Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multi-resolutive sparse approximations of d-dimensional data

Identifieur interne : 000925 ( PascalFrancis/Curation ); précédent : 000924; suivant : 000926

Multi-resolutive sparse approximations of d-dimensional data

Auteurs : Giuseppe Patane [Italie]

Source :

RBID : Pascal:13-0182219

Descripteurs français

English descriptors

Abstract

This paper proposes an iterative computation of sparse representations of functions defined on d, which exploits a formulation of the sparsification problem equivalent to Support Vector Machine and based on Tikhonov regularization. Through this equivalent formulation, the sparsification reduces to an approximation problem with a Tikhonov regularizer, which selects the null coefficients of the resulting approximation. The proposed multi-resolutive sparsification achieves a different resolution in the approximation of the input data through a hierarchy of nested approximation spaces. The idea behind our approach is to combine a smooth and strictly convex approximation of the l1-norm with Tikhonov regularization and iterative solvers of linear/non-linear equations. Firstly, the iterative sparsification scheme is introduced in a Reproducing Kernel Hilbert Space with respect to its native norm. Then, the sparsification is generalized to arbitrary function spaces using the least-squares norm and radial basis functions. Finally, the discrete sparsification is derived using the eigendecomposition and the spectral properties of sparse matrices; in this case, the computational cost is O(nlogn), with n number of input points. Assuming that the data is supported on a (d - 1 )-dimensional manifold, we derive a variant of the sparsification scheme that guarantees the smoothness of the solution in the ambient and intrinsic space by using spectral graph theory and manifold learning techniques. Finally, we discuss the multi-resolutive approximation of d-dimensional data such as signals, images, and 3D shapes.
pA  
A01 01  1    @0 1077-3142
A02 01      @0 CVIUF4
A03   1    @0 Comput. vis. image underst. : (Print)
A05       @2 117
A06       @2 4
A08 01  1  ENG  @1 Multi-resolutive sparse approximations of d-dimensional data
A09 01  1  ENG  @1 Discrete Geometry for Computer Imagery
A11 01  1    @1 PATANE (Giuseppe)
A12 01  1    @1 DEBLED-RENNESSON (Isabelle) @9 ed.
A12 02  1    @1 DOMENJOUD (Eric) @9 ed.
A12 03  1    @1 KERAUTRET (Bertrand) @9 ed.
A12 04  1    @1 EVEN (Philippe) @9 ed.
A14 01      @1 Consiglio Nazionale delle Ricerche, Istituto di Matematica Applicata e Tecnologie Informatiche @2 Genova @3 ITA @Z 1 aut.
A15 01      @1 LORIA (Lorraine Research Laboratory in Computer Science and its Applications), UMR 7503, Lorraine University @2 Nancy @3 FRA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A20       @1 418-428
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 15463A @5 354000502487160100
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 62 ref.
A47 01  1    @0 13-0182219
A60       @1 P
A61       @0 A
A64 01  1    @0 Computer vision and image understanding : (Print)
A66 01      @0 NLD
C01 01    ENG  @0 This paper proposes an iterative computation of sparse representations of functions defined on <double-struck R>d, which exploits a formulation of the sparsification problem equivalent to Support Vector Machine and based on Tikhonov regularization. Through this equivalent formulation, the sparsification reduces to an approximation problem with a Tikhonov regularizer, which selects the null coefficients of the resulting approximation. The proposed multi-resolutive sparsification achieves a different resolution in the approximation of the input data through a hierarchy of nested approximation spaces. The idea behind our approach is to combine a smooth and strictly convex approximation of the l1-norm with Tikhonov regularization and iterative solvers of linear/non-linear equations. Firstly, the iterative sparsification scheme is introduced in a Reproducing Kernel Hilbert Space with respect to its native norm. Then, the sparsification is generalized to arbitrary function spaces using the least-squares norm and radial basis functions. Finally, the discrete sparsification is derived using the eigendecomposition and the spectral properties of sparse matrices; in this case, the computational cost is O(nlogn), with n number of input points. Assuming that the data is supported on a (d - 1 )-dimensional manifold, we derive a variant of the sparsification scheme that guarantees the smoothness of the solution in the ambient and intrinsic space by using spectral graph theory and manifold learning techniques. Finally, we discuss the multi-resolutive approximation of d-dimensional data such as signals, images, and 3D shapes.
C02 01  X    @0 001D02A05
C02 02  X    @0 001D04A04A2
C02 03  X    @0 001D02B07B
C02 04  X    @0 001D02A06
C03 01  X  FRE  @0 Vision ordinateur @5 01
C03 01  X  ENG  @0 Computer vision @5 01
C03 01  X  SPA  @0 Visión ordenador @5 01
C03 02  X  FRE  @0 Image tridimensionnelle @5 06
C03 02  X  ENG  @0 Tridimensional image @5 06
C03 02  X  SPA  @0 Imagen tridimensional @5 06
C03 03  X  FRE  @0 Analyse image @5 07
C03 03  X  ENG  @0 Image analysis @5 07
C03 03  X  SPA  @0 Análisis imagen @5 07
C03 04  X  FRE  @0 Traitement image @5 08
C03 04  X  ENG  @0 Image processing @5 08
C03 04  X  SPA  @0 Procesamiento imagen @5 08
C03 05  X  FRE  @0 Représentation fonction @5 18
C03 05  X  ENG  @0 Function representation @5 18
C03 05  X  SPA  @0 Representación función @5 18
C03 06  X  FRE  @0 Propriété spectrale @5 19
C03 06  X  ENG  @0 Spectral properties @5 19
C03 06  X  SPA  @0 Propiedad espectral @5 19
C03 07  X  FRE  @0 Analyse n dimensionnelle @5 20
C03 07  X  ENG  @0 Multidimensional analysis @5 20
C03 07  X  SPA  @0 Análisis n dimensional @5 20
C03 08  X  FRE  @0 Représentation parcimonieuse @5 23
C03 08  X  ENG  @0 Sparse representation @5 23
C03 08  X  SPA  @0 Representación parsimoniosa @5 23
C03 09  X  FRE  @0 Méthode itérative @5 24
C03 09  X  ENG  @0 Iterative method @5 24
C03 09  X  SPA  @0 Método iterativo @5 24
C03 10  X  FRE  @0 Classification à vaste marge @5 25
C03 10  X  ENG  @0 Vector support machine @5 25
C03 10  X  SPA  @0 Máquina ejemplo soporte @5 25
C03 11  X  FRE  @0 Régularisation @5 26
C03 11  X  ENG  @0 Regularization @5 26
C03 11  X  SPA  @0 Regularización @5 26
C03 12  X  FRE  @0 Approximation L1 @5 27
C03 12  X  ENG  @0 L1 approximation @5 27
C03 12  X  SPA  @0 Aproximación L1 @5 27
C03 13  X  FRE  @0 Equation non linéaire @5 28
C03 13  X  ENG  @0 Non linear equation @5 28
C03 13  X  SPA  @0 Ecuación no lineal @5 28
C03 14  X  FRE  @0 Méthode noyau @5 29
C03 14  X  ENG  @0 Kernel method @5 29
C03 14  X  SPA  @0 Método núcleo @5 29
C03 15  X  FRE  @0 Espace Hilbert @5 30
C03 15  X  ENG  @0 Hilbert space @5 30
C03 15  X  SPA  @0 Espacio Hilbert @5 30
C03 16  X  FRE  @0 Fonction généralisée @5 31
C03 16  X  ENG  @0 Generalized function @5 31
C03 16  X  SPA  @0 Función generalizada @5 31
C03 17  X  FRE  @0 Méthode moindre carré @5 32
C03 17  X  ENG  @0 Least squares method @5 32
C03 17  X  SPA  @0 Método cuadrado menor @5 32
C03 18  X  FRE  @0 Fonction base radiale @5 33
C03 18  X  ENG  @0 Radial basis function @5 33
C03 18  X  SPA  @0 Función radial base @5 33
C03 19  X  FRE  @0 Matrice creuse @5 34
C03 19  X  ENG  @0 Sparse matrix @5 34
C03 19  X  SPA  @0 Matriz dispersa @5 34
C03 20  X  FRE  @0 Théorie spectrale @5 35
C03 20  X  ENG  @0 Spectral theory @5 35
C03 20  X  SPA  @0 Teoría espectral @5 35
C03 21  X  FRE  @0 Théorie graphe @5 36
C03 21  X  ENG  @0 Graph theory @5 36
C03 21  X  SPA  @0 Teoría grafo @5 36
C03 22  X  FRE  @0 Réduction dimension @5 37
C03 22  X  ENG  @0 Dimension reduction @5 37
C03 22  X  SPA  @0 Reducción dimensión @5 37
C03 23  X  FRE  @0 . @4 INC @5 82
C03 24  X  FRE  @0 Système ordre réduit @4 CD @5 96
C03 24  X  ENG  @0 Reduced order systems @4 CD @5 96
C03 24  X  SPA  @0 Reducción del orden de un modelo @4 CD @5 96
N21       @1 161
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0182219

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Multi-resolutive sparse approximations of d-dimensional data</title>
<author>
<name sortKey="Patane, Giuseppe" sort="Patane, Giuseppe" uniqKey="Patane G" first="Giuseppe" last="Patane">Giuseppe Patane</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Consiglio Nazionale delle Ricerche, Istituto di Matematica Applicata e Tecnologie Informatiche</s1>
<s2>Genova</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0182219</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0182219 INIST</idno>
<idno type="RBID">Pascal:13-0182219</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000082</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000925</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Multi-resolutive sparse approximations of d-dimensional data</title>
<author>
<name sortKey="Patane, Giuseppe" sort="Patane, Giuseppe" uniqKey="Patane G" first="Giuseppe" last="Patane">Giuseppe Patane</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Consiglio Nazionale delle Ricerche, Istituto di Matematica Applicata e Tecnologie Informatiche</s1>
<s2>Genova</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Computer vision and image understanding : (Print)</title>
<title level="j" type="abbreviated">Comput. vis. image underst. : (Print)</title>
<idno type="ISSN">1077-3142</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Computer vision and image understanding : (Print)</title>
<title level="j" type="abbreviated">Comput. vis. image underst. : (Print)</title>
<idno type="ISSN">1077-3142</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer vision</term>
<term>Dimension reduction</term>
<term>Function representation</term>
<term>Generalized function</term>
<term>Graph theory</term>
<term>Hilbert space</term>
<term>Image analysis</term>
<term>Image processing</term>
<term>Iterative method</term>
<term>Kernel method</term>
<term>L1 approximation</term>
<term>Least squares method</term>
<term>Multidimensional analysis</term>
<term>Non linear equation</term>
<term>Radial basis function</term>
<term>Reduced order systems</term>
<term>Regularization</term>
<term>Sparse matrix</term>
<term>Sparse representation</term>
<term>Spectral properties</term>
<term>Spectral theory</term>
<term>Tridimensional image</term>
<term>Vector support machine</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Vision ordinateur</term>
<term>Image tridimensionnelle</term>
<term>Analyse image</term>
<term>Traitement image</term>
<term>Représentation fonction</term>
<term>Propriété spectrale</term>
<term>Analyse n dimensionnelle</term>
<term>Représentation parcimonieuse</term>
<term>Méthode itérative</term>
<term>Classification à vaste marge</term>
<term>Régularisation</term>
<term>Approximation L1</term>
<term>Equation non linéaire</term>
<term>Méthode noyau</term>
<term>Espace Hilbert</term>
<term>Fonction généralisée</term>
<term>Méthode moindre carré</term>
<term>Fonction base radiale</term>
<term>Matrice creuse</term>
<term>Théorie spectrale</term>
<term>Théorie graphe</term>
<term>Réduction dimension</term>
<term>.</term>
<term>Système ordre réduit</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper proposes an iterative computation of sparse representations of functions defined on
<sup>d</sup>
, which exploits a formulation of the sparsification problem equivalent to Support Vector Machine and based on Tikhonov regularization. Through this equivalent formulation, the sparsification reduces to an approximation problem with a Tikhonov regularizer, which selects the null coefficients of the resulting approximation. The proposed multi-resolutive sparsification achieves a different resolution in the approximation of the input data through a hierarchy of nested approximation spaces. The idea behind our approach is to combine a smooth and strictly convex approximation of the l
<sub>1</sub>
-norm with Tikhonov regularization and iterative solvers of linear/non-linear equations. Firstly, the iterative sparsification scheme is introduced in a Reproducing Kernel Hilbert Space with respect to its native norm. Then, the sparsification is generalized to arbitrary function spaces using the least-squares norm and radial basis functions. Finally, the discrete sparsification is derived using the eigendecomposition and the spectral properties of sparse matrices; in this case, the computational cost is O(nlogn), with n number of input points. Assuming that the data is supported on a (d - 1 )-dimensional manifold, we derive a variant of the sparsification scheme that guarantees the smoothness of the solution in the ambient and intrinsic space by using spectral graph theory and manifold learning techniques. Finally, we discuss the multi-resolutive approximation of d-dimensional data such as signals, images, and 3D shapes.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1077-3142</s0>
</fA01>
<fA02 i1="01">
<s0>CVIUF4</s0>
</fA02>
<fA03 i2="1">
<s0>Comput. vis. image underst. : (Print)</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Multi-resolutive sparse approximations of d-dimensional data</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Discrete Geometry for Computer Imagery</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>PATANE (Giuseppe)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>DEBLED-RENNESSON (Isabelle)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>DOMENJOUD (Eric)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>KERAUTRET (Bertrand)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>EVEN (Philippe)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Consiglio Nazionale delle Ricerche, Istituto di Matematica Applicata e Tecnologie Informatiche</s1>
<s2>Genova</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>LORIA (Lorraine Research Laboratory in Computer Science and its Applications), UMR 7503, Lorraine University</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA15>
<fA20>
<s1>418-428</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15463A</s2>
<s5>354000502487160100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>62 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0182219</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Computer vision and image understanding : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper proposes an iterative computation of sparse representations of functions defined on
<sup>d</sup>
, which exploits a formulation of the sparsification problem equivalent to Support Vector Machine and based on Tikhonov regularization. Through this equivalent formulation, the sparsification reduces to an approximation problem with a Tikhonov regularizer, which selects the null coefficients of the resulting approximation. The proposed multi-resolutive sparsification achieves a different resolution in the approximation of the input data through a hierarchy of nested approximation spaces. The idea behind our approach is to combine a smooth and strictly convex approximation of the l
<sub>1</sub>
-norm with Tikhonov regularization and iterative solvers of linear/non-linear equations. Firstly, the iterative sparsification scheme is introduced in a Reproducing Kernel Hilbert Space with respect to its native norm. Then, the sparsification is generalized to arbitrary function spaces using the least-squares norm and radial basis functions. Finally, the discrete sparsification is derived using the eigendecomposition and the spectral properties of sparse matrices; in this case, the computational cost is O(nlogn), with n number of input points. Assuming that the data is supported on a (d - 1 )-dimensional manifold, we derive a variant of the sparsification scheme that guarantees the smoothness of the solution in the ambient and intrinsic space by using spectral graph theory and manifold learning techniques. Finally, we discuss the multi-resolutive approximation of d-dimensional data such as signals, images, and 3D shapes.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02A05</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D04A04A2</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D02B07B</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D02A06</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Vision ordinateur</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Computer vision</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Visión ordenador</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Image tridimensionnelle</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Tridimensional image</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Imagen tridimensional</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Analyse image</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Image analysis</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Análisis imagen</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Traitement image</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Image processing</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Procesamiento imagen</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Représentation fonction</s0>
<s5>18</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Function representation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Representación función</s0>
<s5>18</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Propriété spectrale</s0>
<s5>19</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Spectral properties</s0>
<s5>19</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Propiedad espectral</s0>
<s5>19</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Analyse n dimensionnelle</s0>
<s5>20</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Multidimensional analysis</s0>
<s5>20</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Análisis n dimensional</s0>
<s5>20</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Représentation parcimonieuse</s0>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Sparse representation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Representación parsimoniosa</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Méthode itérative</s0>
<s5>24</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Iterative method</s0>
<s5>24</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Método iterativo</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Classification à vaste marge</s0>
<s5>25</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Vector support machine</s0>
<s5>25</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Máquina ejemplo soporte</s0>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Régularisation</s0>
<s5>26</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Regularization</s0>
<s5>26</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Regularización</s0>
<s5>26</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Approximation L1</s0>
<s5>27</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>L1 approximation</s0>
<s5>27</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Aproximación L1</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Equation non linéaire</s0>
<s5>28</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Non linear equation</s0>
<s5>28</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Ecuación no lineal</s0>
<s5>28</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Méthode noyau</s0>
<s5>29</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Kernel method</s0>
<s5>29</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Método núcleo</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Espace Hilbert</s0>
<s5>30</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Hilbert space</s0>
<s5>30</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Espacio Hilbert</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Fonction généralisée</s0>
<s5>31</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Generalized function</s0>
<s5>31</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Función generalizada</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Méthode moindre carré</s0>
<s5>32</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Least squares method</s0>
<s5>32</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Método cuadrado menor</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Fonction base radiale</s0>
<s5>33</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Radial basis function</s0>
<s5>33</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Función radial base</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Matrice creuse</s0>
<s5>34</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Sparse matrix</s0>
<s5>34</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Matriz dispersa</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Théorie spectrale</s0>
<s5>35</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Spectral theory</s0>
<s5>35</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Teoría espectral</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Théorie graphe</s0>
<s5>36</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Graph theory</s0>
<s5>36</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Teoría grafo</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Réduction dimension</s0>
<s5>37</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Dimension reduction</s0>
<s5>37</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Reducción dimensión</s0>
<s5>37</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>.</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Système ordre réduit</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Reduced order systems</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Reducción del orden de un modelo</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>161</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000925 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000925 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:13-0182219
   |texte=   Multi-resolutive sparse approximations of d-dimensional data
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022