules are physically adsorbed on the corroding metal surface in the absence of KI and chemically adsorbed in its presence. MR was found to obey Langmuir adsorption isotherm both with and without KI. Originalityvalue Electrochemical techniques have been used for the first time to study synergistic effect of MR dye and potassium iodide on inhibition of corrosion of carbon steel in H2SO4.The results suggest that the mixture MRKI could find practical application in corrosion control in aqueous acidic environment.</abstract>
<subject>
<genre>keywords</genre>
<topic>Steel</topic>
<topic>Corrosion inhibitors</topic>
<topic>Sulphuric acid</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Pigment & Resin Technology</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>Emerald Subject Group</genre>
<topic authority="SubjectCodesPrimary" authorityURI="cat-ENGG">Engineering</topic>
<topic authority="SubjectCodesSecondary" authorityURI="cat-MATS">Materials science</topic>
</subject>
<identifier type="ISSN">0369-9420</identifier>
<identifier type="PublisherID">prt</identifier>
<identifier type="DOI">10.1108/prt</identifier>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>37</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>291</start>
<end>298</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">D925361BDA4B5A39959D218BB5982BE6B73E7662</identifier>
<identifier type="DOI">10.1108/03699420810901963</identifier>
<identifier type="filenameID">1290370503</identifier>
<identifier type="original-pdf">1290370503.pdf</identifier>
<identifier type="href">03699420810901963.pdf</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© Emerald Group Publishing Limited</accessCondition>
<recordInfo>
<recordContentSource>EMERALD</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A99 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000A99 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D925361BDA4B5A39959D218BB5982BE6B73E7662
   |texte=   Synergistic effect of methyl red dye and potassium iodide on inhibition of corrosion of carbon steel in 0.5M H2SO4
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024