Serveur d'exploration sur la télématique

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic‐based on‐line learning for fuzzy process control

Identifieur interne : 004B80 ( Istex/Corpus ); précédent : 004B79; suivant : 004B81

Genetic‐based on‐line learning for fuzzy process control

Auteurs : Juan R. Velasco

Source :

RBID : ISTEX:B40FEC8BA451EEB6443CAE10B5C09036D284B72C

Abstract

This paper deals with the problem of continuous learning in process control. Conventional machine learning applied to process control tries to obtain control rules from an historic data file or a model. However, these learned rules may be useless if the real process changes, and this is not unusual. To try to solve this problem, genetic algorithms can be used in a continuous learning environment. However, genetically generated rules do not guarantee that they are good enough to control the process. New rules should be tested before their insertion into the knowledge base: this is the function of Limbo. Limbo is a special place where rules can be tested in real situations before being used. This paper shows how Limbo can be used to improve continuous learning. © 1998 John Wiley & Sons, Inc.

Url:
DOI: 10.1002/(SICI)1098-111X(199810/11)13:10/11<891::AID-INT2>3.0.CO;2-U

Links to Exploration step

ISTEX:B40FEC8BA451EEB6443CAE10B5C09036D284B72C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="no">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic‐based on‐line learning for fuzzy process control</title>
<author>
<name sortKey="Velasco, Juan R" sort="Velasco, Juan R" uniqKey="Velasco J" first="Juan R." last="Velasco">Juan R. Velasco</name>
<affiliation>
<mods:affiliation>Departamento Ingeniería de Sistemas Telemáticos, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid E‐28040, Spain</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B40FEC8BA451EEB6443CAE10B5C09036D284B72C</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1002/(SICI)1098-111X(199810/11)13:10/11<891::AID-INT2>3.0.CO;2-U</idno>
<idno type="url">https://api.istex.fr/document/B40FEC8BA451EEB6443CAE10B5C09036D284B72C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">004B80</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">004B80</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<author>
<name sortKey="Velasco, Juan R" sort="Velasco, Juan R" uniqKey="Velasco J" first="Juan R." last="Velasco">Juan R. Velasco</name>
<affiliation>
<mods:affiliation>Departamento Ingeniería de Sistemas Telemáticos, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid E‐28040, Spain</mods:affiliation>
</affiliation>
</author>
</analytic>
<series>
<idno type="ISSN">0884-8173</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0884-8173</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper deals with the problem of continuous learning in process control. Conventional machine learning applied to process control tries to obtain control rules from an historic data file or a model. However, these learned rules may be useless if the real process changes, and this is not unusual. To try to solve this problem, genetic algorithms can be used in a continuous learning environment. However, genetically generated rules do not guarantee that they are good enough to control the process. New rules should be tested before their insertion into the knowledge base: this is the function of Limbo. Limbo is a special place where rules can be tested in real situations before being used. This paper shows how Limbo can be used to improve continuous learning. © 1998 John Wiley & Sons, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Juan R. Velasco</name>
<affiliations>
<json:string>Departamento Ingeniería de Sistemas Telemáticos, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid E‐28040, Spain</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>INT2</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>This paper deals with the problem of continuous learning in process control. Conventional machine learning applied to process control tries to obtain control rules from an historic data file or a model. However, these learned rules may be useless if the real process changes, and this is not unusual. To try to solve this problem, genetic algorithms can be used in a continuous learning environment. However, genetically generated rules do not guarantee that they are good enough to control the process. New rules should be tested before their insertion into the knowledge base: this is the function of Limbo. Limbo is a special place where rules can be tested in real situations before being used. This paper shows how Limbo can be used to improve continuous learning. © 1998 John Wiley & Sons, Inc.</abstract>
<qualityIndicators>
<score>5.155</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>387 x 622 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>800</abstractCharCount>
<pdfWordCount>3547</pdfWordCount>
<pdfCharCount>19876</pdfCharCount>
<pdfPageCount>13</pdfPageCount>
<abstractWordCount>134</abstractWordCount>
</qualityIndicators>
<title>Genetic‐based on‐line learning for fuzzy process control</title>
<genre.original>
<json:string>article</json:string>
</genre.original>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>13</volume>
<publisherId>
<json:string>INT</json:string>
</publisherId>
<pages>
<total>13</total>
<last>903</last>
<first>891</first>
</pages>
<issn>
<json:string>0884-8173</json:string>
</issn>
<issue>10‐11</issue>
<author>
<json:item>
<name>Francisco Herrera</name>
</json:item>
<json:item>
<name>Luis Magdalena</name>
</json:item>
</author>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1098-111X</json:string>
</eissn>
<title>International Journal of Intelligent Systems</title>
<doi>
<json:string>10.1002/(ISSN)1098-111X</json:string>
</doi>
</host>
<publicationDate>1998</publicationDate>
<copyrightDate>1998</copyrightDate>
<doi>
<json:string>10.1002/(SICI)1098-111X(199810/11)13:10/11>891::AID-INT2>3.0.CO;2-U</json:string>
</doi>
<id>B40FEC8BA451EEB6443CAE10B5C09036D284B72C</id>
<score>1</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/B40FEC8BA451EEB6443CAE10B5C09036D284B72C/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/B40FEC8BA451EEB6443CAE10B5C09036D284B72C/fulltext/zip</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/B40FEC8BA451EEB6443CAE10B5C09036D284B72C/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<mods version="3.6">
<titleInfo lang="en">
<title>Genetic‐based on‐line learning for fuzzy process control</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>GENETIC‐BASED LEARNING FOR PROCESS CONTROL</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Genetic‐based on‐line learning for fuzzy process control</title>
</titleInfo>
<name type="personal">
<namePart type="given">Juan R.</namePart>
<namePart type="family">Velasco</namePart>
<affiliation>Departamento Ingeniería de Sistemas Telemáticos, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid E‐28040, Spain</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1998-10</dateIssued>
<copyrightDate encoding="w3cdtf">1998</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">5</extent>
<extent unit="tables">1</extent>
<extent unit="references">16</extent>
<extent unit="words">4002</extent>
</physicalDescription>
<abstract lang="en">This paper deals with the problem of continuous learning in process control. Conventional machine learning applied to process control tries to obtain control rules from an historic data file or a model. However, these learned rules may be useless if the real process changes, and this is not unusual. To try to solve this problem, genetic algorithms can be used in a continuous learning environment. However, genetically generated rules do not guarantee that they are good enough to control the process. New rules should be tested before their insertion into the knowledge base: this is the function of Limbo. Limbo is a special place where rules can be tested in real situations before being used. This paper shows how Limbo can be used to improve continuous learning. © 1998 John Wiley & Sons, Inc.</abstract>
<note type="funding">Commission of the European Communities - No. ESPRIT‐9119 MIX; </note>
<note type="funding">Spanish Ministry of Industry - No. PASO‐095 CORAGE; </note>
<relatedItem type="host">
<titleInfo>
<title>International Journal of Intelligent Systems</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Int. J. Intell. Syst.</title>
</titleInfo>
<name type="personal">
<namePart type="given">Francisco</namePart>
<namePart type="family">Herrera</namePart>
</name>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Magdalena</namePart>
</name>
<genre type="journal">journal</genre>
<identifier type="ISSN">0884-8173</identifier>
<identifier type="eISSN">1098-111X</identifier>
<identifier type="DOI">10.1002/(ISSN)1098-111X</identifier>
<identifier type="PublisherID">INT</identifier>
<part>
<date>1998</date>
<detail type="title">
<title>Genetic Fuzzy Systems</title>
</detail>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>10‐11</number>
</detail>
<extent unit="pages">
<start>891</start>
<end>903</end>
<total>13</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">B40FEC8BA451EEB6443CAE10B5C09036D284B72C</identifier>
<identifier type="DOI">10.1002/(SICI)1098-111X(199810/11)13:10/11<891::AID-INT2>3.0.CO;2-U</identifier>
<identifier type="ArticleID">INT2</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 1998 John Wiley & Sons, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/TelematiV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004B80 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 004B80 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    TelematiV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:B40FEC8BA451EEB6443CAE10B5C09036D284B72C
   |texte=   Genetic‐based on‐line learning for fuzzy process control
}}

Wicri

This area was generated with Dilib version V0.6.31.
Data generation: Thu Nov 2 16:09:04 2017. Site generation: Sun Mar 10 16:42:28 2024