Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle Tetraclita rubescens

Identifieur interne : 000756 ( Istex/Corpus ); précédent : 000755; suivant : 000757

Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle Tetraclita rubescens

Auteurs : Michael N. Dawson ; Richard K. Grosberg ; Yoel E. Stuart ; Eric Sanford

Source :

RBID : ISTEX:77290153071EE95EC72463FD4F30954351EB3ACD

English descriptors

Abstract

As range shifts coincident with climate change have become increasingly well documented, efforts to describe the causes of range boundaries have increased. Three mechanisms—genetic impoverishment, migration load, or a physical barrier to dispersal—are well described theoretically, but the data needed to distinguish among them have rarely been collected. We describe the distribution, abundance, genetic variation, and environment of Tetraclita rubescens, an intertidal barnacle that expanded its northern range limit by several hundreds of kilometres from San Francisco, CA, USA, since the 1970s. We compare geographic variation in abundance with abiotic and biotic patterns, including sea surface temperatures and the distributions of 387 co‐occurring species, and describe genetic variation in cytochrome c oxidase subunit I, mitochondrial noncoding region, and nine microsatellite loci from 27 locations between Bahia Magdalena (California Baja Sur, Mexico) and Cape Mendocino (CA, USA). We find very high gene flow, high genetic diversity, and a gradient in physical environmental variation coincident with the range limit. We infer that the primary cause of the northern range boundary in T. rubescens is migration load arising from flow of maladapted alleles into peripheral locations and that environmental change, which could have reduced selection against genotypes immigrating into the newly colonized portion of the range, is the most likely cause of the observed range expansion. Because environmental change could similarly affect all taxa in a region whose distributional limits are established by migration load, these mechanisms may be common causes of range boundaries and largely synchronous multi‐species range expansions.

Url:
DOI: 10.1111/j.1365-294X.2010.04588.x

Links to Exploration step

ISTEX:77290153071EE95EC72463FD4F30954351EB3ACD

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle Tetraclita rubescens</title>
<author>
<name sortKey="Dawson, Michael N" sort="Dawson, Michael N" uniqKey="Dawson M" first="Michael N." last="Dawson">Michael N. Dawson</name>
<affiliation>
<mods:affiliation>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grosberg, Richard K" sort="Grosberg, Richard K" uniqKey="Grosberg R" first="Richard K." last="Grosberg">Richard K. Grosberg</name>
<affiliation>
<mods:affiliation>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Center for Population Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stuart, Yoel E" sort="Stuart, Yoel E" uniqKey="Stuart Y" first="Yoel E." last="Stuart">Yoel E. Stuart</name>
<affiliation>
<mods:affiliation>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sanford, Eric" sort="Sanford, Eric" uniqKey="Sanford E" first="Eric" last="Sanford">Eric Sanford</name>
<affiliation>
<mods:affiliation>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Center for Population Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Bodega Marine Laboratory, Bodega Bay, CA 94923, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:77290153071EE95EC72463FD4F30954351EB3ACD</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1111/j.1365-294X.2010.04588.x</idno>
<idno type="url">https://api.istex.fr/document/77290153071EE95EC72463FD4F30954351EB3ACD/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000756</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle Tetraclita rubescens</title>
<author>
<name sortKey="Dawson, Michael N" sort="Dawson, Michael N" uniqKey="Dawson M" first="Michael N." last="Dawson">Michael N. Dawson</name>
<affiliation>
<mods:affiliation>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grosberg, Richard K" sort="Grosberg, Richard K" uniqKey="Grosberg R" first="Richard K." last="Grosberg">Richard K. Grosberg</name>
<affiliation>
<mods:affiliation>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Center for Population Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stuart, Yoel E" sort="Stuart, Yoel E" uniqKey="Stuart Y" first="Yoel E." last="Stuart">Yoel E. Stuart</name>
<affiliation>
<mods:affiliation>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sanford, Eric" sort="Sanford, Eric" uniqKey="Sanford E" first="Eric" last="Sanford">Eric Sanford</name>
<affiliation>
<mods:affiliation>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Center for Population Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Bodega Marine Laboratory, Bodega Bay, CA 94923, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Molecular Ecology</title>
<idno type="ISSN">0962-1083</idno>
<idno type="eISSN">1365-294X</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2010-04">2010-04</date>
<biblScope unit="volume">19</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="1585">1585</biblScope>
<biblScope unit="page" to="1605">1605</biblScope>
</imprint>
<idno type="ISSN">0962-1083</idno>
</series>
<idno type="istex">77290153071EE95EC72463FD4F30954351EB3ACD</idno>
<idno type="DOI">10.1111/j.1365-294X.2010.04588.x</idno>
<idno type="ArticleID">MEC4588</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0962-1083</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>barnacles</term>
<term>dispersal</term>
<term>geographic range limits</term>
<term>intertidal species</term>
<term>migration load</term>
<term>range shifts</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">As range shifts coincident with climate change have become increasingly well documented, efforts to describe the causes of range boundaries have increased. Three mechanisms—genetic impoverishment, migration load, or a physical barrier to dispersal—are well described theoretically, but the data needed to distinguish among them have rarely been collected. We describe the distribution, abundance, genetic variation, and environment of Tetraclita rubescens, an intertidal barnacle that expanded its northern range limit by several hundreds of kilometres from San Francisco, CA, USA, since the 1970s. We compare geographic variation in abundance with abiotic and biotic patterns, including sea surface temperatures and the distributions of 387 co‐occurring species, and describe genetic variation in cytochrome c oxidase subunit I, mitochondrial noncoding region, and nine microsatellite loci from 27 locations between Bahia Magdalena (California Baja Sur, Mexico) and Cape Mendocino (CA, USA). We find very high gene flow, high genetic diversity, and a gradient in physical environmental variation coincident with the range limit. We infer that the primary cause of the northern range boundary in T. rubescens is migration load arising from flow of maladapted alleles into peripheral locations and that environmental change, which could have reduced selection against genotypes immigrating into the newly colonized portion of the range, is the most likely cause of the observed range expansion. Because environmental change could similarly affect all taxa in a region whose distributional limits are established by migration load, these mechanisms may be common causes of range boundaries and largely synchronous multi‐species range expansions.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>MICHAEL N. DAWSON</name>
<affiliations>
<json:string>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</json:string>
<json:string>School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>RICHARD K. GROSBERG</name>
<affiliations>
<json:string>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</json:string>
<json:string>Center for Population Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>YOEL E. STUART</name>
<affiliations>
<json:string>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</json:string>
<json:string>Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>ERIC SANFORD</name>
<affiliations>
<json:string>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</json:string>
<json:string>Center for Population Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</json:string>
<json:string>Bodega Marine Laboratory, Bodega Bay, CA 94923, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>barnacles</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>dispersal</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>geographic range limits</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>intertidal species</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>migration load</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>range shifts</value>
</json:item>
</subject>
<articleId>
<json:string>MEC4588</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>As range shifts coincident with climate change have become increasingly well documented, efforts to describe the causes of range boundaries have increased. Three mechanisms—genetic impoverishment, migration load, or a physical barrier to dispersal—are well described theoretically, but the data needed to distinguish among them have rarely been collected. We describe the distribution, abundance, genetic variation, and environment of Tetraclita rubescens, an intertidal barnacle that expanded its northern range limit by several hundreds of kilometres from San Francisco, CA, USA, since the 1970s. We compare geographic variation in abundance with abiotic and biotic patterns, including sea surface temperatures and the distributions of 387 co‐occurring species, and describe genetic variation in cytochrome c oxidase subunit I, mitochondrial noncoding region, and nine microsatellite loci from 27 locations between Bahia Magdalena (California Baja Sur, Mexico) and Cape Mendocino (CA, USA). We find very high gene flow, high genetic diversity, and a gradient in physical environmental variation coincident with the range limit. We infer that the primary cause of the northern range boundary in T. rubescens is migration load arising from flow of maladapted alleles into peripheral locations and that environmental change, which could have reduced selection against genotypes immigrating into the newly colonized portion of the range, is the most likely cause of the observed range expansion. Because environmental change could similarly affect all taxa in a region whose distributional limits are established by migration load, these mechanisms may be common causes of range boundaries and largely synchronous multi‐species range expansions.</abstract>
<qualityIndicators>
<score>7.964</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595.276 x 793.701 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>6</keywordCount>
<abstractCharCount>1743</abstractCharCount>
<pdfWordCount>10564</pdfWordCount>
<pdfCharCount>69826</pdfCharCount>
<pdfPageCount>21</pdfPageCount>
<abstractWordCount>247</abstractWordCount>
</qualityIndicators>
<title>Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle Tetraclita rubescens</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>19</volume>
<publisherId>
<json:string>MEC</json:string>
</publisherId>
<pages>
<total>21</total>
<last>1605</last>
<first>1585</first>
</pages>
<issn>
<json:string>0962-1083</json:string>
</issn>
<issue>8</issue>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1365-294X</json:string>
</eissn>
<title>Molecular Ecology</title>
<doi>
<json:string>10.1111/(ISSN)1365-294X</json:string>
</doi>
</host>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1111/j.1365-294X.2010.04588.x</json:string>
</doi>
<id>77290153071EE95EC72463FD4F30954351EB3ACD</id>
<score>0.078923956</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/77290153071EE95EC72463FD4F30954351EB3ACD/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/77290153071EE95EC72463FD4F30954351EB3ACD/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/77290153071EE95EC72463FD4F30954351EB3ACD/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle Tetraclita rubescens</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>© 2010 Blackwell Publishing Ltd</p>
</availability>
<date>2010</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle Tetraclita rubescens</title>
<author xml:id="author-1">
<persName>
<forename type="first">MICHAEL N.</forename>
<surname>DAWSON</surname>
</persName>
<affiliation>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</affiliation>
<affiliation>School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">RICHARD K.</forename>
<surname>GROSBERG</surname>
</persName>
<affiliation>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</affiliation>
<affiliation>Center for Population Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">YOEL E.</forename>
<surname>STUART</surname>
</persName>
<affiliation>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</affiliation>
<affiliation>Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">ERIC</forename>
<surname>SANFORD</surname>
</persName>
<affiliation>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</affiliation>
<affiliation>Center for Population Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</affiliation>
<affiliation>Bodega Marine Laboratory, Bodega Bay, CA 94923, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Molecular Ecology</title>
<idno type="pISSN">0962-1083</idno>
<idno type="eISSN">1365-294X</idno>
<idno type="DOI">10.1111/(ISSN)1365-294X</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2010-04"></date>
<biblScope unit="volume">19</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="1585">1585</biblScope>
<biblScope unit="page" to="1605">1605</biblScope>
</imprint>
</monogr>
<idno type="istex">77290153071EE95EC72463FD4F30954351EB3ACD</idno>
<idno type="DOI">10.1111/j.1365-294X.2010.04588.x</idno>
<idno type="ArticleID">MEC4588</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2010</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>As range shifts coincident with climate change have become increasingly well documented, efforts to describe the causes of range boundaries have increased. Three mechanisms—genetic impoverishment, migration load, or a physical barrier to dispersal—are well described theoretically, but the data needed to distinguish among them have rarely been collected. We describe the distribution, abundance, genetic variation, and environment of Tetraclita rubescens, an intertidal barnacle that expanded its northern range limit by several hundreds of kilometres from San Francisco, CA, USA, since the 1970s. We compare geographic variation in abundance with abiotic and biotic patterns, including sea surface temperatures and the distributions of 387 co‐occurring species, and describe genetic variation in cytochrome c oxidase subunit I, mitochondrial noncoding region, and nine microsatellite loci from 27 locations between Bahia Magdalena (California Baja Sur, Mexico) and Cape Mendocino (CA, USA). We find very high gene flow, high genetic diversity, and a gradient in physical environmental variation coincident with the range limit. We infer that the primary cause of the northern range boundary in T. rubescens is migration load arising from flow of maladapted alleles into peripheral locations and that environmental change, which could have reduced selection against genotypes immigrating into the newly colonized portion of the range, is the most likely cause of the observed range expansion. Because environmental change could similarly affect all taxa in a region whose distributional limits are established by migration load, these mechanisms may be common causes of range boundaries and largely synchronous multi‐species range expansions.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>barnacles</term>
</item>
<item>
<term>dispersal</term>
</item>
<item>
<term>geographic range limits</term>
</item>
<item>
<term>intertidal species</term>
</item>
<item>
<term>migration load</term>
</item>
<item>
<term>range shifts</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2010-04">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/77290153071EE95EC72463FD4F30954351EB3ACD/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-294X</doi>
<issn type="print">0962-1083</issn>
<issn type="electronic">1365-294X</issn>
<idGroup>
<id type="product" value="MEC"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="MOLECULAR ECOLOGY">Molecular Ecology</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="04108">
<doi origin="wiley">10.1111/mec.2010.19.issue-8</doi>
<numberingGroup>
<numbering type="journalVolume" number="19">19</numbering>
<numbering type="journalIssue" number="8">8</numbering>
</numberingGroup>
<coverDate startDate="2010-04">April 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="8" status="forIssue">
<doi origin="wiley">10.1111/j.1365-294X.2010.04588.x</doi>
<idGroup>
<id type="unit" value="MEC4588"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="21"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">ORIGINAL ARTICLES</title>
<title type="tocHeading2">Population and Conservation Genetics</title>
</titleGroup>
<copyright>© 2010 Blackwell Publishing Ltd</copyright>
<eventGroup>
<event type="firstOnline" date="2010-03-22"></event>
<event type="publishedOnlineFinalForm" date="2010-03-29"></event>
<event type="publishedOnlineAcceptedOrEarlyUnpaginated" date="2010-03-22"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.4 mode:FullText source:FullText result:FullText" date="2010-12-14"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-20"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="1585">1585</numbering>
<numbering type="pageLast" number="1605">1605</numbering>
</numberingGroup>
<correspondenceTo>Michael N. Dawson, Fax: + 1 209 228 4053; E‐mail:
<email>mdawson@ucmerced.edu</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:MEC.MEC4588.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received 19 October 2009; revision received 18 January 2010; accepted 27 January 2010</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="5"></count>
<count type="tableTotal" number="7"></count>
</countGroup>
<titleGroup>
<title type="main">Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle
<i>Tetraclita rubescens</i>
</title>
<title type="shortAuthors">M. N. DAWSON
<i>ET AL.</i>
</title>
<title type="short">RANGE EXPANSION AND RANGE LIMITS</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1 #a2">
<personName>
<givenNames>MICHAEL N.</givenNames>
<familyName>DAWSON</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1 #a3">
<personName>
<givenNames>RICHARD K.</givenNames>
<familyName>GROSBERG</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1 #a4">
<personName>
<givenNames>YOEL E.</givenNames>
<familyName>STUART</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a1 #a3 #a5">
<personName>
<givenNames>ERIC</givenNames>
<familyName>SANFORD</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="US">
<unparsedAffiliation>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="US">
<unparsedAffiliation>School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="US">
<unparsedAffiliation>Center for Population Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="US">
<unparsedAffiliation>Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a5" countryCode="US">
<unparsedAffiliation>Bodega Marine Laboratory, Bodega Bay, CA 94923, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">barnacles</keyword>
<keyword xml:id="k2">dispersal</keyword>
<keyword xml:id="k3">geographic range limits</keyword>
<keyword xml:id="k4">intertidal species</keyword>
<keyword xml:id="k5">migration load</keyword>
<keyword xml:id="k6">range shifts</keyword>
</keywordGroup>
<supportingInformation>
<p>
<b>Appendix S1.</b>
Materials and methods.</p>
<p>Please note: Wiley‐Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.</p>
<supportingInfoItem>
<mediaResource alt="supporting info item" href="urn-x:wiley:09621083:media:mec4588:MEC_4588_sm_SupportingInfo"></mediaResource>
<caption>Supporting info item</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>As range shifts coincident with climate change have become increasingly well documented, efforts to describe the causes of range boundaries have increased. Three mechanisms—genetic impoverishment, migration load, or a physical barrier to dispersal—are well described theoretically, but the data needed to distinguish among them have rarely been collected. We describe the distribution, abundance, genetic variation, and environment of
<i>Tetraclita rubescens</i>
, an intertidal barnacle that expanded its northern range limit by several hundreds of kilometres from San Francisco, CA, USA, since the 1970s. We compare geographic variation in abundance with abiotic and biotic patterns, including sea surface temperatures and the distributions of 387 co‐occurring species, and describe genetic variation in cytochrome
<i>c</i>
oxidase subunit I, mitochondrial noncoding region, and nine microsatellite loci from 27 locations between Bahia Magdalena (California Baja Sur, Mexico) and Cape Mendocino (CA, USA). We find very high gene flow, high genetic diversity, and a gradient in physical environmental variation coincident with the range limit. We infer that the primary cause of the northern range boundary in
<i>T. rubescens</i>
is migration load arising from flow of maladapted alleles into peripheral locations and that environmental change, which could have reduced selection against genotypes immigrating into the newly colonized portion of the range, is the most likely cause of the observed range expansion. Because environmental change could similarly affect all taxa in a region whose distributional limits are established by migration load, these mechanisms may be common causes of range boundaries and largely synchronous multi‐species range expansions.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle Tetraclita rubescens</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>RANGE EXPANSION AND RANGE LIMITS</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle Tetraclita rubescens</title>
</titleInfo>
<name type="personal">
<namePart type="given">MICHAEL N.</namePart>
<namePart type="family">DAWSON</namePart>
<affiliation>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</affiliation>
<affiliation>School of Natural Sciences, University of California at Merced, 5200 North Lake Road, Merced, CA 95343, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">RICHARD K.</namePart>
<namePart type="family">GROSBERG</namePart>
<affiliation>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</affiliation>
<affiliation>Center for Population Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">YOEL E.</namePart>
<namePart type="family">STUART</namePart>
<affiliation>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</affiliation>
<affiliation>Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">ERIC</namePart>
<namePart type="family">SANFORD</namePart>
<affiliation>Department of Evolution and Ecology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</affiliation>
<affiliation>Center for Population Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA</affiliation>
<affiliation>Bodega Marine Laboratory, Bodega Bay, CA 94923, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-04</dateIssued>
<edition>Received 19 October 2009; revision received 18 January 2010; accepted 27 January 2010</edition>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">5</extent>
<extent unit="tables">7</extent>
</physicalDescription>
<abstract lang="en">As range shifts coincident with climate change have become increasingly well documented, efforts to describe the causes of range boundaries have increased. Three mechanisms—genetic impoverishment, migration load, or a physical barrier to dispersal—are well described theoretically, but the data needed to distinguish among them have rarely been collected. We describe the distribution, abundance, genetic variation, and environment of Tetraclita rubescens, an intertidal barnacle that expanded its northern range limit by several hundreds of kilometres from San Francisco, CA, USA, since the 1970s. We compare geographic variation in abundance with abiotic and biotic patterns, including sea surface temperatures and the distributions of 387 co‐occurring species, and describe genetic variation in cytochrome c oxidase subunit I, mitochondrial noncoding region, and nine microsatellite loci from 27 locations between Bahia Magdalena (California Baja Sur, Mexico) and Cape Mendocino (CA, USA). We find very high gene flow, high genetic diversity, and a gradient in physical environmental variation coincident with the range limit. We infer that the primary cause of the northern range boundary in T. rubescens is migration load arising from flow of maladapted alleles into peripheral locations and that environmental change, which could have reduced selection against genotypes immigrating into the newly colonized portion of the range, is the most likely cause of the observed range expansion. Because environmental change could similarly affect all taxa in a region whose distributional limits are established by migration load, these mechanisms may be common causes of range boundaries and largely synchronous multi‐species range expansions.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>barnacles</topic>
<topic>dispersal</topic>
<topic>geographic range limits</topic>
<topic>intertidal species</topic>
<topic>migration load</topic>
<topic>range shifts</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Molecular Ecology</title>
</titleInfo>
<genre type="journal">journal</genre>
<note type="content"> Appendix S1. Materials and methods. Please note: Wiley‐Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article. Appendix S1. Materials and methods. Please note: Wiley‐Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.Supporting Info Item: Supporting info item - </note>
<identifier type="ISSN">0962-1083</identifier>
<identifier type="eISSN">1365-294X</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-294X</identifier>
<identifier type="PublisherID">MEC</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>19</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>1585</start>
<end>1605</end>
<total>21</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">77290153071EE95EC72463FD4F30954351EB3ACD</identifier>
<identifier type="DOI">10.1111/j.1365-294X.2010.04588.x</identifier>
<identifier type="ArticleID">MEC4588</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2010 Blackwell Publishing Ltd</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<json:item>
<type>multicat</type>
<uri>https://api.istex.fr/document/77290153071EE95EC72463FD4F30954351EB3ACD/enrichments/multicat</uri>
</json:item>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000756 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000756 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:77290153071EE95EC72463FD4F30954351EB3ACD
   |texte=   Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle Tetraclita rubescens
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024