Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Acceleration generation due to strain localization of saturated clay specimen based on dynamic soil-water coupled finite deformation analysis

Identifieur interne : 000737 ( PascalFrancis/Curation ); précédent : 000736; suivant : 000738

Acceleration generation due to strain localization of saturated clay specimen based on dynamic soil-water coupled finite deformation analysis

Auteurs : Toshihiro Noda [Japon] ; BINBIN XU [Japon] ; Akira Asaoka [Japon]

Source :

RBID : Pascal:14-0075373

Descripteurs français

English descriptors

Abstract

In the conventional bifurcation and strain localization analyses of geomaterials, the inertia forces are generally ignored, based on the quasi-static equilibrium equation. Even though a great deal of literature exists on dynamic strain localization analyses, information on acceleration generation during the formation of shear bands has not been emphasized. Inspired by the acoustic emission phenomenon in laboratory tests and the seismic acceleration related to the slippage of faults, a dynamic soil-water coupled strain localization analysis is performed in the present paper on a saturated rectangular clay specimen subjected to constant cell pressure under plane strain conditions, employing the SYS Cam-clay model as the elasto-plastic constitutive model for the soil skeleton. An initial geometrical imperfection was introduced to the specimen to trigger one single shear band, and the following results were found: (1) Two types of oscillation occurred within the specimen during acceleration when the specimen was subjected to compression deformation at a constant rate, namely, (a) one caused by the sudden external compression and (b) the second induced by the formation of strain localization/a shear band. With the occurrence of the shear band, if, for example, the vertical rate was equivalent to about 10cm/s, the accelerations that occurred within the specimen were in the order of several thousand gal, which is similar to those measured during earthquakes; (2) The effects of the time increment, the mesh division, the initial confining pressure, the OCR and the stress-control loading on the generated acceleration in (b) were investigated in detail. It was found that under stress control, even though the formation of the shear band was similar to that under displacement control, the induced acceleration behaved quite differently.
pA  
A01 01  1    @0 0038-0806
A02 01      @0 SOIFBE
A03   1    @0 Soils found.
A05       @2 53
A06       @2 5
A08 01  1  ENG  @1 Acceleration generation due to strain localization of saturated clay specimen based on dynamic soil-water coupled finite deformation analysis
A11 01  1    @1 NODA (Toshihiro)
A11 02  1    @1 BINBIN XU
A11 03  1    @1 ASAOKA (Akira)
A14 01      @1 Department of Civil Engineering, Nagoya University @2 Nagoya @3 JPN @Z 1 aut. @Z 2 aut.
A14 02      @1 Association for the Development of Earthquake Prediction @2 Tokyo @3 JPN @Z 3 aut.
A20       @1 653-670
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 19776 @5 354000500732620040
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 14-0075373
A60       @1 P
A61       @0 A
A64 01  1    @0 Soils and foundations
A66 01      @0 JPN
C01 01    ENG  @0 In the conventional bifurcation and strain localization analyses of geomaterials, the inertia forces are generally ignored, based on the quasi-static equilibrium equation. Even though a great deal of literature exists on dynamic strain localization analyses, information on acceleration generation during the formation of shear bands has not been emphasized. Inspired by the acoustic emission phenomenon in laboratory tests and the seismic acceleration related to the slippage of faults, a dynamic soil-water coupled strain localization analysis is performed in the present paper on a saturated rectangular clay specimen subjected to constant cell pressure under plane strain conditions, employing the SYS Cam-clay model as the elasto-plastic constitutive model for the soil skeleton. An initial geometrical imperfection was introduced to the specimen to trigger one single shear band, and the following results were found: (1) Two types of oscillation occurred within the specimen during acceleration when the specimen was subjected to compression deformation at a constant rate, namely, (a) one caused by the sudden external compression and (b) the second induced by the formation of strain localization/a shear band. With the occurrence of the shear band, if, for example, the vertical rate was equivalent to about 10cm/s, the accelerations that occurred within the specimen were in the order of several thousand gal, which is similar to those measured during earthquakes; (2) The effects of the time increment, the mesh division, the initial confining pressure, the OCR and the stress-control loading on the generated acceleration in (b) were investigated in detail. It was found that under stress control, even though the formation of the shear band was similar to that under displacement control, the induced acceleration behaved quite differently.
C02 01  X    @0 001D14F01
C02 02  X    @0 001D14F05
C02 03  X    @0 001D14C01
C02 04  X    @0 295
C03 01  X  FRE  @0 Essai sol @5 02
C03 01  X  ENG  @0 Soil test @5 02
C03 01  X  SPA  @0 Ensayo suelo @5 02
C03 02  X  FRE  @0 Argile @5 03
C03 02  X  ENG  @0 Clay @5 03
C03 02  X  SPA  @0 Arcilla @5 03
C03 03  X  FRE  @0 Bande cisaillement @5 04
C03 03  X  ENG  @0 Shear band @5 04
C03 03  X  SPA  @0 Banda cizallamiento @5 04
C03 04  X  FRE  @0 Propriété hydrique sol @5 05
C03 04  X  ENG  @0 Soil water properties @5 05
C03 04  X  SPA  @0 Propiedad hídrica @5 05
C03 05  X  FRE  @0 Déformation finie @5 06
C03 05  X  ENG  @0 Finite strain @5 06
C03 05  X  SPA  @0 Deformación finita @5 06
C03 06  X  FRE  @0 Accélération @5 07
C03 06  X  ENG  @0 Acceleration @5 07
C03 06  X  SPA  @0 Aceleración @5 07
C03 07  X  FRE  @0 Caractéristique dynamique @5 08
C03 07  X  ENG  @0 Dynamic characteristic @5 08
C03 07  X  SPA  @0 Característica dinámica @5 08
C03 08  X  FRE  @0 Méthode couplée @5 09
C03 08  X  ENG  @0 Coupled method @5 09
C03 08  X  SPA  @0 Método acoplado @5 09
C03 09  X  FRE  @0 Méthode calcul @5 10
C03 09  X  ENG  @0 Computing method @5 10
C03 09  X  SPA  @0 Método cálculo @5 10
N21       @1 097
N44 01      @1 PSI
N82       @1 PSI

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0075373

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Acceleration generation due to strain localization of saturated clay specimen based on dynamic soil-water coupled finite deformation analysis</title>
<author>
<name sortKey="Noda, Toshihiro" sort="Noda, Toshihiro" uniqKey="Noda T" first="Toshihiro" last="Noda">Toshihiro Noda</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Civil Engineering, Nagoya University</s1>
<s2>Nagoya</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Binbin Xu" sort="Binbin Xu" uniqKey="Binbin Xu" last="Binbin Xu">BINBIN XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Civil Engineering, Nagoya University</s1>
<s2>Nagoya</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Asaoka, Akira" sort="Asaoka, Akira" uniqKey="Asaoka A" first="Akira" last="Asaoka">Akira Asaoka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Association for the Development of Earthquake Prediction</s1>
<s2>Tokyo</s2>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0075373</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0075373 INIST</idno>
<idno type="RBID">Pascal:14-0075373</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000027</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000737</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Acceleration generation due to strain localization of saturated clay specimen based on dynamic soil-water coupled finite deformation analysis</title>
<author>
<name sortKey="Noda, Toshihiro" sort="Noda, Toshihiro" uniqKey="Noda T" first="Toshihiro" last="Noda">Toshihiro Noda</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Civil Engineering, Nagoya University</s1>
<s2>Nagoya</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Binbin Xu" sort="Binbin Xu" uniqKey="Binbin Xu" last="Binbin Xu">BINBIN XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Civil Engineering, Nagoya University</s1>
<s2>Nagoya</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
<author>
<name sortKey="Asaoka, Akira" sort="Asaoka, Akira" uniqKey="Asaoka A" first="Akira" last="Asaoka">Akira Asaoka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Association for the Development of Earthquake Prediction</s1>
<s2>Tokyo</s2>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Soils and foundations</title>
<title level="j" type="abbreviated">Soils found.</title>
<idno type="ISSN">0038-0806</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Soils and foundations</title>
<title level="j" type="abbreviated">Soils found.</title>
<idno type="ISSN">0038-0806</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acceleration</term>
<term>Clay</term>
<term>Computing method</term>
<term>Coupled method</term>
<term>Dynamic characteristic</term>
<term>Finite strain</term>
<term>Shear band</term>
<term>Soil test</term>
<term>Soil water properties</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Essai sol</term>
<term>Argile</term>
<term>Bande cisaillement</term>
<term>Propriété hydrique sol</term>
<term>Déformation finie</term>
<term>Accélération</term>
<term>Caractéristique dynamique</term>
<term>Méthode couplée</term>
<term>Méthode calcul</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the conventional bifurcation and strain localization analyses of geomaterials, the inertia forces are generally ignored, based on the quasi-static equilibrium equation. Even though a great deal of literature exists on dynamic strain localization analyses, information on acceleration generation during the formation of shear bands has not been emphasized. Inspired by the acoustic emission phenomenon in laboratory tests and the seismic acceleration related to the slippage of faults, a dynamic soil-water coupled strain localization analysis is performed in the present paper on a saturated rectangular clay specimen subjected to constant cell pressure under plane strain conditions, employing the SYS Cam-clay model as the elasto-plastic constitutive model for the soil skeleton. An initial geometrical imperfection was introduced to the specimen to trigger one single shear band, and the following results were found: (1) Two types of oscillation occurred within the specimen during acceleration when the specimen was subjected to compression deformation at a constant rate, namely, (a) one caused by the sudden external compression and (b) the second induced by the formation of strain localization/a shear band. With the occurrence of the shear band, if, for example, the vertical rate was equivalent to about 10cm/s, the accelerations that occurred within the specimen were in the order of several thousand gal, which is similar to those measured during earthquakes; (2) The effects of the time increment, the mesh division, the initial confining pressure, the OCR and the stress-control loading on the generated acceleration in (b) were investigated in detail. It was found that under stress control, even though the formation of the shear band was similar to that under displacement control, the induced acceleration behaved quite differently.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-0806</s0>
</fA01>
<fA02 i1="01">
<s0>SOIFBE</s0>
</fA02>
<fA03 i2="1">
<s0>Soils found.</s0>
</fA03>
<fA05>
<s2>53</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Acceleration generation due to strain localization of saturated clay specimen based on dynamic soil-water coupled finite deformation analysis</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>NODA (Toshihiro)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BINBIN XU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ASAOKA (Akira)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Civil Engineering, Nagoya University</s1>
<s2>Nagoya</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Association for the Development of Earthquake Prediction</s1>
<s2>Tokyo</s2>
<s3>JPN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>653-670</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>19776</s2>
<s5>354000500732620040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0075373</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Soils and foundations</s0>
</fA64>
<fA66 i1="01">
<s0>JPN</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In the conventional bifurcation and strain localization analyses of geomaterials, the inertia forces are generally ignored, based on the quasi-static equilibrium equation. Even though a great deal of literature exists on dynamic strain localization analyses, information on acceleration generation during the formation of shear bands has not been emphasized. Inspired by the acoustic emission phenomenon in laboratory tests and the seismic acceleration related to the slippage of faults, a dynamic soil-water coupled strain localization analysis is performed in the present paper on a saturated rectangular clay specimen subjected to constant cell pressure under plane strain conditions, employing the SYS Cam-clay model as the elasto-plastic constitutive model for the soil skeleton. An initial geometrical imperfection was introduced to the specimen to trigger one single shear band, and the following results were found: (1) Two types of oscillation occurred within the specimen during acceleration when the specimen was subjected to compression deformation at a constant rate, namely, (a) one caused by the sudden external compression and (b) the second induced by the formation of strain localization/a shear band. With the occurrence of the shear band, if, for example, the vertical rate was equivalent to about 10cm/s, the accelerations that occurred within the specimen were in the order of several thousand gal, which is similar to those measured during earthquakes; (2) The effects of the time increment, the mesh division, the initial confining pressure, the OCR and the stress-control loading on the generated acceleration in (b) were investigated in detail. It was found that under stress control, even though the formation of the shear band was similar to that under displacement control, the induced acceleration behaved quite differently.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D14F01</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D14F05</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D14C01</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>295</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Essai sol</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Soil test</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Ensayo suelo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Argile</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Clay</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Arcilla</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Bande cisaillement</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Shear band</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Banda cizallamiento</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Propriété hydrique sol</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Soil water properties</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Propiedad hídrica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Déformation finie</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Finite strain</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Deformación finita</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Accélération</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Acceleration</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Aceleración</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Caractéristique dynamique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Dynamic characteristic</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Característica dinámica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Méthode couplée</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Coupled method</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Método acoplado</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Méthode calcul</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Computing method</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Método cálculo</s0>
<s5>10</s5>
</fC03>
<fN21>
<s1>097</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000737 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000737 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:14-0075373
   |texte=   Acceleration generation due to strain localization of saturated clay specimen based on dynamic soil-water coupled finite deformation analysis
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024