Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A computational finite‐element program for hybrid simulation

Identifieur interne : 000683 ( Istex/Corpus ); précédent : 000682; suivant : 000684

A computational finite‐element program for hybrid simulation

Auteurs : Victor Saouma ; Dae-Hung Kang ; Gary Haussmann

Source :

RBID : ISTEX:DA0E0E8689FE6783F65E5930A03C57D484359F2B

Abstract

The essence of real time hybrid simulation (RTHS) is the reliance on a physical test (virtual finite element) in support of a numerical simulation, which is unable to properly simulate it numerically. Hence, the computational support for a hybrid simulation is of paramount importance, and one with anything less than a state of the art computational support may defeat the purpose of such an endeavor. A critical, yet often ignored, component of RTHS is precisely the computational engine, which unfortunately has been a bottleneck for realistic studies. Most researches have focused on either the control or on the communication (mostly in distributed, non‐real time hybrid simulation) leaving the third leg of RTHS (computation) ignored and limited to the simulation of simple models (small number of degrees of freedom and limited nonlinearities). This paper details the development of a specialized software written explicitly to perform, single site, hybrid simulation ranging from pseudo‐dynamic to hard real time ones. Solution strategy, implementation details, and actual applications are reported. Copyright © 2011 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/eqe.1134

Links to Exploration step

ISTEX:DA0E0E8689FE6783F65E5930A03C57D484359F2B

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A computational finite‐element program for hybrid simulation</title>
<author>
<name sortKey="Saouma, Victor" sort="Saouma, Victor" uniqKey="Saouma V" first="Victor" last="Saouma">Victor Saouma</name>
<affiliation>
<mods:affiliation>Department of Civil Engineering, University of Colorado, CO, 80301, Boulder, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Victor Saouma, Department of Civil Engineering, University of Colorado, Boulder, CO 80301, USA.E‐mail:</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: saouma@colorado.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kang, Dae Ung" sort="Kang, Dae Ung" uniqKey="Kang D" first="Dae-Hung" last="Kang">Dae-Hung Kang</name>
<affiliation>
<mods:affiliation>Department of Civil Engineering, University of Colorado (formerly), 80301, Boulder, CO, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Civil Engineering, Chonnam National University, Gwangju, Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Haussmann, Gary" sort="Haussmann, Gary" uniqKey="Haussmann G" first="Gary" last="Haussmann">Gary Haussmann</name>
<affiliation>
<mods:affiliation>Department of Civil Engineering, University of Colorado (formerly), CO, 80301, Boulder, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DA0E0E8689FE6783F65E5930A03C57D484359F2B</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/eqe.1134</idno>
<idno type="url">https://api.istex.fr/document/DA0E0E8689FE6783F65E5930A03C57D484359F2B/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000683</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">A computational finite‐element program for hybrid simulation</title>
<author>
<name sortKey="Saouma, Victor" sort="Saouma, Victor" uniqKey="Saouma V" first="Victor" last="Saouma">Victor Saouma</name>
<affiliation>
<mods:affiliation>Department of Civil Engineering, University of Colorado, CO, 80301, Boulder, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Victor Saouma, Department of Civil Engineering, University of Colorado, Boulder, CO 80301, USA.E‐mail:</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: saouma@colorado.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kang, Dae Ung" sort="Kang, Dae Ung" uniqKey="Kang D" first="Dae-Hung" last="Kang">Dae-Hung Kang</name>
<affiliation>
<mods:affiliation>Department of Civil Engineering, University of Colorado (formerly), 80301, Boulder, CO, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Civil Engineering, Chonnam National University, Gwangju, Korea</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Haussmann, Gary" sort="Haussmann, Gary" uniqKey="Haussmann G" first="Gary" last="Haussmann">Gary Haussmann</name>
<affiliation>
<mods:affiliation>Department of Civil Engineering, University of Colorado (formerly), CO, 80301, Boulder, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Earthquake Engineering & Structural Dynamics</title>
<title level="j" type="abbrev">Earthquake Engng Struct. Dyn.</title>
<idno type="ISSN">0098-8847</idno>
<idno type="eISSN">1096-9845</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2012-03">2012-03</date>
<biblScope unit="volume">41</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="375">375</biblScope>
<biblScope unit="page" to="389">389</biblScope>
</imprint>
<idno type="ISSN">0098-8847</idno>
</series>
<idno type="istex">DA0E0E8689FE6783F65E5930A03C57D484359F2B</idno>
<idno type="DOI">10.1002/eqe.1134</idno>
<idno type="ArticleID">EQE1134</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0098-8847</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The essence of real time hybrid simulation (RTHS) is the reliance on a physical test (virtual finite element) in support of a numerical simulation, which is unable to properly simulate it numerically. Hence, the computational support for a hybrid simulation is of paramount importance, and one with anything less than a state of the art computational support may defeat the purpose of such an endeavor. A critical, yet often ignored, component of RTHS is precisely the computational engine, which unfortunately has been a bottleneck for realistic studies. Most researches have focused on either the control or on the communication (mostly in distributed, non‐real time hybrid simulation) leaving the third leg of RTHS (computation) ignored and limited to the simulation of simple models (small number of degrees of freedom and limited nonlinearities). This paper details the development of a specialized software written explicitly to perform, single site, hybrid simulation ranging from pseudo‐dynamic to hard real time ones. Solution strategy, implementation details, and actual applications are reported. Copyright © 2011 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Victor Saouma</name>
<affiliations>
<json:string>Department of Civil Engineering, University of Colorado, CO, 80301, Boulder, USA</json:string>
<json:string>Victor Saouma, Department of Civil Engineering, University of Colorado, Boulder, CO 80301, USA.E‐mail:</json:string>
<json:string>E-mail: saouma@colorado.edu</json:string>
</affiliations>
</json:item>
<json:item>
<name>Dae‐Hung Kang</name>
<affiliations>
<json:string>Department of Civil Engineering, University of Colorado (formerly), 80301, Boulder, CO, USA</json:string>
<json:string>Department of Civil Engineering, Chonnam National University, Gwangju, Korea</json:string>
</affiliations>
</json:item>
<json:item>
<name>Gary Haussmann</name>
<affiliations>
<json:string>Department of Civil Engineering, University of Colorado (formerly), CO, 80301, Boulder, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>hybrid simulation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>hardware in the loop</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>pseudo‐dynamic testing</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>nonlinear finite‐element analysis</value>
</json:item>
</subject>
<articleId>
<json:string>EQE1134</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The essence of real time hybrid simulation (RTHS) is the reliance on a physical test (virtual finite element) in support of a numerical simulation, which is unable to properly simulate it numerically. Hence, the computational support for a hybrid simulation is of paramount importance, and one with anything less than a state of the art computational support may defeat the purpose of such an endeavor. A critical, yet often ignored, component of RTHS is precisely the computational engine, which unfortunately has been a bottleneck for realistic studies. Most researches have focused on either the control or on the communication (mostly in distributed, non‐real time hybrid simulation) leaving the third leg of RTHS (computation) ignored and limited to the simulation of simple models (small number of degrees of freedom and limited nonlinearities). This paper details the development of a specialized software written explicitly to perform, single site, hybrid simulation ranging from pseudo‐dynamic to hard real time ones. Solution strategy, implementation details, and actual applications are reported. Copyright © 2011 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>7.076</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595.276 x 782.362 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>4</keywordCount>
<abstractCharCount>1148</abstractCharCount>
<pdfWordCount>6860</pdfWordCount>
<pdfCharCount>42758</pdfCharCount>
<pdfPageCount>15</pdfPageCount>
<abstractWordCount>173</abstractWordCount>
</qualityIndicators>
<title>A computational finite‐element program for hybrid simulation</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>41</volume>
<publisherId>
<json:string>EQE</json:string>
</publisherId>
<pages>
<total>15</total>
<last>389</last>
<first>375</first>
</pages>
<issn>
<json:string>0098-8847</json:string>
</issn>
<issue>3</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1096-9845</json:string>
</eissn>
<title>Earthquake Engineering & Structural Dynamics</title>
<doi>
<json:string>10.1002/(ISSN)1096-9845</json:string>
</doi>
</host>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1002/eqe.1134</json:string>
</doi>
<id>DA0E0E8689FE6783F65E5930A03C57D484359F2B</id>
<score>0.09920375</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/DA0E0E8689FE6783F65E5930A03C57D484359F2B/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/DA0E0E8689FE6783F65E5930A03C57D484359F2B/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/DA0E0E8689FE6783F65E5930A03C57D484359F2B/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">A computational finite‐element program for hybrid simulation</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<p>Copyright © 2012 John Wiley & Sons, Ltd.Copyright © 2011 John Wiley & Sons, Ltd.</p>
</availability>
<date>2011-04-12</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">A computational finite‐element program for hybrid simulation</title>
<author xml:id="author-1">
<persName>
<forename type="first">Victor</forename>
<surname>Saouma</surname>
</persName>
<email>saouma@colorado.edu</email>
<affiliation>Department of Civil Engineering, University of Colorado, CO, 80301, Boulder, USA</affiliation>
<affiliation>Victor Saouma, Department of Civil Engineering, University of Colorado, Boulder, CO 80301, USA.E‐mail:</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Dae‐Hung</forename>
<surname>Kang</surname>
</persName>
<affiliation>Department of Civil Engineering, University of Colorado (formerly), 80301, Boulder, CO, USA</affiliation>
<affiliation>Department of Civil Engineering, Chonnam National University, Gwangju, Korea</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Gary</forename>
<surname>Haussmann</surname>
</persName>
<affiliation>Department of Civil Engineering, University of Colorado (formerly), CO, 80301, Boulder, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Earthquake Engineering & Structural Dynamics</title>
<title level="j" type="abbrev">Earthquake Engng Struct. Dyn.</title>
<idno type="pISSN">0098-8847</idno>
<idno type="eISSN">1096-9845</idno>
<idno type="DOI">10.1002/(ISSN)1096-9845</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2012-03"></date>
<biblScope unit="volume">41</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="375">375</biblScope>
<biblScope unit="page" to="389">389</biblScope>
</imprint>
</monogr>
<idno type="istex">DA0E0E8689FE6783F65E5930A03C57D484359F2B</idno>
<idno type="DOI">10.1002/eqe.1134</idno>
<idno type="ArticleID">EQE1134</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2011-04-12</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>The essence of real time hybrid simulation (RTHS) is the reliance on a physical test (virtual finite element) in support of a numerical simulation, which is unable to properly simulate it numerically. Hence, the computational support for a hybrid simulation is of paramount importance, and one with anything less than a state of the art computational support may defeat the purpose of such an endeavor. A critical, yet often ignored, component of RTHS is precisely the computational engine, which unfortunately has been a bottleneck for realistic studies. Most researches have focused on either the control or on the communication (mostly in distributed, non‐real time hybrid simulation) leaving the third leg of RTHS (computation) ignored and limited to the simulation of simple models (small number of degrees of freedom and limited nonlinearities). This paper details the development of a specialized software written explicitly to perform, single site, hybrid simulation ranging from pseudo‐dynamic to hard real time ones. Solution strategy, implementation details, and actual applications are reported. Copyright © 2011 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>hybrid simulation</term>
</item>
<item>
<term>hardware in the loop</term>
</item>
<item>
<term>pseudo‐dynamic testing</term>
</item>
<item>
<term>nonlinear finite‐element analysis</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2010-08-31">Received</change>
<change when="2011-03-25">Registration</change>
<change when="2011-04-12">Created</change>
<change when="2012-03">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/DA0E0E8689FE6783F65E5930A03C57D484359F2B/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="eqe1134">
<header xml:id="eqe1134-hdr-0001">
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi>10.1002/(ISSN)1096-9845</doi>
<issn type="print">0098-8847</issn>
<issn type="electronic">1096-9845</issn>
<idGroup>
<id type="product" value="EQE"></id>
</idGroup>
<titleGroup>
<title type="main" sort="EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS">Earthquake Engineering & Structural Dynamics</title>
<title type="short">Earthquake Engng Struct. Dyn.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi>10.1002/eqe.v41.3</doi>
<copyright ownership="publisher">Copyright © 2012 John Wiley & Sons, Ltd.</copyright>
<numberingGroup>
<numbering type="journalVolume" number="41">41</numbering>
<numbering type="journalIssue">3</numbering>
</numberingGroup>
<coverDate startDate="2012-03">March 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="2" status="forIssue">
<doi>10.1002/eqe.1134</doi>
<idGroup>
<id type="unit" value="EQE1134"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="15"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2011 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2010-08-31"></event>
<event type="manuscriptRevised" date="2011-03-18"></event>
<event type="manuscriptAccepted" date="2011-03-25"></event>
<event type="xmlCreated" agent="SPi Global" date="2011-04-12"></event>
<event type="firstOnline" date="2012-02-23"></event>
<event type="publishedOnlineFinalForm" date="2012-02-23"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-25"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">375</numbering>
<numbering type="pageLast">389</numbering>
</numberingGroup>
<correspondenceTo>
<lineatedText>
<line>Victor Saouma, Department of Civil Engineering, University of Colorado, Boulder, CO 80301, USA.</line>
<line>E‐mail:
<email>saouma@colorado.edu</email>
</line>
</lineatedText>
</correspondenceTo>
<objectNameGroup>
<objectName elementName="appendix">EXAMPLE OF COORDINATE TRANSFORMATION</objectName>
</objectNameGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:EQE.EQE1134.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">A computational finite‐element program for hybrid simulation</title>
<title type="short">A COMPUTATIONAL FINITE‐ELEMENT PROGRAM FOR HYBRID SIMULATION</title>
<title type="shortAuthors">V. SAOUMA, D.‐H. KANG AND G. HAUSSMANN</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="eqe1134-cr-0001" affiliationRef="#eqe1134-aff-0001" corresponding="yes">
<personName>
<givenNames>Victor</givenNames>
<familyName>Saouma</familyName>
</personName>
<contactDetails>
<email>saouma@colorado.edu</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="eqe1134-cr-0002" affiliationRef="#eqe1134-aff-0002 #eqe1134-aff-0003">
<personName>
<givenNames>Dae‐Hung</givenNames>
<familyName>Kang</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="eqe1134-cr-0003" affiliationRef="#eqe1134-aff-0002">
<personName>
<givenNames>Gary</givenNames>
<familyName>Haussmann</familyName>
</personName>
</creator>
</creators>
<affiliationGroup xml:id="eqe1134-affgp-0001">
<affiliation xml:id="eqe1134-aff-0001" countryCode="US" type="organization">
<orgDiv>Department of Civil Engineering</orgDiv>
<orgName>University of Colorado</orgName>
<address>
<city>Boulder</city>
<countryPart>CO</countryPart>
<postCode>80301</postCode>
<country>USA</country>
</address>
</affiliation>
<affiliation xml:id="eqe1134-aff-0002" countryCode="US" type="organization">
<orgDiv>Department of Civil Engineering</orgDiv>
<orgName>University of Colorado (formerly)</orgName>
<address>
<city>Boulder</city>
<countryPart>CO</countryPart>
<postCode>80301</postCode>
<country>USA</country>
</address>
</affiliation>
<affiliation xml:id="eqe1134-aff-0003" countryCode="KR" type="organization">
<orgDiv>Department of Civil Engineering</orgDiv>
<orgName>Chonnam National University</orgName>
<address>
<city>Gwangju</city>
<country>Korea</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="eqe1134-kwd-0001">hybrid simulation</keyword>
<keyword xml:id="eqe1134-kwd-0002">hardware in the loop</keyword>
<keyword xml:id="eqe1134-kwd-0003">pseudo‐dynamic testing</keyword>
<keyword xml:id="eqe1134-kwd-0004">nonlinear finite‐element analysis</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:id="eqe1134-abs-0001">
<title type="main">SUMMARY</title>
<p xml:id="eqe1134-para-0001">The essence of real time hybrid simulation (RTHS) is the reliance on a physical test (virtual finite element) in support of a numerical simulation, which is unable to properly simulate it numerically. Hence, the computational support for a hybrid simulation is of paramount importance, and one with anything less than a state of the art computational support may defeat the purpose of such an endeavor. A critical, yet often ignored, component of RTHS is precisely the computational engine, which unfortunately has been a bottleneck for realistic studies. Most researches have focused on either the control or on the communication (mostly in distributed, non‐real time hybrid simulation) leaving the third leg of RTHS (computation) ignored and limited to the simulation of simple models (small number of degrees of freedom and limited nonlinearities). This paper details the development of a specialized software written explicitly to perform, single site, hybrid simulation ranging from pseudo‐dynamic to hard real time ones. Solution strategy, implementation details, and actual applications are reported. Copyright © 2011 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>A computational finite‐element program for hybrid simulation</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>A COMPUTATIONAL FINITE‐ELEMENT PROGRAM FOR HYBRID SIMULATION</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>A computational finite‐element program for hybrid simulation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Victor</namePart>
<namePart type="family">Saouma</namePart>
<affiliation>Department of Civil Engineering, University of Colorado, CO, 80301, Boulder, USA</affiliation>
<affiliation>Victor Saouma, Department of Civil Engineering, University of Colorado, Boulder, CO 80301, USA.E‐mail:</affiliation>
<affiliation>E-mail: saouma@colorado.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dae‐Hung</namePart>
<namePart type="family">Kang</namePart>
<affiliation>Department of Civil Engineering, University of Colorado (formerly), 80301, Boulder, CO, USA</affiliation>
<affiliation>Department of Civil Engineering, Chonnam National University, Gwangju, Korea</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gary</namePart>
<namePart type="family">Haussmann</namePart>
<affiliation>Department of Civil Engineering, University of Colorado (formerly), CO, 80301, Boulder, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2012-03</dateIssued>
<dateCreated encoding="w3cdtf">2011-04-12</dateCreated>
<dateCaptured encoding="w3cdtf">2010-08-31</dateCaptured>
<dateValid encoding="w3cdtf">2011-03-25</dateValid>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>The essence of real time hybrid simulation (RTHS) is the reliance on a physical test (virtual finite element) in support of a numerical simulation, which is unable to properly simulate it numerically. Hence, the computational support for a hybrid simulation is of paramount importance, and one with anything less than a state of the art computational support may defeat the purpose of such an endeavor. A critical, yet often ignored, component of RTHS is precisely the computational engine, which unfortunately has been a bottleneck for realistic studies. Most researches have focused on either the control or on the communication (mostly in distributed, non‐real time hybrid simulation) leaving the third leg of RTHS (computation) ignored and limited to the simulation of simple models (small number of degrees of freedom and limited nonlinearities). This paper details the development of a specialized software written explicitly to perform, single site, hybrid simulation ranging from pseudo‐dynamic to hard real time ones. Solution strategy, implementation details, and actual applications are reported. Copyright © 2011 John Wiley & Sons, Ltd.</abstract>
<subject>
<genre>keywords</genre>
<topic>hybrid simulation</topic>
<topic>hardware in the loop</topic>
<topic>pseudo‐dynamic testing</topic>
<topic>nonlinear finite‐element analysis</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Earthquake Engineering & Structural Dynamics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Earthquake Engng Struct. Dyn.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0098-8847</identifier>
<identifier type="eISSN">1096-9845</identifier>
<identifier type="DOI">10.1002/(ISSN)1096-9845</identifier>
<identifier type="PublisherID">EQE</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>41</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>375</start>
<end>389</end>
<total>15</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">DA0E0E8689FE6783F65E5930A03C57D484359F2B</identifier>
<identifier type="DOI">10.1002/eqe.1134</identifier>
<identifier type="ArticleID">EQE1134</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2012 John Wiley & Sons, Ltd.Copyright © 2011 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<json:item>
<type>multicat</type>
<uri>https://api.istex.fr/document/DA0E0E8689FE6783F65E5930A03C57D484359F2B/enrichments/multicat</uri>
</json:item>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000683 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000683 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:DA0E0E8689FE6783F65E5930A03C57D484359F2B
   |texte=   A computational finite‐element program for hybrid simulation
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024