Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TGF-β1 stimulates mitochondrial oxidative phosphorylation and generation of reactive oxygen species in cultured mouse podocytes, mediated in part by the mTOR pathway

Identifieur interne : 000184 ( Main/Curation ); précédent : 000183; suivant : 000185

TGF-β1 stimulates mitochondrial oxidative phosphorylation and generation of reactive oxygen species in cultured mouse podocytes, mediated in part by the mTOR pathway

Auteurs : Yoshifusa Abe [Japon, États-Unis] ; Toru Sakairi [Japon] ; Craig Beeson [États-Unis] ; Jeffrey B. Kopp [États-Unis]

Source :

RBID : Pascal:15-0012900

Descripteurs français

English descriptors

Abstract

Transforming growth factor (TGF)-β has been associated with podocyte injury; we have examined its effect on podocyte bioenergetics. We studied transformed mouse podocytes, exposed to TGF-β1, using a label-free assay system, Seahorse XF24, which measures oxygen consumption rates (OCR) and extracellular acidification rates (ECAR). Both basal OCR and ATP generation-coupled OCR were significantly higher in podocytes exposed to 0.3-10 ng/ml of TGF-β1 for 24, 48, and 72 h. TGF-β1 (3 ng/ml) increased oxidative capacity 75%, and 96% relative to control after 48 and 72 h, respectively. ATP content was increased 19% and 30% relative to control after a 48- and 72-h exposure, respectively. Under conditions of maximal mitochondrial function, TGF-β1 increased palmitate-driven OCR by 49%. Thus, TGF-β1 increases mitochondrial oxygen consumption and ATP generation in the presence of diverse energy substrates. TGF-β1 did not increase cell number or mitochondrial DNA copy number but did increase mitochondrial membrane potential (MMP), which could explain the OCR increase. Reactive oxygen species (ROS) increased by 32% after TGF-β1 exposure for 48 h. TGF-β activated the mammalian target of rapamycin (mTOR) pathway, and rapamycin reduced the TGF-β1-stimulated increases in OCR, ECAR, ATP generation, cellular metabolic activity, and protein generation. Our data suggest that TGF-β1, acting, in part, via mTOR, increases mitochondrial MMP and OCR, resulting in increased ROS generation and that this may contribute to podocyte injury.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:15-0012900

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">TGF-β1 stimulates mitochondrial oxidative phosphorylation and generation of reactive oxygen species in cultured mouse podocytes, mediated in part by the mTOR pathway</title>
<author>
<name sortKey="Abe, Yoshifusa" sort="Abe, Yoshifusa" uniqKey="Abe Y" first="Yoshifusa" last="Abe">Yoshifusa Abe</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Department of Pediatrics, Showa University School of Medicine</s1>
<s2>Tokyo</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<placeName>
<settlement type="city">Tokyo</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health</s1>
<s2>Bethesda, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sakairi, Toru" sort="Sakairi, Toru" uniqKey="Sakairi T" first="Toru" last="Sakairi">Toru Sakairi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine</s1>
<s2>Maebashi, Gunma</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Maebashi, Gunma</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beeson, Craig" sort="Beeson, Craig" uniqKey="Beeson C" first="Craig" last="Beeson">Craig Beeson</name>
<affiliation wicri:level="2">
<inist:fA14 i1="04">
<s1>Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina</s1>
<s2>Charleston, South Carolina</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kopp, Jeffrey B" sort="Kopp, Jeffrey B" uniqKey="Kopp J" first="Jeffrey B." last="Kopp">Jeffrey B. Kopp</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health</s1>
<s2>Bethesda, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">15-0012900</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 15-0012900 INIST</idno>
<idno type="RBID">Pascal:15-0012900</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000001</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000764</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000027</idno>
<idno type="wicri:doubleKey">1931-857X:2013:Abe Y:tgf:stimulates:mitochondrial</idno>
<idno type="wicri:Area/Main/Merge">000187</idno>
<idno type="wicri:Area/Main/Curation">000184</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">TGF-β1 stimulates mitochondrial oxidative phosphorylation and generation of reactive oxygen species in cultured mouse podocytes, mediated in part by the mTOR pathway</title>
<author>
<name sortKey="Abe, Yoshifusa" sort="Abe, Yoshifusa" uniqKey="Abe Y" first="Yoshifusa" last="Abe">Yoshifusa Abe</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Department of Pediatrics, Showa University School of Medicine</s1>
<s2>Tokyo</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<placeName>
<settlement type="city">Tokyo</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health</s1>
<s2>Bethesda, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sakairi, Toru" sort="Sakairi, Toru" uniqKey="Sakairi T" first="Toru" last="Sakairi">Toru Sakairi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine</s1>
<s2>Maebashi, Gunma</s2>
<s3>JPN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Maebashi, Gunma</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beeson, Craig" sort="Beeson, Craig" uniqKey="Beeson C" first="Craig" last="Beeson">Craig Beeson</name>
<affiliation wicri:level="2">
<inist:fA14 i1="04">
<s1>Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina</s1>
<s2>Charleston, South Carolina</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kopp, Jeffrey B" sort="Kopp, Jeffrey B" uniqKey="Kopp J" first="Jeffrey B." last="Kopp">Jeffrey B. Kopp</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health</s1>
<s2>Bethesda, Maryland</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">American journal of physiology. Renal physiology</title>
<idno type="ISSN">1931-857X</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">American journal of physiology. Renal physiology</title>
<idno type="ISSN">1931-857X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acidification</term>
<term>Extracellular</term>
<term>Mitochondria</term>
<term>Mouse</term>
<term>Oxidative phosphorylation</term>
<term>Oxygen consumption</term>
<term>Reactive oxygen species</term>
<term>Rhythm</term>
<term>Transforming growth factor β1</term>
<term>Urinary system</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Facteur croissance transformant β1</term>
<term>Mitochondrie</term>
<term>Phosphorylation oxydative</term>
<term>Espèces réactives de l'oxygène</term>
<term>Souris</term>
<term>Consommation oxygène</term>
<term>Rythme</term>
<term>Extracellulaire</term>
<term>Acidification</term>
<term>Appareil urinaire</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Acidification</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transforming growth factor (TGF)-β has been associated with podocyte injury; we have examined its effect on podocyte bioenergetics. We studied transformed mouse podocytes, exposed to TGF-β1, using a label-free assay system, Seahorse XF24, which measures oxygen consumption rates (OCR) and extracellular acidification rates (ECAR). Both basal OCR and ATP generation-coupled OCR were significantly higher in podocytes exposed to 0.3-10 ng/ml of TGF-β1 for 24, 48, and 72 h. TGF-β1 (3 ng/ml) increased oxidative capacity 75%, and 96% relative to control after 48 and 72 h, respectively. ATP content was increased 19% and 30% relative to control after a 48- and 72-h exposure, respectively. Under conditions of maximal mitochondrial function, TGF-β1 increased palmitate-driven OCR by 49%. Thus, TGF-β1 increases mitochondrial oxygen consumption and ATP generation in the presence of diverse energy substrates. TGF-β1 did not increase cell number or mitochondrial DNA copy number but did increase mitochondrial membrane potential (MMP), which could explain the OCR increase. Reactive oxygen species (ROS) increased by 32% after TGF-β1 exposure for 48 h. TGF-β activated the mammalian target of rapamycin (mTOR) pathway, and rapamycin reduced the TGF-β1-stimulated increases in OCR, ECAR, ATP generation, cellular metabolic activity, and protein generation. Our data suggest that TGF-β1, acting, in part, via mTOR, increases mitochondrial MMP and OCR, resulting in increased ROS generation and that this may contribute to podocyte injury.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000184 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 000184 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:15-0012900
   |texte=   TGF-β1 stimulates mitochondrial oxidative phosphorylation and generation of reactive oxygen species in cultured mouse podocytes, mediated in part by the mTOR pathway
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024