Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of aortic tissue cutting process: experimental investigation using porcine ascending aorta.

Identifieur interne : 000A80 ( PubMed/Curation ); précédent : 000A79; suivant : 000A81

Characterization of aortic tissue cutting process: experimental investigation using porcine ascending aorta.

Auteurs : Zhongwei Hu [États-Unis] ; Wei Sun ; Bi Zhang

Source :

RBID : pubmed:23262306

English descriptors

Abstract

Understanding biomechanical responses during soft tissue cutting is important for developing surgical simulators and robot-assisted surgery with haptic feedback. The biomechanics involved in the aortic tissue cutting process is largely unknown. In this study, porcine ascending aorta was selected as a representative aortic tissue, and tissue cutting experiments were performed using a novel tissue cutting apparatus. The tissue cutting responses under various cutting conditions were investigated, including differing initial tissue lateral holding force and distance, cutting speed, cutter inclination angle, tissue anatomical orientation and thickness. The results from this study suggest that a "break-in" cutting force of about 4-12 N, a cutter "break-in" distance of 5-15 mm, and a continuous cutting force of 2-4 N were needed to cut through the porcine ascending aorta tissue. For all testing conditions investigated in this study, the cutting force vs. the cutter displacement curves exhibited similar characteristics. More importantly, this study demonstrated that tissue cutting involving one or more of the following conditions: a larger lateral holding force, a smaller lateral hold distance, a higher cutting speed or a larger inclination angle, could result in a smaller "break in" cutting force and a smaller "break-in" distance. In addition, it was found that the cutting force in the vessel longitudinal direction was larger than that in the circumferential direction. There was a strong correlation between the tissue thickness and the cutting force. The experimental results reported in this study could provide a basis for understanding the characteristic response of aortic tissue to scalpel cutting, and offer insight into the development of surgical simulators.

DOI: 10.1016/j.jmbbm.2012.10.017
PubMed: 23262306

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23262306

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of aortic tissue cutting process: experimental investigation using porcine ascending aorta.</title>
<author>
<name sortKey="Hu, Zhongwei" sort="Hu, Zhongwei" uniqKey="Hu Z" first="Zhongwei" last="Hu">Zhongwei Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Tissue Mechanics Laboratory, Biomedical Engineering Program, University of Connecticut, Storrs, CT 06269, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Tissue Mechanics Laboratory, Biomedical Engineering Program, University of Connecticut, Storrs, CT 06269</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sun, Wei" sort="Sun, Wei" uniqKey="Sun W" first="Wei" last="Sun">Wei Sun</name>
</author>
<author>
<name sortKey="Zhang, Bi" sort="Zhang, Bi" uniqKey="Zhang B" first="Bi" last="Zhang">Bi Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1016/j.jmbbm.2012.10.017</idno>
<idno type="RBID">pubmed:23262306</idno>
<idno type="pmid">23262306</idno>
<idno type="wicri:Area/PubMed/Corpus">000A80</idno>
<idno type="wicri:Area/PubMed/Curation">000A80</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of aortic tissue cutting process: experimental investigation using porcine ascending aorta.</title>
<author>
<name sortKey="Hu, Zhongwei" sort="Hu, Zhongwei" uniqKey="Hu Z" first="Zhongwei" last="Hu">Zhongwei Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Tissue Mechanics Laboratory, Biomedical Engineering Program, University of Connecticut, Storrs, CT 06269, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Tissue Mechanics Laboratory, Biomedical Engineering Program, University of Connecticut, Storrs, CT 06269</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sun, Wei" sort="Sun, Wei" uniqKey="Sun W" first="Wei" last="Sun">Wei Sun</name>
</author>
<author>
<name sortKey="Zhang, Bi" sort="Zhang, Bi" uniqKey="Zhang B" first="Bi" last="Zhang">Bi Zhang</name>
</author>
</analytic>
<series>
<title level="j">Journal of the mechanical behavior of biomedical materials</title>
<idno type="eISSN">1878-0180</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Aorta (cytology)</term>
<term>Biomechanical Phenomena</term>
<term>Materials Testing</term>
<term>Mechanical Processes</term>
<term>Swine</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Aorta</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biomechanical Phenomena</term>
<term>Materials Testing</term>
<term>Mechanical Processes</term>
<term>Swine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Understanding biomechanical responses during soft tissue cutting is important for developing surgical simulators and robot-assisted surgery with haptic feedback. The biomechanics involved in the aortic tissue cutting process is largely unknown. In this study, porcine ascending aorta was selected as a representative aortic tissue, and tissue cutting experiments were performed using a novel tissue cutting apparatus. The tissue cutting responses under various cutting conditions were investigated, including differing initial tissue lateral holding force and distance, cutting speed, cutter inclination angle, tissue anatomical orientation and thickness. The results from this study suggest that a "break-in" cutting force of about 4-12 N, a cutter "break-in" distance of 5-15 mm, and a continuous cutting force of 2-4 N were needed to cut through the porcine ascending aorta tissue. For all testing conditions investigated in this study, the cutting force vs. the cutter displacement curves exhibited similar characteristics. More importantly, this study demonstrated that tissue cutting involving one or more of the following conditions: a larger lateral holding force, a smaller lateral hold distance, a higher cutting speed or a larger inclination angle, could result in a smaller "break in" cutting force and a smaller "break-in" distance. In addition, it was found that the cutting force in the vessel longitudinal direction was larger than that in the circumferential direction. There was a strong correlation between the tissue thickness and the cutting force. The experimental results reported in this study could provide a basis for understanding the characteristic response of aortic tissue to scalpel cutting, and offer insight into the development of surgical simulators.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23262306</PMID>
<DateCreated>
<Year>2013</Year>
<Month>01</Month>
<Day>28</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>07</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>02</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1878-0180</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<PubDate>
<Year>2013</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Journal of the mechanical behavior of biomedical materials</Title>
<ISOAbbreviation>J Mech Behav Biomed Mater</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of aortic tissue cutting process: experimental investigation using porcine ascending aorta.</ArticleTitle>
<Pagination>
<MedlinePgn>81-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jmbbm.2012.10.017</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S1751-6161(12)00278-0</ELocationID>
<Abstract>
<AbstractText>Understanding biomechanical responses during soft tissue cutting is important for developing surgical simulators and robot-assisted surgery with haptic feedback. The biomechanics involved in the aortic tissue cutting process is largely unknown. In this study, porcine ascending aorta was selected as a representative aortic tissue, and tissue cutting experiments were performed using a novel tissue cutting apparatus. The tissue cutting responses under various cutting conditions were investigated, including differing initial tissue lateral holding force and distance, cutting speed, cutter inclination angle, tissue anatomical orientation and thickness. The results from this study suggest that a "break-in" cutting force of about 4-12 N, a cutter "break-in" distance of 5-15 mm, and a continuous cutting force of 2-4 N were needed to cut through the porcine ascending aorta tissue. For all testing conditions investigated in this study, the cutting force vs. the cutter displacement curves exhibited similar characteristics. More importantly, this study demonstrated that tissue cutting involving one or more of the following conditions: a larger lateral holding force, a smaller lateral hold distance, a higher cutting speed or a larger inclination angle, could result in a smaller "break in" cutting force and a smaller "break-in" distance. In addition, it was found that the cutting force in the vessel longitudinal direction was larger than that in the circumferential direction. There was a strong correlation between the tissue thickness and the cutting force. The experimental results reported in this study could provide a basis for understanding the characteristic response of aortic tissue to scalpel cutting, and offer insight into the development of surgical simulators.</AbstractText>
<CopyrightInformation>Copyright © 2012 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Zhongwei</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Tissue Mechanics Laboratory, Biomedical Engineering Program, University of Connecticut, Storrs, CT 06269, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Bi</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HL104080</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL108239</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL104080</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 HL108239</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>11</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>J Mech Behav Biomed Mater</MedlineTA>
<NlmUniqueID>101322406</NlmUniqueID>
<ISSNLinking>1878-0180</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2009 May 29;42(8):996-1004</RefSource>
<PMID Version="1">19345356</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Surg Endosc. 2001 Mar;15(3):232-41</RefSource>
<PMID Version="1">11344421</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Heart Valve Dis. 2008 Nov;17(6):606-13</RefSource>
<PMID Version="1">19137790</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Urol. 2009 Jan;19(1):102-7</RefSource>
<PMID Version="1">19057225</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2008 Mar;55(3):848-56</RefSource>
<PMID Version="1">18334376</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Surg Res. 2007 May 15;139(2):236-42</RefSource>
<PMID Version="1">17303171</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2007 Mar;54(3):349-59</RefSource>
<PMID Version="1">17355046</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2005 Jul;52(7):1167-79</RefSource>
<PMID Version="1">16041980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2005 Jun;52(6):965-74</RefSource>
<PMID Version="1">15977726</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Biomed Eng. 1998 Sep-Oct;26(5):892-902</RefSource>
<PMID Version="1">9779962</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 1997 Jan;30(1):91-4</RefSource>
<PMID Version="1">8970930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 1996 Jun;29(6):829-32</RefSource>
<PMID Version="1">9147983</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ultrasound Med Biol. 1990;16(3):241-6</RefSource>
<PMID Version="1">2194336</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2004 Oct;51(10):1707-16</RefSource>
<PMID Version="1">15490818</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stud Health Technol Inform. 2003;94:26-32</RefSource>
<PMID Version="1">15455858</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Biomed Eng. 2003 Dec;31(11):1372-82</RefSource>
<PMID Version="1">14758928</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Circulation. 2003 Oct 14;108(15):1795-7</RefSource>
<PMID Version="1">14530194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Image Anal. 2003 Sep;7(3):283-91</RefSource>
<PMID Version="1">12946469</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stud Health Technol Inform. 2001;81:69-74</RefSource>
<PMID Version="1">11317820</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Cardiothorac Surg. 2011 Jul;40(1):28-34</RefSource>
<PMID Version="1">21177118</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomech Model Mechanobiol. 2010 Dec;9(6):725-36</RefSource>
<PMID Version="1">20354753</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2010 Jun 18;43(9):1823-6</RefSource>
<PMID Version="1">20211469</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cardiovasc Pathol. 2009 Mar-Apr;18(2):83-91</RefSource>
<PMID Version="1">18402840</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001011">Aorta</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000166">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001696">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008422">Materials Testing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D055596">Mechanical Processes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D013552">Swine</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS421508</OtherID>
<OtherID Source="NLM">PMC3557667</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>4</Month>
<Day>2</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>9</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>10</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>11</Month>
<Day>7</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S1751-6161(12)00278-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.jmbbm.2012.10.017</ArticleId>
<ArticleId IdType="pubmed">23262306</ArticleId>
<ArticleId IdType="pmc">PMC3557667</ArticleId>
<ArticleId IdType="mid">NIHMS421508</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A80 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000A80 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:23262306
   |texte=   Characterization of aortic tissue cutting process: experimental investigation using porcine ascending aorta.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:23262306" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024