Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Extending the body to virtual tools using a robotic surgical interface: evidence from the crossmodal congruency task.

Identifieur interne : 000A85 ( PubMed/Curation ); précédent : 000A84; suivant : 000A86

Extending the body to virtual tools using a robotic surgical interface: evidence from the crossmodal congruency task.

Auteurs : Ali Sengül [Suisse] ; Michiel Van Elk ; Giulio Rognini ; Jane Elizabeth Aspell ; Hannes Bleuler ; Olaf Blanke

Source :

RBID : pubmed:23227142

English descriptors

Abstract

The effects of real-world tool use on body or space representations are relatively well established in cognitive neuroscience. Several studies have shown, for example, that active tool use results in a facilitated integration of multisensory information in peripersonal space, i.e. the space directly surrounding the body. However, it remains unknown to what extent similar mechanisms apply to the use of virtual-robotic tools, such as those used in the field of surgical robotics, in which a surgeon may use bimanual haptic interfaces to control a surgery robot at a remote location. This paper presents two experiments in which participants used a haptic handle, originally designed for a commercial surgery robot, to control a virtual tool. The integration of multisensory information related to the virtual-robotic tool was assessed by means of the crossmodal congruency task, in which subjects responded to tactile vibrations applied to their fingers while ignoring visual distractors superimposed on the tip of the virtual-robotic tool. Our results show that active virtual-robotic tool use changes the spatial modulation of the crossmodal congruency effects, comparable to changes in the representation of peripersonal space observed during real-world tool use. Moreover, when the virtual-robotic tools were held in a crossed position, the visual distractors interfered strongly with tactile stimuli that was connected with the hand via the tool, reflecting a remapping of peripersonal space. Such remapping was not only observed when the virtual-robotic tools were actively used (Experiment 1), but also when passively held the tools (Experiment 2). The present study extends earlier findings on the extension of peripersonal space from physical and pointing tools to virtual-robotic tools using techniques from haptics and virtual reality. We discuss our data with respect to learning and human factors in the field of surgical robotics and discuss the use of new technologies in the field of cognitive neuroscience.

DOI: 10.1371/journal.pone.0049473
PubMed: 23227142

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23227142

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Extending the body to virtual tools using a robotic surgical interface: evidence from the crossmodal congruency task.</title>
<author>
<name sortKey="Sengul, Ali" sort="Sengul, Ali" uniqKey="Sengul A" first="Ali" last="Sengül">Ali Sengül</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. ali.sengul@epfl.ch</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Van Elk, Michiel" sort="Van Elk, Michiel" uniqKey="Van Elk M" first="Michiel" last="Van Elk">Michiel Van Elk</name>
</author>
<author>
<name sortKey="Rognini, Giulio" sort="Rognini, Giulio" uniqKey="Rognini G" first="Giulio" last="Rognini">Giulio Rognini</name>
</author>
<author>
<name sortKey="Aspell, Jane Elizabeth" sort="Aspell, Jane Elizabeth" uniqKey="Aspell J" first="Jane Elizabeth" last="Aspell">Jane Elizabeth Aspell</name>
</author>
<author>
<name sortKey="Bleuler, Hannes" sort="Bleuler, Hannes" uniqKey="Bleuler H" first="Hannes" last="Bleuler">Hannes Bleuler</name>
</author>
<author>
<name sortKey="Blanke, Olaf" sort="Blanke, Olaf" uniqKey="Blanke O" first="Olaf" last="Blanke">Olaf Blanke</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="doi">10.1371/journal.pone.0049473</idno>
<idno type="RBID">pubmed:23227142</idno>
<idno type="pmid">23227142</idno>
<idno type="wicri:Area/PubMed/Corpus">000A85</idno>
<idno type="wicri:Area/PubMed/Curation">000A85</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Extending the body to virtual tools using a robotic surgical interface: evidence from the crossmodal congruency task.</title>
<author>
<name sortKey="Sengul, Ali" sort="Sengul, Ali" uniqKey="Sengul A" first="Ali" last="Sengül">Ali Sengül</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. ali.sengul@epfl.ch</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Van Elk, Michiel" sort="Van Elk, Michiel" uniqKey="Van Elk M" first="Michiel" last="Van Elk">Michiel Van Elk</name>
</author>
<author>
<name sortKey="Rognini, Giulio" sort="Rognini, Giulio" uniqKey="Rognini G" first="Giulio" last="Rognini">Giulio Rognini</name>
</author>
<author>
<name sortKey="Aspell, Jane Elizabeth" sort="Aspell, Jane Elizabeth" uniqKey="Aspell J" first="Jane Elizabeth" last="Aspell">Jane Elizabeth Aspell</name>
</author>
<author>
<name sortKey="Bleuler, Hannes" sort="Bleuler, Hannes" uniqKey="Bleuler H" first="Hannes" last="Bleuler">Hannes Bleuler</name>
</author>
<author>
<name sortKey="Blanke, Olaf" sort="Blanke, Olaf" uniqKey="Blanke O" first="Olaf" last="Blanke">Olaf Blanke</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Equipment Design</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Robotics</term>
<term>Surgical Instruments</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Equipment Design</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Robotics</term>
<term>Surgical Instruments</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effects of real-world tool use on body or space representations are relatively well established in cognitive neuroscience. Several studies have shown, for example, that active tool use results in a facilitated integration of multisensory information in peripersonal space, i.e. the space directly surrounding the body. However, it remains unknown to what extent similar mechanisms apply to the use of virtual-robotic tools, such as those used in the field of surgical robotics, in which a surgeon may use bimanual haptic interfaces to control a surgery robot at a remote location. This paper presents two experiments in which participants used a haptic handle, originally designed for a commercial surgery robot, to control a virtual tool. The integration of multisensory information related to the virtual-robotic tool was assessed by means of the crossmodal congruency task, in which subjects responded to tactile vibrations applied to their fingers while ignoring visual distractors superimposed on the tip of the virtual-robotic tool. Our results show that active virtual-robotic tool use changes the spatial modulation of the crossmodal congruency effects, comparable to changes in the representation of peripersonal space observed during real-world tool use. Moreover, when the virtual-robotic tools were held in a crossed position, the visual distractors interfered strongly with tactile stimuli that was connected with the hand via the tool, reflecting a remapping of peripersonal space. Such remapping was not only observed when the virtual-robotic tools were actively used (Experiment 1), but also when passively held the tools (Experiment 2). The present study extends earlier findings on the extension of peripersonal space from physical and pointing tools to virtual-robotic tools using techniques from haptics and virtual reality. We discuss our data with respect to learning and human factors in the field of surgical robotics and discuss the use of new technologies in the field of cognitive neuroscience.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23227142</PMID>
<DateCreated>
<Year>2012</Year>
<Month>12</Month>
<Day>11</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>02</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Extending the body to virtual tools using a robotic surgical interface: evidence from the crossmodal congruency task.</ArticleTitle>
<Pagination>
<MedlinePgn>e49473</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0049473</ELocationID>
<Abstract>
<AbstractText>The effects of real-world tool use on body or space representations are relatively well established in cognitive neuroscience. Several studies have shown, for example, that active tool use results in a facilitated integration of multisensory information in peripersonal space, i.e. the space directly surrounding the body. However, it remains unknown to what extent similar mechanisms apply to the use of virtual-robotic tools, such as those used in the field of surgical robotics, in which a surgeon may use bimanual haptic interfaces to control a surgery robot at a remote location. This paper presents two experiments in which participants used a haptic handle, originally designed for a commercial surgery robot, to control a virtual tool. The integration of multisensory information related to the virtual-robotic tool was assessed by means of the crossmodal congruency task, in which subjects responded to tactile vibrations applied to their fingers while ignoring visual distractors superimposed on the tip of the virtual-robotic tool. Our results show that active virtual-robotic tool use changes the spatial modulation of the crossmodal congruency effects, comparable to changes in the representation of peripersonal space observed during real-world tool use. Moreover, when the virtual-robotic tools were held in a crossed position, the visual distractors interfered strongly with tactile stimuli that was connected with the hand via the tool, reflecting a remapping of peripersonal space. Such remapping was not only observed when the virtual-robotic tools were actively used (Experiment 1), but also when passively held the tools (Experiment 2). The present study extends earlier findings on the extension of peripersonal space from physical and pointing tools to virtual-robotic tools using techniques from haptics and virtual reality. We discuss our data with respect to learning and human factors in the field of surgical robotics and discuss the use of new technologies in the field of cognitive neuroscience.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sengül</LastName>
<ForeName>Ali</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. ali.sengul@epfl.ch</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van Elk</LastName>
<ForeName>Michiel</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rognini</LastName>
<ForeName>Giulio</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aspell</LastName>
<ForeName>Jane Elizabeth</ForeName>
<Initials>JE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bleuler</LastName>
<ForeName>Hannes</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Blanke</LastName>
<ForeName>Olaf</ForeName>
<Initials>O</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>12</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2009 Jun;132(Pt 6):1645-55</RefSource>
<PMID Version="1">19351777</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Urol. 2009 Jan;19(1):102-7</RefSource>
<PMID Version="1">19057225</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Sep 16;29(37):11523-39</RefSource>
<PMID Version="1">19759300</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2010 Feb;48(3):713-25</RefSource>
<PMID Version="1">19913040</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2010 Feb;48(3):803-11</RefSource>
<PMID Version="1">19931547</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2012 Jan 12;367(1585):10-23</RefSource>
<PMID Version="1">22106423</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Langenbecks Arch Surg. 2012 Mar;397(3):333-41</RefSource>
<PMID Version="1">22038293</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2012 Apr;218(2):273-82</RefSource>
<PMID Version="1">22392444</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Surg Innov. 2012 Mar;19(1):50-9</RefSource>
<PMID Version="1">21868419</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2013 Apr;37(7):1120-9</RefSource>
<PMID Version="1">23351116</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Can J Physiol Pharmacol. 2000 Nov;78(11):958-66</RefSource>
<PMID Version="1">11100944</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Sci. 2000 Sep;11(5):353-9</RefSource>
<PMID Version="1">11228904</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Res. 2001 Jun;40(2):163-73</RefSource>
<PMID Version="1">11377755</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cognition. 2002 Mar;83(2):B25-34</RefSource>
<PMID Version="1">11869727</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Surg. 2002 Jun;183(6):702-7</RefSource>
<PMID Version="1">12095605</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Surg. 2004 Oct;188(4A Suppl):98S-103S</RefSource>
<PMID Version="1">15476659</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 1996 Oct 2;7(14):2325-30</RefSource>
<PMID Version="1">8951846</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2004 Nov 30;372(1-2):62-7</RefSource>
<PMID Version="1">15531089</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2004 Feb;8(2):79-86</RefSource>
<PMID Version="1">15588812</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2005;43(2):238-48</RefSource>
<PMID Version="1">15707908</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Surg Endosc. 2005 Aug;19(8):1064-70</RefSource>
<PMID Version="1">16021368</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2006 Jan 9;392(1-2):96-100</RefSource>
<PMID Version="1">16213655</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Surg Endosc. 2006 Jan;20(1):96-103</RefSource>
<PMID Version="1">16374675</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cortex. 2007 Apr;43(3):469-89</RefSource>
<PMID Version="1">17533769</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Res. 2007 Sep;59(1):60-7</RefSource>
<PMID Version="1">17617482</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Syst Man Cybern B Cybern. 2007 Dec;37(6):1512-28</RefSource>
<PMID Version="1">18179070</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2009;4(8):e6488</RefSource>
<PMID Version="1">19654862</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D012371">Robotics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D013525">Surgical Instruments</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3515602</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>5</Month>
<Day>7</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>10</Month>
<Day>9</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2012</Year>
<Month>12</Month>
<Day>5</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>12</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pone.0049473</ArticleId>
<ArticleId IdType="pii">PONE-D-12-13350</ArticleId>
<ArticleId IdType="pubmed">23227142</ArticleId>
<ArticleId IdType="pmc">PMC3515602</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A85 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000A85 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:23227142
   |texte=   Extending the body to virtual tools using a robotic surgical interface: evidence from the crossmodal congruency task.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:23227142" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024