Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Elucidating the higher‐order structure of biopolymers by structural probing and mass spectrometry: MS3D

Identifieur interne : 000785 ( Istex/Corpus ); précédent : 000784; suivant : 000786

Elucidating the higher‐order structure of biopolymers by structural probing and mass spectrometry: MS3D

Auteurs : Daniele Fabris ; Eizadora T. Yu

Source :

RBID : ISTEX:3A8C4565A7CFBC41E9EA08B1BB06F80204607263

English descriptors

Abstract

Chemical probing represents a very versatile alternative for studying the structure and dynamics of substrates that are intractable by established high‐resolution techniques. The implementation of MS‐based strategies for the characterization of probing products has not only extended the range of applicability to virtually all types of biopolymers but has also paved the way for the introduction of new reagents that would not have been viable with traditional analytical platforms. As the availability of probing data is steadily increasing on the wings of the development of dedicated interpretation aids, powerful computational approaches have been explored to enable the effective utilization of such information to generate valid molecular models. This combination of factors has contributed to making the possibility of obtaining actual 3D structures by MS‐based technologies (MS3D) a reality. Although approaches for achieving structure determination of unknown targets or assessing the dynamics of known structures may share similar reagents and development trajectories, they clearly involve distinctive experimental strategies, analytical concerns and interpretation paradigms. This Perspective offers a commentary on methods aimed at obtaining distance constraints for the modeling of full‐fledged structures while highlighting common elements, salient distinctions and complementary capabilities exhibited by methods used in dynamics studies. We discuss critical factors to be addressed for completing effective structural determinations and expose possible pitfalls of chemical methods. We survey programs developed for facilitating the interpretation of experimental data and discuss possible computational strategies for translating sparse spatial constraints into all‐atom models. Examples are provided to illustrate how the concerted application of very diverse probing techniques can lead to the solution of actual biological systems. Copyright © 2010 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/jms.1762

Links to Exploration step

ISTEX:3A8C4565A7CFBC41E9EA08B1BB06F80204607263

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Elucidating the higher‐order structure of biopolymers by structural probing and mass spectrometry: MS3D</title>
<author>
<name sortKey="Fabris, Daniele" sort="Fabris, Daniele" uniqKey="Fabris D" first="Daniele" last="Fabris">Daniele Fabris</name>
<affiliation>
<mods:affiliation>Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yu, Eizadora T" sort="Yu, Eizadora T" uniqKey="Yu E" first="Eizadora T." last="Yu">Eizadora T. Yu</name>
<affiliation>
<mods:affiliation>Sandia National Laboratories, Livermore, CA, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3A8C4565A7CFBC41E9EA08B1BB06F80204607263</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/jms.1762</idno>
<idno type="url">https://api.istex.fr/document/3A8C4565A7CFBC41E9EA08B1BB06F80204607263/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000785</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Elucidating the higher‐order structure of biopolymers by structural probing and mass spectrometry: MS3D</title>
<author>
<name sortKey="Fabris, Daniele" sort="Fabris, Daniele" uniqKey="Fabris D" first="Daniele" last="Fabris">Daniele Fabris</name>
<affiliation>
<mods:affiliation>Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yu, Eizadora T" sort="Yu, Eizadora T" uniqKey="Yu E" first="Eizadora T." last="Yu">Eizadora T. Yu</name>
<affiliation>
<mods:affiliation>Sandia National Laboratories, Livermore, CA, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Mass Spectrometry</title>
<title level="j" type="abbrev">J. Mass Spectrom.</title>
<idno type="ISSN">1076-5174</idno>
<idno type="eISSN">1096-9888</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2010-08">2010-08</date>
<biblScope unit="volume">45</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="841">841</biblScope>
<biblScope unit="page" to="860">860</biblScope>
</imprint>
<idno type="ISSN">1076-5174</idno>
</series>
<idno type="istex">3A8C4565A7CFBC41E9EA08B1BB06F80204607263</idno>
<idno type="DOI">10.1002/jms.1762</idno>
<idno type="ArticleID">JMS1762</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1076-5174</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>covalent labeling</term>
<term>cross‐linking</term>
<term>footprinting</term>
<term>molecular modeling</term>
<term>solvent‐accessibility probes</term>
<term>structural biology</term>
<term>structural probing</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chemical probing represents a very versatile alternative for studying the structure and dynamics of substrates that are intractable by established high‐resolution techniques. The implementation of MS‐based strategies for the characterization of probing products has not only extended the range of applicability to virtually all types of biopolymers but has also paved the way for the introduction of new reagents that would not have been viable with traditional analytical platforms. As the availability of probing data is steadily increasing on the wings of the development of dedicated interpretation aids, powerful computational approaches have been explored to enable the effective utilization of such information to generate valid molecular models. This combination of factors has contributed to making the possibility of obtaining actual 3D structures by MS‐based technologies (MS3D) a reality. Although approaches for achieving structure determination of unknown targets or assessing the dynamics of known structures may share similar reagents and development trajectories, they clearly involve distinctive experimental strategies, analytical concerns and interpretation paradigms. This Perspective offers a commentary on methods aimed at obtaining distance constraints for the modeling of full‐fledged structures while highlighting common elements, salient distinctions and complementary capabilities exhibited by methods used in dynamics studies. We discuss critical factors to be addressed for completing effective structural determinations and expose possible pitfalls of chemical methods. We survey programs developed for facilitating the interpretation of experimental data and discuss possible computational strategies for translating sparse spatial constraints into all‐atom models. Examples are provided to illustrate how the concerted application of very diverse probing techniques can lead to the solution of actual biological systems. Copyright © 2010 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Daniele Fabris</name>
<affiliations>
<json:string>Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Eizadora T. Yu</name>
<affiliations>
<json:string>Sandia National Laboratories, Livermore, CA, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cross‐linking</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>footprinting</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>solvent‐accessibility probes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>covalent labeling</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>structural probing</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>molecular modeling</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>structural biology</value>
</json:item>
</subject>
<articleId>
<json:string>JMS1762</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>miscellaneous</json:string>
</originalGenre>
<abstract>Chemical probing represents a very versatile alternative for studying the structure and dynamics of substrates that are intractable by established high‐resolution techniques. The implementation of MS‐based strategies for the characterization of probing products has not only extended the range of applicability to virtually all types of biopolymers but has also paved the way for the introduction of new reagents that would not have been viable with traditional analytical platforms. As the availability of probing data is steadily increasing on the wings of the development of dedicated interpretation aids, powerful computational approaches have been explored to enable the effective utilization of such information to generate valid molecular models. This combination of factors has contributed to making the possibility of obtaining actual 3D structures by MS‐based technologies (MS3D) a reality. Although approaches for achieving structure determination of unknown targets or assessing the dynamics of known structures may share similar reagents and development trajectories, they clearly involve distinctive experimental strategies, analytical concerns and interpretation paradigms. This Perspective offers a commentary on methods aimed at obtaining distance constraints for the modeling of full‐fledged structures while highlighting common elements, salient distinctions and complementary capabilities exhibited by methods used in dynamics studies. We discuss critical factors to be addressed for completing effective structural determinations and expose possible pitfalls of chemical methods. We survey programs developed for facilitating the interpretation of experimental data and discuss possible computational strategies for translating sparse spatial constraints into all‐atom models. Examples are provided to illustrate how the concerted application of very diverse probing techniques can lead to the solution of actual biological systems. Copyright © 2010 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 791 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>7</keywordCount>
<abstractCharCount>1994</abstractCharCount>
<pdfWordCount>17257</pdfWordCount>
<pdfCharCount>113483</pdfCharCount>
<pdfPageCount>20</pdfPageCount>
<abstractWordCount>270</abstractWordCount>
</qualityIndicators>
<title>Elucidating the higher‐order structure of biopolymers by structural probing and mass spectrometry: MS3D</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>45</volume>
<publisherId>
<json:string>JMS</json:string>
</publisherId>
<pages>
<total>20</total>
<last>860</last>
<first>841</first>
</pages>
<issn>
<json:string>1076-5174</json:string>
</issn>
<issue>8</issue>
<subject>
<json:item>
<value>Special Feature: Perspective</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1096-9888</json:string>
</eissn>
<title>Journal of Mass Spectrometry</title>
<doi>
<json:string>10.1002/(ISSN)1096-9888c</json:string>
</doi>
</host>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1002/jms.1762</json:string>
</doi>
<id>3A8C4565A7CFBC41E9EA08B1BB06F80204607263</id>
<score>0.06969349</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/3A8C4565A7CFBC41E9EA08B1BB06F80204607263/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/3A8C4565A7CFBC41E9EA08B1BB06F80204607263/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/3A8C4565A7CFBC41E9EA08B1BB06F80204607263/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Elucidating the higher‐order structure of biopolymers by structural probing and mass spectrometry: MS3D</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<p>Copyright © 2010 John Wiley & Sons, Ltd.</p>
</availability>
<date>2010</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Elucidating the higher‐order structure of biopolymers by structural probing and mass spectrometry: MS3D</title>
<author xml:id="author-1">
<persName>
<forename type="first">Daniele</forename>
<surname>Fabris</surname>
</persName>
<note type="correspondence">
<p>Correspondence: The RNA Institute, University at Albany, 1400 Washington Ave., Albany, NY 12222, USA.===</p>
</note>
<affiliation>Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Eizadora T.</forename>
<surname>Yu</surname>
</persName>
<affiliation>Sandia National Laboratories, Livermore, CA, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Mass Spectrometry</title>
<title level="j" type="abbrev">J. Mass Spectrom.</title>
<idno type="pISSN">1076-5174</idno>
<idno type="eISSN">1096-9888</idno>
<idno type="DOI">10.1002/(ISSN)1096-9888c</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2010-08"></date>
<biblScope unit="volume">45</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="841">841</biblScope>
<biblScope unit="page" to="860">860</biblScope>
</imprint>
</monogr>
<idno type="istex">3A8C4565A7CFBC41E9EA08B1BB06F80204607263</idno>
<idno type="DOI">10.1002/jms.1762</idno>
<idno type="ArticleID">JMS1762</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2010</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Chemical probing represents a very versatile alternative for studying the structure and dynamics of substrates that are intractable by established high‐resolution techniques. The implementation of MS‐based strategies for the characterization of probing products has not only extended the range of applicability to virtually all types of biopolymers but has also paved the way for the introduction of new reagents that would not have been viable with traditional analytical platforms. As the availability of probing data is steadily increasing on the wings of the development of dedicated interpretation aids, powerful computational approaches have been explored to enable the effective utilization of such information to generate valid molecular models. This combination of factors has contributed to making the possibility of obtaining actual 3D structures by MS‐based technologies (MS3D) a reality. Although approaches for achieving structure determination of unknown targets or assessing the dynamics of known structures may share similar reagents and development trajectories, they clearly involve distinctive experimental strategies, analytical concerns and interpretation paradigms. This Perspective offers a commentary on methods aimed at obtaining distance constraints for the modeling of full‐fledged structures while highlighting common elements, salient distinctions and complementary capabilities exhibited by methods used in dynamics studies. We discuss critical factors to be addressed for completing effective structural determinations and expose possible pitfalls of chemical methods. We survey programs developed for facilitating the interpretation of experimental data and discuss possible computational strategies for translating sparse spatial constraints into all‐atom models. Examples are provided to illustrate how the concerted application of very diverse probing techniques can lead to the solution of actual biological systems. Copyright © 2010 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>cross‐linking</term>
</item>
<item>
<term>footprinting</term>
</item>
<item>
<term>solvent‐accessibility probes</term>
</item>
<item>
<term>covalent labeling</term>
</item>
<item>
<term>structural probing</term>
</item>
<item>
<term>molecular modeling</term>
</item>
<item>
<term>structural biology</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Special Feature: Perspective</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2010-02-24">Received</change>
<change when="2010-04-30">Registration</change>
<change when="2010-08">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/3A8C4565A7CFBC41E9EA08B1BB06F80204607263/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1096-9888c</doi>
<issn type="print">1076-5174</issn>
<issn type="electronic">1096-9888</issn>
<idGroup>
<id type="product" value="JMS"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF MASS SPECTROMETRY">Journal of Mass Spectrometry</title>
<title type="short">J. Mass Spectrom.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="80">
<doi origin="wiley" registered="yes">10.1002/jms.v45:8</doi>
<numberingGroup>
<numbering type="journalVolume" number="45">45</numbering>
<numbering type="journalIssue">8</numbering>
</numberingGroup>
<coverDate startDate="2010-08">August 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="miscellaneous" position="20" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jms.1762</doi>
<idGroup>
<id type="unit" value="JMS1762"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="20"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Special Feature: Perspective</title>
<title type="tocHeading1">Special Feature: Perspective</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2010 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2010-02-24"></event>
<event type="manuscriptAccepted" date="2010-04-30"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2010-07-20"></event>
<event type="firstOnline" date="2010-07-20"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.22 mode:FullText" date="2010-10-06"></event>
<event type="publishedOnlineFinalForm" date="2010-08-23"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-20"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">841</numbering>
<numbering type="pageLast">860</numbering>
</numberingGroup>
<correspondenceTo>The RNA Institute, University at Albany, 1400 Washington Ave., Albany, NY 12222, USA.===</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JMS.JMS1762.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="9"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="225"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Elucidating the higher‐order structure of biopolymers by structural probing and mass spectrometry: MS3D</title>
<title type="short" xml:lang="en">Higher‐order structure of biopolymers</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Daniele</givenNames>
<familyName>Fabris</familyName>
</personName>
<contactDetails>
<email>fabris@albany.edu</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Eizadora T.</givenNames>
<familyName>Yu</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="US" type="organization">
<unparsedAffiliation>Sandia National Laboratories, Livermore, CA, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">cross‐linking</keyword>
<keyword xml:id="kwd2">footprinting</keyword>
<keyword xml:id="kwd3">solvent‐accessibility probes</keyword>
<keyword xml:id="kwd4">covalent labeling</keyword>
<keyword xml:id="kwd5">structural probing</keyword>
<keyword xml:id="kwd6">molecular modeling</keyword>
<keyword xml:id="kwd7">structural biology</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Chemical probing represents a very versatile alternative for studying the structure and dynamics of substrates that are intractable by established high‐resolution techniques. The implementation of MS‐based strategies for the characterization of probing products has not only extended the range of applicability to virtually all types of biopolymers but has also paved the way for the introduction of new reagents that would not have been viable with traditional analytical platforms. As the availability of probing data is steadily increasing on the wings of the development of dedicated interpretation aids, powerful computational approaches have been explored to enable the effective utilization of such information to generate valid molecular models. This combination of factors has contributed to making the possibility of obtaining actual 3D structures by MS‐based technologies (MS3D) a reality. Although approaches for achieving structure determination of unknown targets or assessing the dynamics of known structures may share similar reagents and development trajectories, they clearly involve distinctive experimental strategies, analytical concerns and interpretation paradigms. This
<i>Perspective</i>
offers a commentary on methods aimed at obtaining distance constraints for the modeling of full‐fledged structures while highlighting common elements, salient distinctions and complementary capabilities exhibited by methods used in dynamics studies. We discuss critical factors to be addressed for completing effective structural determinations and expose possible pitfalls of chemical methods. We survey programs developed for facilitating the interpretation of experimental data and discuss possible computational strategies for translating sparse spatial constraints into all‐atom models. Examples are provided to illustrate how the concerted application of very diverse probing techniques can lead to the solution of actual biological systems. Copyright © 2010 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Elucidating the higher‐order structure of biopolymers by structural probing and mass spectrometry: MS3D</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Higher‐order structure of biopolymers</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Elucidating the higher‐order structure of biopolymers by structural probing and mass spectrometry: MS3D</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniele</namePart>
<namePart type="family">Fabris</namePart>
<affiliation>Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA</affiliation>
<description>Correspondence: The RNA Institute, University at Albany, 1400 Washington Ave., Albany, NY 12222, USA.===</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eizadora T.</namePart>
<namePart type="family">Yu</namePart>
<affiliation>Sandia National Laboratories, Livermore, CA, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="miscellaneous"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-08</dateIssued>
<dateCaptured encoding="w3cdtf">2010-02-24</dateCaptured>
<dateValid encoding="w3cdtf">2010-04-30</dateValid>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">9</extent>
<extent unit="tables">1</extent>
<extent unit="references">225</extent>
</physicalDescription>
<abstract lang="en">Chemical probing represents a very versatile alternative for studying the structure and dynamics of substrates that are intractable by established high‐resolution techniques. The implementation of MS‐based strategies for the characterization of probing products has not only extended the range of applicability to virtually all types of biopolymers but has also paved the way for the introduction of new reagents that would not have been viable with traditional analytical platforms. As the availability of probing data is steadily increasing on the wings of the development of dedicated interpretation aids, powerful computational approaches have been explored to enable the effective utilization of such information to generate valid molecular models. This combination of factors has contributed to making the possibility of obtaining actual 3D structures by MS‐based technologies (MS3D) a reality. Although approaches for achieving structure determination of unknown targets or assessing the dynamics of known structures may share similar reagents and development trajectories, they clearly involve distinctive experimental strategies, analytical concerns and interpretation paradigms. This Perspective offers a commentary on methods aimed at obtaining distance constraints for the modeling of full‐fledged structures while highlighting common elements, salient distinctions and complementary capabilities exhibited by methods used in dynamics studies. We discuss critical factors to be addressed for completing effective structural determinations and expose possible pitfalls of chemical methods. We survey programs developed for facilitating the interpretation of experimental data and discuss possible computational strategies for translating sparse spatial constraints into all‐atom models. Examples are provided to illustrate how the concerted application of very diverse probing techniques can lead to the solution of actual biological systems. Copyright © 2010 John Wiley & Sons, Ltd.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>cross‐linking</topic>
<topic>footprinting</topic>
<topic>solvent‐accessibility probes</topic>
<topic>covalent labeling</topic>
<topic>structural probing</topic>
<topic>molecular modeling</topic>
<topic>structural biology</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Mass Spectrometry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Mass Spectrom.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Special Feature: Perspective</topic>
</subject>
<identifier type="ISSN">1076-5174</identifier>
<identifier type="eISSN">1096-9888</identifier>
<identifier type="DOI">10.1002/(ISSN)1096-9888c</identifier>
<identifier type="PublisherID">JMS</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>45</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>841</start>
<end>860</end>
<total>20</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">3A8C4565A7CFBC41E9EA08B1BB06F80204607263</identifier>
<identifier type="DOI">10.1002/jms.1762</identifier>
<identifier type="ArticleID">JMS1762</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2010 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<json:item>
<type>multicat</type>
<uri>https://api.istex.fr/document/3A8C4565A7CFBC41E9EA08B1BB06F80204607263/enrichments/multicat</uri>
</json:item>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000785 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000785 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:3A8C4565A7CFBC41E9EA08B1BB06F80204607263
   |texte=   Elucidating the higher‐order structure of biopolymers by structural probing and mass spectrometry: MS3D
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024