Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

From Lindqvist and Keggin ions to electronically inverse hosts

Identifieur interne : 00B969 ( Main/Merge ); précédent : 00B968; suivant : 00B970

From Lindqvist and Keggin ions to electronically inverse hosts

Auteurs : Marie-Madeleine Rohmer [France] ; Marc Bénard [France] ; Jean-Philippe Blaudeau [France] ; Juan-M Maestre [Espagne] ; Josep-M Poblet [Espagne]

Source :

RBID : ISTEX:BAAF2CD1A3431659A66EE8AF09C245093921AA9E

English descriptors

Abstract

Abstract: This review reports the ab initio Hartree–Fock and DFT calculations which have been carried out recently in our two groups in order to investigate the electronic structure of polyoxometalate clusters, either totally oxidized like (V10O28)6− or partly reduced such as [PMo12O40(VO)2]5−. The approach of protons or cationic groups to the external coating of oxygen atoms and their preferred site of fixation can be predicted from the topology of the computed distribution of molecular electrostatic potentials (MEP). The MEP distribution can also be used to get a better understanding of the formation of inclusion and encapsulation complexes. Hemispherical carcerands like (V12O32)4− develop a dipolar field in the accessible part of their cavity susceptible to attract small molecules with a permanent dipole like RCN (R=CH3, C6H5). The “electronically inverse” host anions known to encapsulate anionic species are formed in solution by means of a template mechanism which tends to maximize the electrostatic potential at the place of the guest anion. A correlation is provided between the topology of the host and its MEP distribution which explains, from simple geometric considerations, the differences between electronically normal and electronically inverse hosts, and shows that the host cage tends to get adapted not only to the shape of the guest molecule, but also to its electrostatic potential distribution.

Url:
DOI: 10.1016/S0010-8545(98)00162-3

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:BAAF2CD1A3431659A66EE8AF09C245093921AA9E

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>From Lindqvist and Keggin ions to electronically inverse hosts</title>
<author>
<name sortKey="Rohmer, Marie Madeleine" sort="Rohmer, Marie Madeleine" uniqKey="Rohmer M" first="Marie-Madeleine" last="Rohmer">Marie-Madeleine Rohmer</name>
</author>
<author>
<name sortKey="Benard, Marc" sort="Benard, Marc" uniqKey="Benard M" first="Marc" last="Bénard">Marc Bénard</name>
</author>
<author>
<name sortKey="Blaudeau, Jean Philippe" sort="Blaudeau, Jean Philippe" uniqKey="Blaudeau J" first="Jean-Philippe" last="Blaudeau">Jean-Philippe Blaudeau</name>
</author>
<author>
<name sortKey="Maestre, Juan M" sort="Maestre, Juan M" uniqKey="Maestre J" first="Juan-M" last="Maestre">Juan-M Maestre</name>
</author>
<author>
<name sortKey="Poblet, Josep M" sort="Poblet, Josep M" uniqKey="Poblet J" first="Josep-M" last="Poblet">Josep-M Poblet</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:BAAF2CD1A3431659A66EE8AF09C245093921AA9E</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1016/S0010-8545(98)00162-3</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-QWH4LRCD-5/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002C30</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002C30</idno>
<idno type="wicri:Area/Istex/Curation">002B93</idno>
<idno type="wicri:Area/Istex/Checkpoint">002479</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">002479</idno>
<idno type="wicri:doubleKey">0010-8545:1998:Rohmer M:from:lindqvist:and</idno>
<idno type="wicri:Area/Main/Merge">00B969</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">From Lindqvist and Keggin ions to electronically inverse hosts</title>
<author>
<name sortKey="Rohmer, Marie Madeleine" sort="Rohmer, Marie Madeleine" uniqKey="Rohmer M" first="Marie-Madeleine" last="Rohmer">Marie-Madeleine Rohmer</name>
<affiliation wicri:level="4">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Chimie Quantique, UMR 7551, CNRS and Université Louis Pasteur, F-67000 Strasbourg</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Alsace (région administrative)</region>
<settlement type="city">Strasbourg</settlement>
</placeName>
<orgName type="university">Université Strasbourg 1</orgName>
</affiliation>
</author>
<author>
<name sortKey="Benard, Marc" sort="Benard, Marc" uniqKey="Benard M" first="Marc" last="Bénard">Marc Bénard</name>
<affiliation wicri:level="4">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Chimie Quantique, UMR 7551, CNRS and Université Louis Pasteur, F-67000 Strasbourg</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Alsace (région administrative)</region>
<settlement type="city">Strasbourg</settlement>
</placeName>
<orgName type="university">Université Strasbourg 1</orgName>
</affiliation>
</author>
<author>
<name sortKey="Blaudeau, Jean Philippe" sort="Blaudeau, Jean Philippe" uniqKey="Blaudeau J" first="Jean-Philippe" last="Blaudeau">Jean-Philippe Blaudeau</name>
<affiliation wicri:level="4">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Chimie Quantique, UMR 7551, CNRS and Université Louis Pasteur, F-67000 Strasbourg</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Alsace (région administrative)</region>
<settlement type="city">Strasbourg</settlement>
</placeName>
<orgName type="university">Université Strasbourg 1</orgName>
</affiliation>
</author>
<author>
<name sortKey="Maestre, Juan M" sort="Maestre, Juan M" uniqKey="Maestre J" first="Juan-M" last="Maestre">Juan-M Maestre</name>
<affiliation wicri:level="2">
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Quı́mica Fı́sica Inorgánica, Universitat Rovira i Virgili, E-43005 Tarragona</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Poblet, Josep M" sort="Poblet, Josep M" uniqKey="Poblet J" first="Josep-M" last="Poblet">Josep-M Poblet</name>
<affiliation wicri:level="2">
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Quı́mica Fı́sica Inorgánica, Universitat Rovira i Virgili, E-43005 Tarragona</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Coordination Chemistry Reviews</title>
<title level="j" type="abbrev">CCR</title>
<idno type="ISSN">0010-8545</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998">1998</date>
<biblScope unit="volume">178–180</biblScope>
<biblScope unit="supplement">P2</biblScope>
<biblScope unit="page" from="1019">1019</biblScope>
<biblScope unit="page" to="1049">1049</biblScope>
</imprint>
<idno type="ISSN">0010-8545</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0010-8545</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Accessible part</term>
<term>Accessible region</term>
<term>Angew</term>
<term>Anion</term>
<term>Anionic host</term>
<term>Basin minima</term>
<term>Binary metal complexes</term>
<term>Binding energies</term>
<term>Cage</term>
<term>Cationic groups</term>
<term>Centre</term>
<term>Charge concentration</term>
<term>Charge distribution</term>
<term>Charge transfer</term>
<term>Chem</term>
<term>Contour interval</term>
<term>Coordination chemistry reviews</term>
<term>Coulombic</term>
<term>Coulombic interaction</term>
<term>Critical points</term>
<term>Crystal environment</term>
<term>Crystal fragment</term>
<term>Dipole moment</term>
<term>Electronic structure</term>
<term>Electrophilic</term>
<term>Electrostatic attraction</term>
<term>Electrostatic energy</term>
<term>Electrostatic origin</term>
<term>Electrostatic potentials</term>
<term>Elsevier science</term>
<term>Encapsulated</term>
<term>Encapsulated anion</term>
<term>Encapsulation</term>
<term>Encapsulation complexes</term>
<term>Engl</term>
<term>External coating</term>
<term>External side</term>
<term>Free ions</term>
<term>Frontier orbitals</term>
<term>Ground state</term>
<term>Guest anion</term>
<term>Guest molecule</term>
<term>Guest molecules</term>
<term>Guest subsystems</term>
<term>Guest system</term>
<term>Host cage</term>
<term>Host cages</term>
<term>Host cavity</term>
<term>Host topology</term>
<term>Hydrogen bonds</term>
<term>Inclusion complexes</term>
<term>Initio</term>
<term>Inorg</term>
<term>Interaction energies</term>
<term>Interaction energy</term>
<term>Inverse complexes</term>
<term>Inverse hosts</term>
<term>Kcal</term>
<term>Klemperer</term>
<term>Krickemeyer</term>
<term>Large basis</term>
<term>Large number</term>
<term>Lattice</term>
<term>Lindqvist</term>
<term>Lindqvist ions</term>
<term>Local curvature</term>
<term>Local minima</term>
<term>Lone pairs</term>
<term>Lowest energy</term>
<term>Metal atoms</term>
<term>Metal centres</term>
<term>Metal electrons</term>
<term>Metal framework</term>
<term>Methyl substituent</term>
<term>Minimal energy</term>
<term>Molecule</term>
<term>Negative charge</term>
<term>Neutral guest</term>
<term>Orbitals</term>
<term>Oxidized cluster</term>
<term>Oxygen atom</term>
<term>Oxygen atoms</term>
<term>Oxygen site</term>
<term>Pauli repulsion</term>
<term>Phys</term>
<term>Point charge</term>
<term>Point charges</term>
<term>Polyoxometalate</term>
<term>Polyoxometalate clusters</term>
<term>Positive charge</term>
<term>Potential distribution</term>
<term>Potential energy</term>
<term>Potential minima</term>
<term>Potential value</term>
<term>Previous section</term>
<term>Projection plane</term>
<term>Proton</term>
<term>Protonated</term>
<term>Protonated species</term>
<term>Protonation</term>
<term>Quantum chemistry</term>
<term>Relative energies</term>
<term>Relative energy values</term>
<term>Rohmer</term>
<term>Saddle point</term>
<term>Sphere centred</term>
<term>Stabilization</term>
<term>Stabilization energies</term>
<term>Stereographic projection</term>
<term>Successive shells</term>
<term>Such complexes</term>
<term>Symmetry axis</term>
<term>Symmetry plane</term>
<term>Template mechanism</term>
<term>Terminal oxygens</term>
<term>Tetrahedral symmetry</term>
<term>Topological criteria</term>
<term>Topology</term>
<term>Total charge</term>
<term>Unit cell</term>
<term>Unit cells</term>
<term>Valence electrons</term>
<term>Vanadate fragments</term>
<term>Vanadium</term>
<term>Vanadium atoms</term>
<term>Water molecule</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: This review reports the ab initio Hartree–Fock and DFT calculations which have been carried out recently in our two groups in order to investigate the electronic structure of polyoxometalate clusters, either totally oxidized like (V10O28)6− or partly reduced such as [PMo12O40(VO)2]5−. The approach of protons or cationic groups to the external coating of oxygen atoms and their preferred site of fixation can be predicted from the topology of the computed distribution of molecular electrostatic potentials (MEP). The MEP distribution can also be used to get a better understanding of the formation of inclusion and encapsulation complexes. Hemispherical carcerands like (V12O32)4− develop a dipolar field in the accessible part of their cavity susceptible to attract small molecules with a permanent dipole like RCN (R=CH3, C6H5). The “electronically inverse” host anions known to encapsulate anionic species are formed in solution by means of a template mechanism which tends to maximize the electrostatic potential at the place of the guest anion. A correlation is provided between the topology of the host and its MEP distribution which explains, from simple geometric considerations, the differences between electronically normal and electronically inverse hosts, and shows that the host cage tends to get adapted not only to the shape of the guest molecule, but also to its electrostatic potential distribution.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00B969 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 00B969 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     ISTEX:BAAF2CD1A3431659A66EE8AF09C245093921AA9E
   |texte=   From Lindqvist and Keggin ions to electronically inverse hosts
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022