Serveur d'exploration sur la recherche en informatique en Lorraine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Low-Dimensional Lattice Basis Reduction Revisited

Identifieur interne : 006B75 ( Main/Curation ); précédent : 006B74; suivant : 006B76

Low-Dimensional Lattice Basis Reduction Revisited

Auteurs : Phong Q. Nguyen [France] ; Damien Stehlé [France]

Source :

RBID : ISTEX:1072C83244519A5AB766FC3862FBA017026012B0

Descripteurs français

English descriptors

Abstract

Abstract: Most of the interesting algorithmic problems in the geometry of numbers are NP-hard as the lattice dimension increases. This article deals with the low-dimensional case. We study a greedy lattice basis reduction algorithm for the Euclidean norm, which is arguably the most natural lattice basis reduction algorithm, because it is a straightforward generalization of the well-known two-dimensional Gaussian algorithm. Our results are two-fold. From a mathematical point of view, we show that up to dimension four, the output of the greedy algorithm is optimal: the output basis reaches all the successive minima of the lattice. However, as soon as the lattice dimension is strictly higher than four, the output basis may not even reach the first minimum. More importantly, from a computational point of view, we show that up to dimension four, the bit-complexity of the greedy algorithm is quadratic without fast integer arithmetic: this allows to compute various lattice problems (e.g. computing a Minkowski-reduced basis and a closest vector) in quadratic time, without fast integer arithmetic, up to dimension four, while all other algorithms known for such problems have a bit-complexity which is at least cubic. This was already proved by Semaev up to dimension three using rather technical means, but it was previously unknown whether or not the algorithm was still polynomial in dimension four. Our analysis, based on geometric properties of low-dimensional lattices and in particular Voronoï cells, arguably simplifies Semaev’s analysis in dimensions two and three, unifies the cases of dimensions two, three and four, but breaks down in dimension five.

Url:
DOI: 10.1007/978-3-540-24847-7_26

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:1072C83244519A5AB766FC3862FBA017026012B0

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Low-Dimensional Lattice Basis Reduction Revisited</title>
<author>
<name sortKey="Nguyen, Phong Q" sort="Nguyen, Phong Q" uniqKey="Nguyen P" first="Phong Q." last="Nguyen">Phong Q. Nguyen</name>
</author>
<author>
<name sortKey="Stehle, Damien" sort="Stehle, Damien" uniqKey="Stehle D" first="Damien" last="Stehlé">Damien Stehlé</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1072C83244519A5AB766FC3862FBA017026012B0</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1007/978-3-540-24847-7_26</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HCB-30MF799R-1/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000374</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000374</idno>
<idno type="wicri:Area/Istex/Curation">000372</idno>
<idno type="wicri:Area/Istex/Checkpoint">001784</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001784</idno>
<idno type="wicri:doubleKey">0302-9743:2004:Nguyen P:low:dimensional:lattice</idno>
<idno type="wicri:Area/Main/Merge">006E79</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:04-0301103</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000668</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000373</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000593</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000593</idno>
<idno type="wicri:doubleKey">0302-9743:2004:Nguyen P:low:dimensional:lattice</idno>
<idno type="wicri:Area/Main/Merge">007028</idno>
<idno type="wicri:Area/Main/Curation">006B75</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Low-Dimensional Lattice Basis Reduction Revisited</title>
<author>
<name sortKey="Nguyen, Phong Q" sort="Nguyen, Phong Q" uniqKey="Nguyen P" first="Phong Q." last="Nguyen">Phong Q. Nguyen</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Département d’informatique, CNRS/École normale supérieure, 45 rue d’Ulm, 75230, Paris Cedex 05</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
</author>
<author>
<name sortKey="Stehle, Damien" sort="Stehle, Damien" uniqKey="Stehle D" first="Damien" last="Stehlé">Damien Stehlé</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>LORIA/INRIA Lorraine, 615 rue du J. botanique, 54602, Villers-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Villers-lès-Nancy</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="s" type="main" xml:lang="en">Lecture Notes in Computer Science</title>
<idno type="ISSN">0302-9743</idno>
<idno type="eISSN">1611-3349</idno>
<idno type="ISSN">0302-9743</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0302-9743</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithm complexity</term>
<term>Arithmetics</term>
<term>Computational geometry</term>
<term>Cubics</term>
<term>Euclidean theory</term>
<term>Fast algorithm</term>
<term>Gaussian process</term>
<term>Greedy algorithm</term>
<term>Lattice</term>
<term>Minkowski metric</term>
<term>NP hard problem</term>
<term>Optimal algorithm</term>
<term>Polynomial method</term>
<term>Three dimensional model</term>
<term>Two dimensional model</term>
<term>Voronoï diagram</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Algorithme glouton</term>
<term>Algorithme optimal</term>
<term>Algorithme rapide</term>
<term>Arithmétique</term>
<term>Complexité algorithme</term>
<term>Cubique</term>
<term>Diagramme Voronoï</term>
<term>Géométrie algorithmique</term>
<term>Modèle 2 dimensions</term>
<term>Modèle 3 dimensions</term>
<term>Méthode polynomiale</term>
<term>Métrique Minkowski</term>
<term>Problème NP difficile</term>
<term>Processus Gauss</term>
<term>Théorie euclidienne</term>
<term>Treillis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Most of the interesting algorithmic problems in the geometry of numbers are NP-hard as the lattice dimension increases. This article deals with the low-dimensional case. We study a greedy lattice basis reduction algorithm for the Euclidean norm, which is arguably the most natural lattice basis reduction algorithm, because it is a straightforward generalization of the well-known two-dimensional Gaussian algorithm. Our results are two-fold. From a mathematical point of view, we show that up to dimension four, the output of the greedy algorithm is optimal: the output basis reaches all the successive minima of the lattice. However, as soon as the lattice dimension is strictly higher than four, the output basis may not even reach the first minimum. More importantly, from a computational point of view, we show that up to dimension four, the bit-complexity of the greedy algorithm is quadratic without fast integer arithmetic: this allows to compute various lattice problems (e.g. computing a Minkowski-reduced basis and a closest vector) in quadratic time, without fast integer arithmetic, up to dimension four, while all other algorithms known for such problems have a bit-complexity which is at least cubic. This was already proved by Semaev up to dimension three using rather technical means, but it was previously unknown whether or not the algorithm was still polynomial in dimension four. Our analysis, based on geometric properties of low-dimensional lattices and in particular Voronoï cells, arguably simplifies Semaev’s analysis in dimensions two and three, unifies the cases of dimensions two, three and four, but breaks down in dimension five.</div>
</front>
</TEI>
<double idat="0302-9743:2004:Nguyen P:low:dimensional:lattice">
<INIST>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Low-dimensional lattice basis reduction revisited</title>
<author>
<name sortKey="Nguyen, Phong Q" sort="Nguyen, Phong Q" uniqKey="Nguyen P" first="Phong Q." last="Nguyen">Phong Q. Nguyen</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>CNRS/École normale supérieure, Département d'informatique, 45 rue d'Ulm</s1>
<s2>75230 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stehle, Damien" sort="Stehle, Damien" uniqKey="Stehle D" first="Damien" last="Stehle">Damien Stehle</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>LORIA/INRIA Lorraine, 615 rue du J. botanique</s1>
<s2>54602 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Villers-lès-Nancy</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">04-0301103</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 04-0301103 INIST</idno>
<idno type="RBID">Pascal:04-0301103</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000668</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000373</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000593</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000593</idno>
<idno type="wicri:doubleKey">0302-9743:2004:Nguyen P:low:dimensional:lattice</idno>
<idno type="wicri:Area/Main/Merge">007028</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Low-dimensional lattice basis reduction revisited</title>
<author>
<name sortKey="Nguyen, Phong Q" sort="Nguyen, Phong Q" uniqKey="Nguyen P" first="Phong Q." last="Nguyen">Phong Q. Nguyen</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>CNRS/École normale supérieure, Département d'informatique, 45 rue d'Ulm</s1>
<s2>75230 Paris</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stehle, Damien" sort="Stehle, Damien" uniqKey="Stehle D" first="Damien" last="Stehle">Damien Stehle</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>LORIA/INRIA Lorraine, 615 rue du J. botanique</s1>
<s2>54602 Villers-lès-Nancy</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Villers-lès-Nancy</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Lecture notes in computer science</title>
<idno type="ISSN">0302-9743</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Lecture notes in computer science</title>
<idno type="ISSN">0302-9743</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithm complexity</term>
<term>Arithmetics</term>
<term>Computational geometry</term>
<term>Cubics</term>
<term>Euclidean theory</term>
<term>Fast algorithm</term>
<term>Gaussian process</term>
<term>Greedy algorithm</term>
<term>Lattice</term>
<term>Minkowski metric</term>
<term>NP hard problem</term>
<term>Optimal algorithm</term>
<term>Polynomial method</term>
<term>Three dimensional model</term>
<term>Two dimensional model</term>
<term>Voronoï diagram</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Treillis</term>
<term>Géométrie algorithmique</term>
<term>Problème NP difficile</term>
<term>Algorithme glouton</term>
<term>Théorie euclidienne</term>
<term>Modèle 2 dimensions</term>
<term>Processus Gauss</term>
<term>Algorithme optimal</term>
<term>Complexité algorithme</term>
<term>Algorithme rapide</term>
<term>Arithmétique</term>
<term>Métrique Minkowski</term>
<term>Modèle 3 dimensions</term>
<term>Méthode polynomiale</term>
<term>Diagramme Voronoï</term>
<term>Cubique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Most of the interesting algorithmic problems in the geometry of numbers are NP-hard as the lattice dimension increases. This article deals with the low-dimensional case. We study a greedy lattice basis reduction algorithm for the Euclidean norm, which is arguably the most natural lattice basis reduction algorithm, because it is a straightforward generalization of the well-known two-dimensional Gaussian algorithm. Our results are two-fold. From a mathematical point of view, we show that up to dimension four, the output of the greedy algorithm is optimal: the output basis reaches all the successive minima of the lattice. However, as soon as the lattice dimension is strictly higher than four, the output basis may not even reach the first minimum. More importantly, from a computational point of view, we show that up to dimension four, the bit-complexity of the greedy algorithm is quadratic without fast integer arithmetic: this allows to compute various lattice problems (e.g. computing a Minkowski-reduced basis and a closest vector) in quadratic time, without fast integer arithmetic, up to dimension four, while all other algorithms known for such problems have a bit-complexity which is at least cubic. This was already proved by Semaev up to dimension three using rather technical means, but it was previously unknown whether or not the algorithm was still polynomial in dimension four. Our analysis, based on geometric properties of low-dimensional lattices and in particular Voronoï cells, arguably simplifies Semaev's analysis in dimensions two and three, unifies the cases of dimensions two, three and four, but breaks down in dimension five.</div>
</front>
</TEI>
</INIST>
<ISTEX>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Low-Dimensional Lattice Basis Reduction Revisited</title>
<author>
<name sortKey="Nguyen, Phong Q" sort="Nguyen, Phong Q" uniqKey="Nguyen P" first="Phong Q." last="Nguyen">Phong Q. Nguyen</name>
</author>
<author>
<name sortKey="Stehle, Damien" sort="Stehle, Damien" uniqKey="Stehle D" first="Damien" last="Stehlé">Damien Stehlé</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1072C83244519A5AB766FC3862FBA017026012B0</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1007/978-3-540-24847-7_26</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HCB-30MF799R-1/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000374</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000374</idno>
<idno type="wicri:Area/Istex/Curation">000372</idno>
<idno type="wicri:Area/Istex/Checkpoint">001784</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001784</idno>
<idno type="wicri:doubleKey">0302-9743:2004:Nguyen P:low:dimensional:lattice</idno>
<idno type="wicri:Area/Main/Merge">006E79</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Low-Dimensional Lattice Basis Reduction Revisited</title>
<author>
<name sortKey="Nguyen, Phong Q" sort="Nguyen, Phong Q" uniqKey="Nguyen P" first="Phong Q." last="Nguyen">Phong Q. Nguyen</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Département d’informatique, CNRS/École normale supérieure, 45 rue d’Ulm, 75230, Paris Cedex 05</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
</author>
<author>
<name sortKey="Stehle, Damien" sort="Stehle, Damien" uniqKey="Stehle D" first="Damien" last="Stehlé">Damien Stehlé</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>LORIA/INRIA Lorraine, 615 rue du J. botanique, 54602, Villers-lès-Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Villers-lès-Nancy</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="s" type="main" xml:lang="en">Lecture Notes in Computer Science</title>
<idno type="ISSN">0302-9743</idno>
<idno type="eISSN">1611-3349</idno>
<idno type="ISSN">0302-9743</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0302-9743</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Most of the interesting algorithmic problems in the geometry of numbers are NP-hard as the lattice dimension increases. This article deals with the low-dimensional case. We study a greedy lattice basis reduction algorithm for the Euclidean norm, which is arguably the most natural lattice basis reduction algorithm, because it is a straightforward generalization of the well-known two-dimensional Gaussian algorithm. Our results are two-fold. From a mathematical point of view, we show that up to dimension four, the output of the greedy algorithm is optimal: the output basis reaches all the successive minima of the lattice. However, as soon as the lattice dimension is strictly higher than four, the output basis may not even reach the first minimum. More importantly, from a computational point of view, we show that up to dimension four, the bit-complexity of the greedy algorithm is quadratic without fast integer arithmetic: this allows to compute various lattice problems (e.g. computing a Minkowski-reduced basis and a closest vector) in quadratic time, without fast integer arithmetic, up to dimension four, while all other algorithms known for such problems have a bit-complexity which is at least cubic. This was already proved by Semaev up to dimension three using rather technical means, but it was previously unknown whether or not the algorithm was still polynomial in dimension four. Our analysis, based on geometric properties of low-dimensional lattices and in particular Voronoï cells, arguably simplifies Semaev’s analysis in dimensions two and three, unifies the cases of dimensions two, three and four, but breaks down in dimension five.</div>
</front>
</TEI>
</ISTEX>
</double>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/InforLorV4/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006B75 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 006B75 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    InforLorV4
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:1072C83244519A5AB766FC3862FBA017026012B0
   |texte=   Low-Dimensional Lattice Basis Reduction Revisited
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Jun 10 21:56:28 2019. Site generation: Fri Feb 25 15:29:27 2022