Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Contributions of feed-forward and feedback strategies at the human ankle during control of unstable loads.

Identifieur interne : 000D61 ( PubMed/Curation ); précédent : 000D60; suivant : 000D62

Contributions of feed-forward and feedback strategies at the human ankle during control of unstable loads.

Auteurs : James M. Finley [États-Unis] ; Yasin Y. Dhaher ; Eric J. Perreault

Source :

RBID : pubmed:22169978

English descriptors

Abstract

The nervous system can regulate the mechanical properties of the human ankle through feed-forward mechanisms such as co-contraction and rapid feedback mechanisms such as stretch reflexes. Though each of these strategies may contribute to joint stability, it is unclear how their relative contribution varies when ankle stability is threatened. We addressed this question by characterizing co-contraction and stretch reflexes during balance of an inverted pendulum simulated by a rotary motor configured as an admittance servo. The stability of this haptic environment was manipulated by varying the stiffness of a virtual spring supporting the pendulum. We hypothesized that co-contraction and stretch reflex amplitude would increase as the stability of the haptic load attached to the ankle was reduced. Electromyographic activity in soleus, medial and lateral gastrocnemius, and tibialis anterior was used to characterize co-contraction patterns and stretch reflex amplitude as subjects stabilized the haptic load. Our results revealed that co-contraction was heightened as stability was reduced, but that the resulting joint stiffness was not sufficient to fully counteract the imposed instability. Reflex amplitude, in comparison, was attenuated as load stability was reduced, contrary to results from upper limb studies using similar paradigms. Together these findings suggest that the nervous system utilizes feed-forward co-contraction rather than rapid involuntary feedback to increase ankle stability during simple balance tasks. Furthermore, since the stiffness generated through co-contraction was not sufficient to fully balance the haptic load, our results suggest an important role for slower, volitional feedback in the control of ankle stability during balancing tasks.

DOI: 10.1007/s00221-011-2972-9
PubMed: 22169978

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22169978

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Contributions of feed-forward and feedback strategies at the human ankle during control of unstable loads.</title>
<author>
<name sortKey="Finley, James M" sort="Finley, James M" uniqKey="Finley J" first="James M" last="Finley">James M. Finley</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA. j-finley@jhmi.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Northwestern University, Evanston, IL</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Dhaher, Yasin Y" sort="Dhaher, Yasin Y" uniqKey="Dhaher Y" first="Yasin Y" last="Dhaher">Yasin Y. Dhaher</name>
</author>
<author>
<name sortKey="Perreault, Eric J" sort="Perreault, Eric J" uniqKey="Perreault E" first="Eric J" last="Perreault">Eric J. Perreault</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="doi">10.1007/s00221-011-2972-9</idno>
<idno type="RBID">pubmed:22169978</idno>
<idno type="pmid">22169978</idno>
<idno type="wicri:Area/PubMed/Corpus">000D61</idno>
<idno type="wicri:Area/PubMed/Curation">000D61</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Contributions of feed-forward and feedback strategies at the human ankle during control of unstable loads.</title>
<author>
<name sortKey="Finley, James M" sort="Finley, James M" uniqKey="Finley J" first="James M" last="Finley">James M. Finley</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA. j-finley@jhmi.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Northwestern University, Evanston, IL</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Dhaher, Yasin Y" sort="Dhaher, Yasin Y" uniqKey="Dhaher Y" first="Yasin Y" last="Dhaher">Yasin Y. Dhaher</name>
</author>
<author>
<name sortKey="Perreault, Eric J" sort="Perreault, Eric J" uniqKey="Perreault E" first="Eric J" last="Perreault">Eric J. Perreault</name>
</author>
</analytic>
<series>
<title level="j">Experimental brain research</title>
<idno type="eISSN">1432-1106</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Ankle (physiology)</term>
<term>Ankle Joint (physiology)</term>
<term>Electromyography</term>
<term>Feedback, Physiological (physiology)</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Muscle Contraction (physiology)</term>
<term>Muscle, Skeletal (physiology)</term>
<term>Reflex, Stretch (physiology)</term>
<term>Weight-Bearing (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Ankle</term>
<term>Ankle Joint</term>
<term>Feedback, Physiological</term>
<term>Muscle Contraction</term>
<term>Muscle, Skeletal</term>
<term>Reflex, Stretch</term>
<term>Weight-Bearing</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Electromyography</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The nervous system can regulate the mechanical properties of the human ankle through feed-forward mechanisms such as co-contraction and rapid feedback mechanisms such as stretch reflexes. Though each of these strategies may contribute to joint stability, it is unclear how their relative contribution varies when ankle stability is threatened. We addressed this question by characterizing co-contraction and stretch reflexes during balance of an inverted pendulum simulated by a rotary motor configured as an admittance servo. The stability of this haptic environment was manipulated by varying the stiffness of a virtual spring supporting the pendulum. We hypothesized that co-contraction and stretch reflex amplitude would increase as the stability of the haptic load attached to the ankle was reduced. Electromyographic activity in soleus, medial and lateral gastrocnemius, and tibialis anterior was used to characterize co-contraction patterns and stretch reflex amplitude as subjects stabilized the haptic load. Our results revealed that co-contraction was heightened as stability was reduced, but that the resulting joint stiffness was not sufficient to fully counteract the imposed instability. Reflex amplitude, in comparison, was attenuated as load stability was reduced, contrary to results from upper limb studies using similar paradigms. Together these findings suggest that the nervous system utilizes feed-forward co-contraction rather than rapid involuntary feedback to increase ankle stability during simple balance tasks. Furthermore, since the stiffness generated through co-contraction was not sufficient to fully balance the haptic load, our results suggest an important role for slower, volitional feedback in the control of ankle stability during balancing tasks.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22169978</PMID>
<DateCreated>
<Year>2012</Year>
<Month>02</Month>
<Day>21</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>07</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>01</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1106</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>217</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Experimental brain research</Title>
<ISOAbbreviation>Exp Brain Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Contributions of feed-forward and feedback strategies at the human ankle during control of unstable loads.</ArticleTitle>
<Pagination>
<MedlinePgn>53-66</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00221-011-2972-9</ELocationID>
<Abstract>
<AbstractText>The nervous system can regulate the mechanical properties of the human ankle through feed-forward mechanisms such as co-contraction and rapid feedback mechanisms such as stretch reflexes. Though each of these strategies may contribute to joint stability, it is unclear how their relative contribution varies when ankle stability is threatened. We addressed this question by characterizing co-contraction and stretch reflexes during balance of an inverted pendulum simulated by a rotary motor configured as an admittance servo. The stability of this haptic environment was manipulated by varying the stiffness of a virtual spring supporting the pendulum. We hypothesized that co-contraction and stretch reflex amplitude would increase as the stability of the haptic load attached to the ankle was reduced. Electromyographic activity in soleus, medial and lateral gastrocnemius, and tibialis anterior was used to characterize co-contraction patterns and stretch reflex amplitude as subjects stabilized the haptic load. Our results revealed that co-contraction was heightened as stability was reduced, but that the resulting joint stiffness was not sufficient to fully counteract the imposed instability. Reflex amplitude, in comparison, was attenuated as load stability was reduced, contrary to results from upper limb studies using similar paradigms. Together these findings suggest that the nervous system utilizes feed-forward co-contraction rather than rapid involuntary feedback to increase ankle stability during simple balance tasks. Furthermore, since the stiffness generated through co-contraction was not sufficient to fully balance the haptic load, our results suggest an important role for slower, volitional feedback in the control of ankle stability during balancing tasks.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Finley</LastName>
<ForeName>James M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA. j-finley@jhmi.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dhaher</LastName>
<ForeName>Yasin Y</ForeName>
<Initials>YY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Perreault</LastName>
<ForeName>Eric J</ForeName>
<Initials>EJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 NS053813</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS053813</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 HD007418</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32HD007418-17</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>12</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Exp Brain Res</MedlineTA>
<NlmUniqueID>0043312</NlmUniqueID>
<ISSNLinking>0014-4819</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1992 Feb;447:575-85</RefSource>
<PMID Version="1">1593461</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1996 Mar;108(3):450-62</RefSource>
<PMID Version="1">8801125</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1992 Oct;456:373-91</RefSource>
<PMID Version="1">1338100</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1993 Mar;69(3):943-52</RefSource>
<PMID Version="1">8385202</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1993 May;464:575-93</RefSource>
<PMID Version="1">8229819</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Electroencephalogr Clin Neurophysiol. 1994 Feb;93(1):49-56</RefSource>
<PMID Version="1">7511522</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Anat (Basel). 1994;151(1):1-13</RefSource>
<PMID Version="1">7879588</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1994;102(2):350-8</RefSource>
<PMID Version="1">7705512</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1995 Jan;73(1):102-11</RefSource>
<PMID Version="1">7714556</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1995;104(1):99-106</RefSource>
<PMID Version="1">7621944</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1995;107(2):293-305</RefSource>
<PMID Version="1">8773247</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Psychophysiol. 1996 Apr-May;22(1-2):117-22</RefSource>
<PMID Version="1">8799774</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 1997 Jun;44(6):493-504</RefSource>
<PMID Version="1">9151483</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Cybern. 1997 Dec;77(6):381-93</RefSource>
<PMID Version="1">9433753</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1998 Sep;80(3):1211-21</RefSource>
<PMID Version="1">9744933</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 1998 Sep;31(9):793-800</RefSource>
<PMID Version="1">9802779</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1999 Sep;82(3):1622-6</RefSource>
<PMID Version="1">10482776</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1956 Apr 27;132(1):17-8P</RefSource>
<PMID Version="1">13320395</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2005 Apr 1;564(Pt 1):281-93</RefSource>
<PMID Version="1">15661825</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2006 Nov 15;577(Pt 1):417-32</RefSource>
<PMID Version="1">16973712</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2007 Aug;181(4):665-72</RefSource>
<PMID Version="1">17487475</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2008 Mar 1;586(5):1265-75</RefSource>
<PMID Version="1">18187473</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2008 May;99(5):2101-13</RefSource>
<PMID Version="1">18287550</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2008 Jul;188(3):353-61</RefSource>
<PMID Version="1">18421451</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 2008 Jul;105(1):226-32</RefSource>
<PMID Version="1">18483163</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chaos. 2009 Jun;19(2):026110</RefSource>
<PMID Version="1">19566270</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Cybern. 2009 Aug;101(2):131-46</RefSource>
<PMID Version="1">19588160</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Oct 21;29(42):13255-63</RefSource>
<PMID Version="1">19846713</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2010 Jan;103(1):429-40</RefSource>
<PMID Version="1">19906880</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2011 Apr;210(2):229-42</RefSource>
<PMID Version="1">21424843</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 2000 Oct;62(3):251-72</RefSource>
<PMID Version="1">10840149</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2000 Nov;33(11):1433-40</RefSource>
<PMID Version="1">10940402</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2000 Dec;135(4):423-36</RefSource>
<PMID Version="1">11156307</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Neurosci. 2001 Jan;106(1-2):1-20</RefSource>
<PMID Version="1">11264905</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2001 Jun;85(6):2630-3</RefSource>
<PMID Version="1">11387407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2001 May;138(2):210-8</RefSource>
<PMID Version="1">11417462</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2001 Aug 1;534(Pt 3):925-33</RefSource>
<PMID Version="1">11483721</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2001 Nov;34(11):1399-406</RefSource>
<PMID Version="1">11672714</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2002 Sep;88(3):1097-118</RefSource>
<PMID Version="1">12205132</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2002 Oct;88(4):2157-62</RefSource>
<PMID Version="1">12364538</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2002 Dec 15;545(Pt 3):1041-53</RefSource>
<PMID Version="1">12482906</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2003 Jan 30;337(1):25-8</RefSource>
<PMID Version="1">12524163</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2003 Aug 14;347(1):25-8</RefSource>
<PMID Version="1">12865133</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2003 Aug 15;551(Pt 1):357-70</RefSource>
<PMID Version="1">12832494</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Physiol Scand. 1970 Aug;79(4):435-52</RefSource>
<PMID Version="1">5472111</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1976 Sep;39(5):925-35</RefSource>
<PMID Version="1">978238</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1979 Jan;42(1 Pt 1):91-106</RefSource>
<PMID Version="1">430116</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1980 Jan;43(1):86-101</RefSource>
<PMID Version="1">7351552</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1983 Jan;49(1):16-27</RefSource>
<PMID Version="1">6827293</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1988 Sep;60(3):1110-21</RefSource>
<PMID Version="1">3171659</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1989;74(1):213-9</RefSource>
<PMID Version="1">2924837</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Crit Rev Biomed Eng. 1990;18(1):55-87</RefSource>
<PMID Version="1">2204515</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1990;83(1):22-8</RefSource>
<PMID Version="1">2073943</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1991 Jun;65(6):1402-10</RefSource>
<PMID Version="1">1875249</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1991;86(2):451-8</RefSource>
<PMID Version="1">1756819</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1992 Feb;447:563-73</RefSource>
<PMID Version="1">1593460</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1992 Aug;454:533-47</RefSource>
<PMID Version="1">1474502</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000842">Ankle</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000843">Ankle Joint</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004576">Electromyography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D025461">Feedback, Physiological</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009119">Muscle Contraction</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018482">Muscle, Skeletal</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012026">Reflex, Stretch</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016474">Weight-Bearing</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS443091</OtherID>
<OtherID Source="NLM">PMC3593720</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>7</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>11</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2011</Year>
<Month>12</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00221-011-2972-9</ArticleId>
<ArticleId IdType="pubmed">22169978</ArticleId>
<ArticleId IdType="pmc">PMC3593720</ArticleId>
<ArticleId IdType="mid">NIHMS443091</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D61 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000D61 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:22169978
   |texte=   Contributions of feed-forward and feedback strategies at the human ankle during control of unstable loads.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:22169978" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024