Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The expected number of 3D visibility events is linear

Identifieur interne : 000731 ( PascalFrancis/Corpus ); précédent : 000730; suivant : 000732

The expected number of 3D visibility events is linear

Auteurs : Olivier Devillers ; Vida Dujmovic ; Hazel Everett ; Xavier Goaoc ; Sylvain Lazard ; Hyeon-Suk Na ; Sylvain Petitjean

Source :

RBID : Pascal:04-0091723

Descripteurs français

English descriptors

Abstract

In this paper, we show that, amongst n uniformly distributed unit balls in R3, the expected number of maximal nonoccluded line segments tangent to four balls is linear. Using our techniques we show a linear bound on the expected size of the visibility complex, a data structure encoding the visibility information of a scene, providing evidence that the storage requirement for this data structure is not necessarily prohibitive. These results significantly improve the best previously known bounds of O(n8/3) [F. Durand, G. Drettakis, and C. Puech, ACM Transactions on Graphics, 21 (2002), pp. 176-206]. Our results generalize in various directions. We show that the linear bound on the expected number of maximal nonoccluded line segments that are not too close to the boundary of the scene and tangent to four unit balls extends to balls of various but bounded radii, to polyhedra of bounded aspect ratio, and even to nonfat three-dimensional objects such as polygons of bounded aspect ratio. We also prove that our results extend to other distributions such as the Poisson distribution. Finally, we indicate how our probabilistic analysis provides new insight on the expected size of other global visibility data structures, notably the aspect graph.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0097-5397
A03   1    @0 SIAM j. comput. : (Print)
A05       @2 32
A06       @2 6
A08 01  1  ENG  @1 The expected number of 3D visibility events is linear
A11 01  1    @1 DEVILLERS (Olivier)
A11 02  1    @1 DUJMOVIC (Vida)
A11 03  1    @1 EVERETT (Hazel)
A11 04  1    @1 GOAOC (Xavier)
A11 05  1    @1 LAZARD (Sylvain)
A11 06  1    @1 NA (Hyeon-Suk)
A11 07  1    @1 PETITJEAN (Sylvain)
A14 01      @1 INRIA Sophia-Antipolis, BP 93 @2 06902 Sophia-Antipolis @3 FRA @Z 1 aut.
A14 02      @1 School of Computer Science, McGill University @2 Ottawa, ON @3 CAN @Z 2 aut.
A14 03      @1 LORIA - INRIA Lorraine, CNRS, Univ. @2 Nancy @3 FRA @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 7 aut.
A14 04      @1 School of Computing, Soongsil University @2 Seoul @3 KOR @Z 6 aut.
A20       @1 1586-1620
A21       @1 2003
A23 01      @0 ENG
A43 01      @1 INIST @2 16063 @5 354000118836430110
A44       @0 0000 @1 © 2004 INIST-CNRS. All rights reserved.
A45       @0 24 ref.
A47 01  1    @0 04-0091723
A60       @1 P
A61       @0 A
A64 01  1    @0 SIAM journal on computing : (Print)
A66 01      @0 USA
C01 01    ENG  @0 In this paper, we show that, amongst n uniformly distributed unit balls in R3, the expected number of maximal nonoccluded line segments tangent to four balls is linear. Using our techniques we show a linear bound on the expected size of the visibility complex, a data structure encoding the visibility information of a scene, providing evidence that the storage requirement for this data structure is not necessarily prohibitive. These results significantly improve the best previously known bounds of O(n8/3) [F. Durand, G. Drettakis, and C. Puech, ACM Transactions on Graphics, 21 (2002), pp. 176-206]. Our results generalize in various directions. We show that the linear bound on the expected number of maximal nonoccluded line segments that are not too close to the boundary of the scene and tangent to four unit balls extends to balls of various but bounded radii, to polyhedra of bounded aspect ratio, and even to nonfat three-dimensional objects such as polygons of bounded aspect ratio. We also prove that our results extend to other distributions such as the Poisson distribution. Finally, we indicate how our probabilistic analysis provides new insight on the expected size of other global visibility data structures, notably the aspect graph.
C02 01  X    @0 001D02C03
C02 02  X    @0 001A02H01E
C03 01  X  FRE  @0 Géométrie algorithmique @5 01
C03 01  X  ENG  @0 Computational geometry @5 01
C03 01  X  SPA  @0 Geometría computacional @5 01
C03 02  X  FRE  @0 Approche probabiliste @5 02
C03 02  X  ENG  @0 Probabilistic approach @5 02
C03 02  X  SPA  @0 Enfoque probabilista @5 02
C03 03  X  FRE  @0 Structure donnée @5 03
C03 03  X  ENG  @0 Data structure @5 03
C03 03  X  SPA  @0 Estructura datos @5 03
C03 04  X  FRE  @0 Représentation graphique @5 04
C03 04  X  ENG  @0 Graphics @5 04
C03 04  X  SPA  @0 Grafo (curva) @5 04
C03 05  X  FRE  @0 Infographie @5 05
C03 05  X  ENG  @0 Computer graphics @5 05
C03 05  X  SPA  @0 Gráfico computadora @5 05
C03 06  X  FRE  @0 Méthode cas pire @5 06
C03 06  X  ENG  @0 Worst case method @5 06
C03 06  X  SPA  @0 Método caso peor @5 06
C03 07  X  FRE  @0 Loi Poisson @5 07
C03 07  X  ENG  @0 Poisson distribution @5 07
C03 07  X  SPA  @0 Ley Poisson @5 07
C03 08  X  FRE  @0 Polyèdre @5 08
C03 08  X  ENG  @0 Polyhedron @5 08
C03 08  X  SPA  @0 Poliedro @5 08
C03 09  X  FRE  @0 Polygone @5 09
C03 09  X  ENG  @0 Polygon @5 09
C03 09  X  SPA  @0 Polígono @5 09
C03 10  X  FRE  @0 Visibilité 3 dimensions @4 CD @5 96
C03 10  X  ENG  @0 Three dimensional visibility @4 CD @5 96
C03 11  X  FRE  @0 Evénement visuel @4 CD @5 97
C03 11  X  ENG  @0 Visual event @4 CD @5 97
C03 12  X  FRE  @0 Complexe visibilité @4 CD @5 98
C03 12  X  ENG  @0 Visibility complex @4 CD @5 98
C03 13  X  FRE  @0 Complexité probable @4 CD @5 99
C03 13  X  ENG  @0 Expected complexity @4 CD @5 99
N21       @1 061

Format Inist (serveur)

NO : PASCAL 04-0091723 INIST
ET : The expected number of 3D visibility events is linear
AU : DEVILLERS (Olivier); DUJMOVIC (Vida); EVERETT (Hazel); GOAOC (Xavier); LAZARD (Sylvain); NA (Hyeon-Suk); PETITJEAN (Sylvain)
AF : INRIA Sophia-Antipolis, BP 93/06902 Sophia-Antipolis/France (1 aut.); School of Computer Science, McGill University/Ottawa, ON/Canada (2 aut.); LORIA - INRIA Lorraine, CNRS, Univ./Nancy/France (3 aut., 4 aut., 5 aut., 7 aut.); School of Computing, Soongsil University/Seoul/Corée, République de (6 aut.)
DT : Publication en série; Niveau analytique
SO : SIAM journal on computing : (Print); ISSN 0097-5397; Etats-Unis; Da. 2003; Vol. 32; No. 6; Pp. 1586-1620; Bibl. 24 ref.
LA : Anglais
EA : In this paper, we show that, amongst n uniformly distributed unit balls in R3, the expected number of maximal nonoccluded line segments tangent to four balls is linear. Using our techniques we show a linear bound on the expected size of the visibility complex, a data structure encoding the visibility information of a scene, providing evidence that the storage requirement for this data structure is not necessarily prohibitive. These results significantly improve the best previously known bounds of O(n8/3) [F. Durand, G. Drettakis, and C. Puech, ACM Transactions on Graphics, 21 (2002), pp. 176-206]. Our results generalize in various directions. We show that the linear bound on the expected number of maximal nonoccluded line segments that are not too close to the boundary of the scene and tangent to four unit balls extends to balls of various but bounded radii, to polyhedra of bounded aspect ratio, and even to nonfat three-dimensional objects such as polygons of bounded aspect ratio. We also prove that our results extend to other distributions such as the Poisson distribution. Finally, we indicate how our probabilistic analysis provides new insight on the expected size of other global visibility data structures, notably the aspect graph.
CC : 001D02C03; 001A02H01E
FD : Géométrie algorithmique; Approche probabiliste; Structure donnée; Représentation graphique; Infographie; Méthode cas pire; Loi Poisson; Polyèdre; Polygone; Visibilité 3 dimensions; Evénement visuel; Complexe visibilité; Complexité probable
ED : Computational geometry; Probabilistic approach; Data structure; Graphics; Computer graphics; Worst case method; Poisson distribution; Polyhedron; Polygon; Three dimensional visibility; Visual event; Visibility complex; Expected complexity
SD : Geometría computacional; Enfoque probabilista; Estructura datos; Grafo (curva); Gráfico computadora; Método caso peor; Ley Poisson; Poliedro; Polígono
LO : INIST-16063.354000118836430110
ID : 04-0091723

Links to Exploration step

Pascal:04-0091723

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The expected number of 3D visibility events is linear</title>
<author>
<name sortKey="Devillers, Olivier" sort="Devillers, Olivier" uniqKey="Devillers O" first="Olivier" last="Devillers">Olivier Devillers</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRIA Sophia-Antipolis, BP 93</s1>
<s2>06902 Sophia-Antipolis</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dujmovic, Vida" sort="Dujmovic, Vida" uniqKey="Dujmovic V" first="Vida" last="Dujmovic">Vida Dujmovic</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Computer Science, McGill University</s1>
<s2>Ottawa, ON</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Everett, Hazel" sort="Everett, Hazel" uniqKey="Everett H" first="Hazel" last="Everett">Hazel Everett</name>
<affiliation>
<inist:fA14 i1="03">
<s1>LORIA - INRIA Lorraine, CNRS, Univ.</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Goaoc, Xavier" sort="Goaoc, Xavier" uniqKey="Goaoc X" first="Xavier" last="Goaoc">Xavier Goaoc</name>
<affiliation>
<inist:fA14 i1="03">
<s1>LORIA - INRIA Lorraine, CNRS, Univ.</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lazard, Sylvain" sort="Lazard, Sylvain" uniqKey="Lazard S" first="Sylvain" last="Lazard">Sylvain Lazard</name>
<affiliation>
<inist:fA14 i1="03">
<s1>LORIA - INRIA Lorraine, CNRS, Univ.</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Na, Hyeon Suk" sort="Na, Hyeon Suk" uniqKey="Na H" first="Hyeon-Suk" last="Na">Hyeon-Suk Na</name>
<affiliation>
<inist:fA14 i1="04">
<s1>School of Computing, Soongsil University</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Petitjean, Sylvain" sort="Petitjean, Sylvain" uniqKey="Petitjean S" first="Sylvain" last="Petitjean">Sylvain Petitjean</name>
<affiliation>
<inist:fA14 i1="03">
<s1>LORIA - INRIA Lorraine, CNRS, Univ.</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0091723</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 04-0091723 INIST</idno>
<idno type="RBID">Pascal:04-0091723</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000731</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The expected number of 3D visibility events is linear</title>
<author>
<name sortKey="Devillers, Olivier" sort="Devillers, Olivier" uniqKey="Devillers O" first="Olivier" last="Devillers">Olivier Devillers</name>
<affiliation>
<inist:fA14 i1="01">
<s1>INRIA Sophia-Antipolis, BP 93</s1>
<s2>06902 Sophia-Antipolis</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dujmovic, Vida" sort="Dujmovic, Vida" uniqKey="Dujmovic V" first="Vida" last="Dujmovic">Vida Dujmovic</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Computer Science, McGill University</s1>
<s2>Ottawa, ON</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Everett, Hazel" sort="Everett, Hazel" uniqKey="Everett H" first="Hazel" last="Everett">Hazel Everett</name>
<affiliation>
<inist:fA14 i1="03">
<s1>LORIA - INRIA Lorraine, CNRS, Univ.</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Goaoc, Xavier" sort="Goaoc, Xavier" uniqKey="Goaoc X" first="Xavier" last="Goaoc">Xavier Goaoc</name>
<affiliation>
<inist:fA14 i1="03">
<s1>LORIA - INRIA Lorraine, CNRS, Univ.</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lazard, Sylvain" sort="Lazard, Sylvain" uniqKey="Lazard S" first="Sylvain" last="Lazard">Sylvain Lazard</name>
<affiliation>
<inist:fA14 i1="03">
<s1>LORIA - INRIA Lorraine, CNRS, Univ.</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Na, Hyeon Suk" sort="Na, Hyeon Suk" uniqKey="Na H" first="Hyeon-Suk" last="Na">Hyeon-Suk Na</name>
<affiliation>
<inist:fA14 i1="04">
<s1>School of Computing, Soongsil University</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Petitjean, Sylvain" sort="Petitjean, Sylvain" uniqKey="Petitjean S" first="Sylvain" last="Petitjean">Sylvain Petitjean</name>
<affiliation>
<inist:fA14 i1="03">
<s1>LORIA - INRIA Lorraine, CNRS, Univ.</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">SIAM journal on computing : (Print)</title>
<title level="j" type="abbreviated">SIAM j. comput. : (Print)</title>
<idno type="ISSN">0097-5397</idno>
<imprint>
<date when="2003">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">SIAM journal on computing : (Print)</title>
<title level="j" type="abbreviated">SIAM j. comput. : (Print)</title>
<idno type="ISSN">0097-5397</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computational geometry</term>
<term>Computer graphics</term>
<term>Data structure</term>
<term>Expected complexity</term>
<term>Graphics</term>
<term>Poisson distribution</term>
<term>Polygon</term>
<term>Polyhedron</term>
<term>Probabilistic approach</term>
<term>Three dimensional visibility</term>
<term>Visibility complex</term>
<term>Visual event</term>
<term>Worst case method</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Géométrie algorithmique</term>
<term>Approche probabiliste</term>
<term>Structure donnée</term>
<term>Représentation graphique</term>
<term>Infographie</term>
<term>Méthode cas pire</term>
<term>Loi Poisson</term>
<term>Polyèdre</term>
<term>Polygone</term>
<term>Visibilité 3 dimensions</term>
<term>Evénement visuel</term>
<term>Complexe visibilité</term>
<term>Complexité probable</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this paper, we show that, amongst n uniformly distributed unit balls in R
<sup>3</sup>
, the expected number of maximal nonoccluded line segments tangent to four balls is linear. Using our techniques we show a linear bound on the expected size of the visibility complex, a data structure encoding the visibility information of a scene, providing evidence that the storage requirement for this data structure is not necessarily prohibitive. These results significantly improve the best previously known bounds of O(n
<sup>8/3</sup>
) [F. Durand, G. Drettakis, and C. Puech, ACM Transactions on Graphics, 21 (2002), pp. 176-206]. Our results generalize in various directions. We show that the linear bound on the expected number of maximal nonoccluded line segments that are not too close to the boundary of the scene and tangent to four unit balls extends to balls of various but bounded radii, to polyhedra of bounded aspect ratio, and even to nonfat three-dimensional objects such as polygons of bounded aspect ratio. We also prove that our results extend to other distributions such as the Poisson distribution. Finally, we indicate how our probabilistic analysis provides new insight on the expected size of other global visibility data structures, notably the aspect graph.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0097-5397</s0>
</fA01>
<fA03 i2="1">
<s0>SIAM j. comput. : (Print)</s0>
</fA03>
<fA05>
<s2>32</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The expected number of 3D visibility events is linear</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DEVILLERS (Olivier)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DUJMOVIC (Vida)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>EVERETT (Hazel)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GOAOC (Xavier)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LAZARD (Sylvain)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>NA (Hyeon-Suk)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>PETITJEAN (Sylvain)</s1>
</fA11>
<fA14 i1="01">
<s1>INRIA Sophia-Antipolis, BP 93</s1>
<s2>06902 Sophia-Antipolis</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Computer Science, McGill University</s1>
<s2>Ottawa, ON</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>LORIA - INRIA Lorraine, CNRS, Univ.</s1>
<s2>Nancy</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>School of Computing, Soongsil University</s1>
<s2>Seoul</s2>
<s3>KOR</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>1586-1620</s1>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16063</s2>
<s5>354000118836430110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2004 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>04-0091723</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>SIAM journal on computing : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this paper, we show that, amongst n uniformly distributed unit balls in R
<sup>3</sup>
, the expected number of maximal nonoccluded line segments tangent to four balls is linear. Using our techniques we show a linear bound on the expected size of the visibility complex, a data structure encoding the visibility information of a scene, providing evidence that the storage requirement for this data structure is not necessarily prohibitive. These results significantly improve the best previously known bounds of O(n
<sup>8/3</sup>
) [F. Durand, G. Drettakis, and C. Puech, ACM Transactions on Graphics, 21 (2002), pp. 176-206]. Our results generalize in various directions. We show that the linear bound on the expected number of maximal nonoccluded line segments that are not too close to the boundary of the scene and tangent to four unit balls extends to balls of various but bounded radii, to polyhedra of bounded aspect ratio, and even to nonfat three-dimensional objects such as polygons of bounded aspect ratio. We also prove that our results extend to other distributions such as the Poisson distribution. Finally, we indicate how our probabilistic analysis provides new insight on the expected size of other global visibility data structures, notably the aspect graph.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02C03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001A02H01E</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Géométrie algorithmique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Computational geometry</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Geometría computacional</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Approche probabiliste</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Probabilistic approach</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Enfoque probabilista</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Structure donnée</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Data structure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Estructura datos</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Représentation graphique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Graphics</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Grafo (curva)</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Infographie</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Computer graphics</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Gráfico computadora</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Méthode cas pire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Worst case method</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Método caso peor</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Loi Poisson</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Poisson distribution</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Ley Poisson</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Polyèdre</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Polyhedron</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Poliedro</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Polygone</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Polygon</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Polígono</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Visibilité 3 dimensions</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Three dimensional visibility</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Evénement visuel</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Visual event</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Complexe visibilité</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Visibility complex</s0>
<s4>CD</s4>
<s5>98</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Complexité probable</s0>
<s4>CD</s4>
<s5>99</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Expected complexity</s0>
<s4>CD</s4>
<s5>99</s5>
</fC03>
<fN21>
<s1>061</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 04-0091723 INIST</NO>
<ET>The expected number of 3D visibility events is linear</ET>
<AU>DEVILLERS (Olivier); DUJMOVIC (Vida); EVERETT (Hazel); GOAOC (Xavier); LAZARD (Sylvain); NA (Hyeon-Suk); PETITJEAN (Sylvain)</AU>
<AF>INRIA Sophia-Antipolis, BP 93/06902 Sophia-Antipolis/France (1 aut.); School of Computer Science, McGill University/Ottawa, ON/Canada (2 aut.); LORIA - INRIA Lorraine, CNRS, Univ./Nancy/France (3 aut., 4 aut., 5 aut., 7 aut.); School of Computing, Soongsil University/Seoul/Corée, République de (6 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>SIAM journal on computing : (Print); ISSN 0097-5397; Etats-Unis; Da. 2003; Vol. 32; No. 6; Pp. 1586-1620; Bibl. 24 ref.</SO>
<LA>Anglais</LA>
<EA>In this paper, we show that, amongst n uniformly distributed unit balls in R
<sup>3</sup>
, the expected number of maximal nonoccluded line segments tangent to four balls is linear. Using our techniques we show a linear bound on the expected size of the visibility complex, a data structure encoding the visibility information of a scene, providing evidence that the storage requirement for this data structure is not necessarily prohibitive. These results significantly improve the best previously known bounds of O(n
<sup>8/3</sup>
) [F. Durand, G. Drettakis, and C. Puech, ACM Transactions on Graphics, 21 (2002), pp. 176-206]. Our results generalize in various directions. We show that the linear bound on the expected number of maximal nonoccluded line segments that are not too close to the boundary of the scene and tangent to four unit balls extends to balls of various but bounded radii, to polyhedra of bounded aspect ratio, and even to nonfat three-dimensional objects such as polygons of bounded aspect ratio. We also prove that our results extend to other distributions such as the Poisson distribution. Finally, we indicate how our probabilistic analysis provides new insight on the expected size of other global visibility data structures, notably the aspect graph.</EA>
<CC>001D02C03; 001A02H01E</CC>
<FD>Géométrie algorithmique; Approche probabiliste; Structure donnée; Représentation graphique; Infographie; Méthode cas pire; Loi Poisson; Polyèdre; Polygone; Visibilité 3 dimensions; Evénement visuel; Complexe visibilité; Complexité probable</FD>
<ED>Computational geometry; Probabilistic approach; Data structure; Graphics; Computer graphics; Worst case method; Poisson distribution; Polyhedron; Polygon; Three dimensional visibility; Visual event; Visibility complex; Expected complexity</ED>
<SD>Geometría computacional; Enfoque probabilista; Estructura datos; Grafo (curva); Gráfico computadora; Método caso peor; Ley Poisson; Poliedro; Polígono</SD>
<LO>INIST-16063.354000118836430110</LO>
<ID>04-0091723</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000731 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000731 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:04-0091723
   |texte=   The expected number of 3D visibility events is linear
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022