Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of Convergence Rates for the Approximation of the Stationary Distribution of Infinite Monotone Stochastic Matrices

Identifieur interne : 00C628 ( Main/Merge ); précédent : 00C627; suivant : 00C629

Characterization of Convergence Rates for the Approximation of the Stationary Distribution of Infinite Monotone Stochastic Matrices

Auteurs : F. Simonot ; Y.-Q. Song

Source :

RBID : CRIN:simonot95c

English descriptors

Abstract

Let P be an infinite irreducible stochastic matrix, recurrent positive and stochastically monotone and Pn be any n x n stochastic matrix with Pn \geq Tn, where Tn denotes the n x n northwest corner truncation of P. These assumptions imply the existence of limit distributions \pi and \pi n for P and Pn respectively\, ; we show that if the Markov Chain with transition probability matrix P meets the further condition of geometric recurrence then the exact convergence rate of \pi n to \pi can be expressed in term of the radius of convergence of the generating function of \pi. As an application of the preceding result, we deal with the random walk on a half line and prove that the assumption of geometric recurrence can be relaxed, we also show that if the i.i.d input sequence (A(m)) is such that we can find a real number r_0 > 1 with E\left{r_0^A\right} = 1, then the exact convergence rate of \pi n to \pi is characterized by r_{0} Moreover, when the generating function of A is not defined for |z| > 1, we derive an upper bound for the distance between \pi n and \pi based on the moments of A.

Links toward previous steps (curation, corpus...)


Links to Exploration step

CRIN:simonot95c

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" wicri:score="967">Characterization of Convergence Rates for the Approximation of the Stationary Distribution of Infinite Monotone Stochastic Matrices</title>
</titleStmt>
<publicationStmt>
<idno type="RBID">CRIN:simonot95c</idno>
<date when="1996" year="1996">1996</date>
<idno type="wicri:Area/Crin/Corpus">001C35</idno>
<idno type="wicri:Area/Crin/Curation">001C35</idno>
<idno type="wicri:explorRef" wicri:stream="Crin" wicri:step="Curation">001C35</idno>
<idno type="wicri:Area/Crin/Checkpoint">002869</idno>
<idno type="wicri:explorRef" wicri:stream="Crin" wicri:step="Checkpoint">002869</idno>
<idno type="wicri:Area/Main/Merge">00C628</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of Convergence Rates for the Approximation of the Stationary Distribution of Infinite Monotone Stochastic Matrices</title>
<author>
<name sortKey="Simonot, F" sort="Simonot, F" uniqKey="Simonot F" first="F." last="Simonot">F. Simonot</name>
</author>
<author>
<name sortKey="Song, Y Q" sort="Song, Y Q" uniqKey="Song Y" first="Y.-Q." last="Song">Y.-Q. Song</name>
</author>
</analytic>
<series>
<title level="j">Journal of Applied Probability</title>
<imprint>
<date when="1996" type="published">1996</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Lindley process</term>
<term>Markov chain</term>
<term>convergence rate</term>
<term>geometric recurrence</term>
<term>random walk</term>
<term>skip free condition</term>
<term>stochastic monotonicity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en" wicri:score="3960">Let P be an infinite irreducible stochastic matrix, recurrent positive and stochastically monotone and Pn be any n x n stochastic matrix with Pn \geq Tn, where Tn denotes the n x n northwest corner truncation of P. These assumptions imply the existence of limit distributions \pi and \pi n for P and Pn respectively\, ; we show that if the Markov Chain with transition probability matrix P meets the further condition of geometric recurrence then the exact convergence rate of \pi n to \pi can be expressed in term of the radius of convergence of the generating function of \pi. As an application of the preceding result, we deal with the random walk on a half line and prove that the assumption of geometric recurrence can be relaxed, we also show that if the i.i.d input sequence (A(m)) is such that we can find a real number r_0 > 1 with E\left{r_0^A\right} = 1, then the exact convergence rate of \pi n to \pi is characterized by r_{0} Moreover, when the generating function of A is not defined for |z| > 1, we derive an upper bound for the distance between \pi n and \pi based on the moments of A.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00C628 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 00C628 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     CRIN:simonot95c
   |texte=   Characterization of Convergence Rates for the Approximation of the Stationary Distribution of Infinite Monotone Stochastic Matrices
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022