Serveur d'exploration sur la télématique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A combination of transcriptional and microRNA regulation improves the stability of the relative concentrations of target genes.

Identifieur interne : 000208 ( PubMed/Curation ); précédent : 000207; suivant : 000209

A combination of transcriptional and microRNA regulation improves the stability of the relative concentrations of target genes.

Auteurs : Andrea Riba [Italie] ; Carla Bosia [Italie] ; Mariama El Baroudi [Italie] ; Laura Ollino [Italie] ; Michele Caselle [Italie]

Source :

RBID : pubmed:24586138

Descripteurs français

English descriptors

Abstract

It is well known that, under suitable conditions, microRNAs are able to fine tune the relative concentration of their targets to any desired value. We show that this function is particularly effective when one of the targets is a Transcription Factor (TF) which regulates the other targets. This combination defines a new class of feed-forward loops (FFLs) in which the microRNA plays the role of master regulator. Using both deterministic and stochastic equations, we show that these FFLs are indeed able not only to fine-tune the TF/target ratio to any desired value as a function of the miRNA concentration but also, thanks to the peculiar topology of the circuit, to ensure the stability of this ratio against stochastic fluctuations. These two effects are due to the interplay between the direct transcriptional regulation and the indirect TF/Target interaction due to competition of TF and target for miRNA binding (the so called "sponge effect"). We then perform a genome wide search of these FFLs in the human regulatory network and show that they are characterized by a very peculiar enrichment pattern. In particular, they are strongly enriched in all the situations in which the TF and its target have to be precisely kept at the same concentration notwithstanding the environmental noise. As an example we discuss the FFL involving E2F1 as Transcription Factor, RB1 as target and miR-17 family as master regulator. These FFLs ensure a tight control of the E2F/RB ratio which in turns ensures the stability of the transition from the G0/G1 to the S phase in quiescent cells.

DOI: 10.1371/journal.pcbi.1003490
PubMed: 24586138

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24586138

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A combination of transcriptional and microRNA regulation improves the stability of the relative concentrations of target genes.</title>
<author>
<name sortKey="Riba, Andrea" sort="Riba, Andrea" uniqKey="Riba A" first="Andrea" last="Riba">Andrea Riba</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physics and INFN, University of Torino, Torino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Physics and INFN, University of Torino, Torino</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bosia, Carla" sort="Bosia, Carla" uniqKey="Bosia C" first="Carla" last="Bosia">Carla Bosia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physics and INFN, University of Torino, Torino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Physics and INFN, University of Torino, Torino</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="El Baroudi, Mariama" sort="El Baroudi, Mariama" uniqKey="El Baroudi M" first="Mariama" last="El Baroudi">Mariama El Baroudi</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Research Council (CNR), Institute of Informatics and Telematics (IIT) and Institute of Clinical Physiology (IFC), Laboratory for Integrative System Medicine (LISM), Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>National Research Council (CNR), Institute of Informatics and Telematics (IIT) and Institute of Clinical Physiology (IFC), Laboratory for Integrative System Medicine (LISM), Pisa</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ollino, Laura" sort="Ollino, Laura" uniqKey="Ollino L" first="Laura" last="Ollino">Laura Ollino</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physics and INFN, University of Torino, Torino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Physics and INFN, University of Torino, Torino</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Caselle, Michele" sort="Caselle, Michele" uniqKey="Caselle M" first="Michele" last="Caselle">Michele Caselle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physics and INFN, University of Torino, Torino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Physics and INFN, University of Torino, Torino</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="doi">10.1371/journal.pcbi.1003490</idno>
<idno type="RBID">pubmed:24586138</idno>
<idno type="pmid">24586138</idno>
<idno type="wicri:Area/PubMed/Corpus">000208</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000208</idno>
<idno type="wicri:Area/PubMed/Curation">000208</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000208</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A combination of transcriptional and microRNA regulation improves the stability of the relative concentrations of target genes.</title>
<author>
<name sortKey="Riba, Andrea" sort="Riba, Andrea" uniqKey="Riba A" first="Andrea" last="Riba">Andrea Riba</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physics and INFN, University of Torino, Torino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Physics and INFN, University of Torino, Torino</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bosia, Carla" sort="Bosia, Carla" uniqKey="Bosia C" first="Carla" last="Bosia">Carla Bosia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physics and INFN, University of Torino, Torino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Physics and INFN, University of Torino, Torino</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="El Baroudi, Mariama" sort="El Baroudi, Mariama" uniqKey="El Baroudi M" first="Mariama" last="El Baroudi">Mariama El Baroudi</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Research Council (CNR), Institute of Informatics and Telematics (IIT) and Institute of Clinical Physiology (IFC), Laboratory for Integrative System Medicine (LISM), Pisa, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>National Research Council (CNR), Institute of Informatics and Telematics (IIT) and Institute of Clinical Physiology (IFC), Laboratory for Integrative System Medicine (LISM), Pisa</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ollino, Laura" sort="Ollino, Laura" uniqKey="Ollino L" first="Laura" last="Ollino">Laura Ollino</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physics and INFN, University of Torino, Torino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Physics and INFN, University of Torino, Torino</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Caselle, Michele" sort="Caselle, Michele" uniqKey="Caselle M" first="Michele" last="Caselle">Michele Caselle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Physics and INFN, University of Torino, Torino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Physics and INFN, University of Torino, Torino</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS computational biology</title>
<idno type="eISSN">1553-7358</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Computational Biology</term>
<term>E2F1 Transcription Factor (metabolism)</term>
<term>Gene Regulatory Networks</term>
<term>Genes, Retinoblastoma</term>
<term>Genomic Instability</term>
<term>Humans</term>
<term>MicroRNAs (genetics)</term>
<term>MicroRNAs (metabolism)</term>
<term>Models, Genetic</term>
<term>RNA Processing, Post-Transcriptional</term>
<term>Stochastic Processes</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes</term>
<term>Biologie informatique</term>
<term>Facteur de transcription E2F1 (métabolisme)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Gènes du rétinoblastome</term>
<term>Humains</term>
<term>Instabilité du génome</term>
<term>Maturation post-transcriptionnelle des ARN</term>
<term>Modèles génétiques</term>
<term>Processus stochastiques</term>
<term>Réseaux de régulation génique</term>
<term>microARN (génétique)</term>
<term>microARN (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>E2F1 Transcription Factor</term>
<term>MicroRNAs</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteur de transcription E2F1</term>
<term>Facteurs de transcription</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Computational Biology</term>
<term>Gene Regulatory Networks</term>
<term>Genes, Retinoblastoma</term>
<term>Genomic Instability</term>
<term>Humans</term>
<term>Models, Genetic</term>
<term>RNA Processing, Post-Transcriptional</term>
<term>Stochastic Processes</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Biologie informatique</term>
<term>Gènes du rétinoblastome</term>
<term>Humains</term>
<term>Instabilité du génome</term>
<term>Maturation post-transcriptionnelle des ARN</term>
<term>Modèles génétiques</term>
<term>Processus stochastiques</term>
<term>Réseaux de régulation génique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is well known that, under suitable conditions, microRNAs are able to fine tune the relative concentration of their targets to any desired value. We show that this function is particularly effective when one of the targets is a Transcription Factor (TF) which regulates the other targets. This combination defines a new class of feed-forward loops (FFLs) in which the microRNA plays the role of master regulator. Using both deterministic and stochastic equations, we show that these FFLs are indeed able not only to fine-tune the TF/target ratio to any desired value as a function of the miRNA concentration but also, thanks to the peculiar topology of the circuit, to ensure the stability of this ratio against stochastic fluctuations. These two effects are due to the interplay between the direct transcriptional regulation and the indirect TF/Target interaction due to competition of TF and target for miRNA binding (the so called "sponge effect"). We then perform a genome wide search of these FFLs in the human regulatory network and show that they are characterized by a very peculiar enrichment pattern. In particular, they are strongly enriched in all the situations in which the TF and its target have to be precisely kept at the same concentration notwithstanding the environmental noise. As an example we discuss the FFL involving E2F1 as Transcription Factor, RB1 as target and miR-17 family as master regulator. These FFLs ensure a tight control of the E2F/RB ratio which in turns ensures the stability of the transition from the G0/G1 to the S phase in quiescent cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">24586138</PMID>
<DateCreated>
<Year>2014</Year>
<Month>03</Month>
<Day>03</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>05</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>05</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7358</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>PLoS computational biology</Title>
<ISOAbbreviation>PLoS Comput. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>A combination of transcriptional and microRNA regulation improves the stability of the relative concentrations of target genes.</ArticleTitle>
<Pagination>
<MedlinePgn>e1003490</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pcbi.1003490</ELocationID>
<Abstract>
<AbstractText>It is well known that, under suitable conditions, microRNAs are able to fine tune the relative concentration of their targets to any desired value. We show that this function is particularly effective when one of the targets is a Transcription Factor (TF) which regulates the other targets. This combination defines a new class of feed-forward loops (FFLs) in which the microRNA plays the role of master regulator. Using both deterministic and stochastic equations, we show that these FFLs are indeed able not only to fine-tune the TF/target ratio to any desired value as a function of the miRNA concentration but also, thanks to the peculiar topology of the circuit, to ensure the stability of this ratio against stochastic fluctuations. These two effects are due to the interplay between the direct transcriptional regulation and the indirect TF/Target interaction due to competition of TF and target for miRNA binding (the so called "sponge effect"). We then perform a genome wide search of these FFLs in the human regulatory network and show that they are characterized by a very peculiar enrichment pattern. In particular, they are strongly enriched in all the situations in which the TF and its target have to be precisely kept at the same concentration notwithstanding the environmental noise. As an example we discuss the FFL involving E2F1 as Transcription Factor, RB1 as target and miR-17 family as master regulator. These FFLs ensure a tight control of the E2F/RB ratio which in turns ensures the stability of the transition from the G0/G1 to the S phase in quiescent cells.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Riba</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Physics and INFN, University of Torino, Torino, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bosia</LastName>
<ForeName>Carla</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Physics and INFN, University of Torino, Torino, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>El Baroudi</LastName>
<ForeName>Mariama</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>National Research Council (CNR), Institute of Informatics and Telematics (IIT) and Institute of Clinical Physiology (IFC), Laboratory for Integrative System Medicine (LISM), Pisa, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ollino</LastName>
<ForeName>Laura</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Physics and INFN, University of Torino, Torino, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Caselle</LastName>
<ForeName>Michele</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Physics and INFN, University of Torino, Torino, Italy.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>02</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Comput Biol</MedlineTA>
<NlmUniqueID>101238922</NlmUniqueID>
<ISSNLinking>1553-734X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050687">E2F1 Transcription Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C493753">E2F1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C524941">MIRN17 microRNA, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Syst Biol. 2012;6:131</RefSource>
<PMID Version="1">23050836</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2012 Oct 25;490(7421):556-60</RefSource>
<PMID Version="1">23023127</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7154-9</RefSource>
<PMID Version="1">23536298</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(8):e72676</RefSource>
<PMID Version="1">23991139</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2014 Feb;10(2):e1003490</RefSource>
<PMID Version="1">24586138</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Biol. 2007 Sep;4(3):164-71</RefSource>
<PMID Version="1">17928655</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2013 Mar 5;104(5):1203-13</RefSource>
<PMID Version="1">23473503</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioinformatics. 2000 Jan;16(1):16-23</RefSource>
<PMID Version="1">10812473</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2003 Jan;84(1):154-70</RefSource>
<PMID Version="1">12524272</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mol Biol. 2003 Nov 21;334(2):197-204</RefSource>
<PMID Version="1">14607112</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2003 Dec 26;115(7):787-98</RefSource>
<PMID Version="1">14697198</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2004 Apr;5(4):276-87</RefSource>
<PMID Version="1">15131651</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Syst Biol. 2005;1:2005.0006</RefSource>
<PMID Version="1">16729041</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2006 Jun;38 Suppl:S20-4</RefSource>
<PMID Version="1">16736020</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oncogene. 2006 Aug 28;25(38):5233-43</RefSource>
<PMID Version="1">16936742</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2007 Jun;8(6):450-61</RefSource>
<PMID Version="1">17510665</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2007 Jun 8;26(5):753-67</RefSource>
<PMID Version="1">17560377</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2007 Sep;5(9):e229</RefSource>
<PMID Version="1">17713988</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2007 Oct;39(10):1278-84</RefSource>
<PMID Version="1">17893677</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2008 Jan;36(Database issue):D149-53</RefSource>
<PMID Version="1">18158296</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2007 Jul;3(7):e131</RefSource>
<PMID Version="1">17630826</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2008 Nov;36(20):6494-503</RefSource>
<PMID Version="1">18927108</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Protoc. 2009;4(1):44-57</RefSource>
<PMID Version="1">19131956</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2009 Jan;37(1):1-13</RefSource>
<PMID Version="1">19033363</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Bioessays. 2009 Apr;31(4):435-45</RefSource>
<PMID Version="1">19274664</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Biosyst. 2009 Aug;5(8):854-67</RefSource>
<PMID Version="1">19603121</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2010 Jan;38(Database issue):D750-3</RefSource>
<PMID Version="1">19854939</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Bioinformatics. 2010;11:435</RefSource>
<PMID Version="1">20731828</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(1):e16138</RefSource>
<PMID Version="1">21283765</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2011 Mar;7(3):e1001101</RefSource>
<PMID Version="1">21423718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2011 Aug 5;146(3):353-8</RefSource>
<PMID Version="1">21802130</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2011 Sep;43(9):854-9</RefSource>
<PMID Version="1">21857679</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biophys J. 2011 Sep 21;101(6):1297-306</RefSource>
<PMID Version="1">21943410</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2011 Oct 14;147(2):370-81</RefSource>
<PMID Version="1">22000015</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2012 Jan;40(Database issue):D180-6</RefSource>
<PMID Version="1">22086949</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2012 Jan;40(Database issue):D84-90</RefSource>
<PMID Version="1">22086963</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Comput Biol. 2012;8(7):e1002488</RefSource>
<PMID Version="1">22829753</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(7):e41027</RefSource>
<PMID Version="1">22911735</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2012 Sep 6;489(7414):91-100</RefSource>
<PMID Version="1">22955619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="ErratumIn">
<RefSource>PLoS Comput Biol. 2014 Mar;10(3):e1003582</RefSource>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019295">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D050687">E2F1 Transcription Factor</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D053263">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016161">Genes, Retinoblastoma</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D042822">Genomic Instability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D035683">MicroRNAs</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000235">genetics</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008957">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012323">RNA Processing, Post-Transcriptional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013269">Stochastic Processes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014157">Transcription Factors</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3937125</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="ecollection">
<Year>2014</Year>
<Month>2</Month>
<Day></Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>7</Month>
<Day>9</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2014</Year>
<Month>2</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>3</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>3</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pcbi.1003490</ArticleId>
<ArticleId IdType="pii">PCOMPBIOL-D-13-01213</ArticleId>
<ArticleId IdType="pubmed">24586138</ArticleId>
<ArticleId IdType="pmc">PMC3937125</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/TelematiV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000208 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000208 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    TelematiV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:24586138
   |texte=   A combination of transcriptional and microRNA regulation improves the stability of the relative concentrations of target genes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:24586138" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a TelematiV1 

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Thu Nov 2 16:09:04 2017. Site generation: Sun Mar 10 16:42:28 2024