Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Predictive mechanisms in the control of contour following.

Identifieur interne : 000963 ( PubMed/Curation ); précédent : 000962; suivant : 000964

Predictive mechanisms in the control of contour following.

Auteurs : Julian J. Tramper [États-Unis] ; Martha Flanders

Source :

RBID : pubmed:23649968

English descriptors

Abstract

In haptic exploration, when running a fingertip along a surface, the control system may attempt to anticipate upcoming changes in curvature in order to maintain a consistent level of contact force. Such predictive mechanisms are well known in the visual system, but have yet to be studied in the somatosensory system. Thus, the present experiment was designed to reveal human capabilities for different types of haptic prediction. A robot arm with a large 3D workspace was attached to the index fingertip and was programmed to produce virtual surfaces with curvatures that varied within and across trials. With eyes closed, subjects moved the fingertip around elliptical hoops with flattened regions or Limaçon shapes, where the curvature varied continuously. Subjects anticipated the corner of the flattened region rather poorly, but for the Limaçon shapes, they varied finger speed with upcoming curvature according to the two-thirds power law. Furthermore, although the Limaçon shapes were randomly presented in various 3D orientations, modulation of contact force also indicated good anticipation of upcoming changes in curvature. The results demonstrate that it is difficult to haptically anticipate the spatial location of an abrupt change in curvature, but smooth changes in curvature may be facilitated by anticipatory predictions.

DOI: 10.1007/s00221-013-3529-x
PubMed: 23649968

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23649968

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Predictive mechanisms in the control of contour following.</title>
<author>
<name sortKey="Tramper, Julian J" sort="Tramper, Julian J" uniqKey="Tramper J" first="Julian J" last="Tramper">Julian J. Tramper</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Flanders, Martha" sort="Flanders, Martha" uniqKey="Flanders M" first="Martha" last="Flanders">Martha Flanders</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1007/s00221-013-3529-x</idno>
<idno type="RBID">pubmed:23649968</idno>
<idno type="pmid">23649968</idno>
<idno type="wicri:Area/PubMed/Corpus">000963</idno>
<idno type="wicri:Area/PubMed/Curation">000963</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Predictive mechanisms in the control of contour following.</title>
<author>
<name sortKey="Tramper, Julian J" sort="Tramper, Julian J" uniqKey="Tramper J" first="Julian J" last="Tramper">Julian J. Tramper</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Flanders, Martha" sort="Flanders, Martha" uniqKey="Flanders M" first="Martha" last="Flanders">Martha Flanders</name>
</author>
</analytic>
<series>
<title level="j">Experimental brain research</title>
<idno type="eISSN">1432-1106</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Female</term>
<term>Forecasting</term>
<term>Form Perception (physiology)</term>
<term>Humans</term>
<term>Male</term>
<term>Proprioception (physiology)</term>
<term>Psychomotor Performance (physiology)</term>
<term>Time Factors</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Form Perception</term>
<term>Proprioception</term>
<term>Psychomotor Performance</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Female</term>
<term>Forecasting</term>
<term>Humans</term>
<term>Male</term>
<term>Time Factors</term>
<term>Young Adult</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In haptic exploration, when running a fingertip along a surface, the control system may attempt to anticipate upcoming changes in curvature in order to maintain a consistent level of contact force. Such predictive mechanisms are well known in the visual system, but have yet to be studied in the somatosensory system. Thus, the present experiment was designed to reveal human capabilities for different types of haptic prediction. A robot arm with a large 3D workspace was attached to the index fingertip and was programmed to produce virtual surfaces with curvatures that varied within and across trials. With eyes closed, subjects moved the fingertip around elliptical hoops with flattened regions or Limaçon shapes, where the curvature varied continuously. Subjects anticipated the corner of the flattened region rather poorly, but for the Limaçon shapes, they varied finger speed with upcoming curvature according to the two-thirds power law. Furthermore, although the Limaçon shapes were randomly presented in various 3D orientations, modulation of contact force also indicated good anticipation of upcoming changes in curvature. The results demonstrate that it is difficult to haptically anticipate the spatial location of an abrupt change in curvature, but smooth changes in curvature may be facilitated by anticipatory predictions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23649968</PMID>
<DateCreated>
<Year>2013</Year>
<Month>06</Month>
<Day>06</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>02</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>04</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1106</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>227</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Experimental brain research</Title>
<ISOAbbreviation>Exp Brain Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Predictive mechanisms in the control of contour following.</ArticleTitle>
<Pagination>
<MedlinePgn>535-46</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00221-013-3529-x</ELocationID>
<Abstract>
<AbstractText>In haptic exploration, when running a fingertip along a surface, the control system may attempt to anticipate upcoming changes in curvature in order to maintain a consistent level of contact force. Such predictive mechanisms are well known in the visual system, but have yet to be studied in the somatosensory system. Thus, the present experiment was designed to reveal human capabilities for different types of haptic prediction. A robot arm with a large 3D workspace was attached to the index fingertip and was programmed to produce virtual surfaces with curvatures that varied within and across trials. With eyes closed, subjects moved the fingertip around elliptical hoops with flattened regions or Limaçon shapes, where the curvature varied continuously. Subjects anticipated the corner of the flattened region rather poorly, but for the Limaçon shapes, they varied finger speed with upcoming curvature according to the two-thirds power law. Furthermore, although the Limaçon shapes were randomly presented in various 3D orientations, modulation of contact force also indicated good anticipation of upcoming changes in curvature. The results demonstrate that it is difficult to haptically anticipate the spatial location of an abrupt change in curvature, but smooth changes in curvature may be facilitated by anticipatory predictions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tramper</LastName>
<ForeName>Julian J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Flanders</LastName>
<ForeName>Martha</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>NS015018-29</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>NS027484-20</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS015018</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS027484</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016449">Randomized Controlled Trial</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Exp Brain Res</MedlineTA>
<NlmUniqueID>0043312</NlmUniqueID>
<ISSNLinking>0014-4819</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Dec 5;32(49):17632-45</RefSource>
<PMID Version="1">23223286</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(11):e25214</RefSource>
<PMID Version="1">22110578</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2011 Nov 12;366(1581):3070-6</RefSource>
<PMID Version="1">21969688</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2011 Nov 12;366(1581):2989-95</RefSource>
<PMID Version="1">21969680</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2011 Feb;21(2):425-34</RefSource>
<PMID Version="1">20542990</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2010;5(9):e12574</RefSource>
<PMID Version="1">20838450</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Cogn. 2008 Dec;68(3):309-26</RefSource>
<PMID Version="1">18848744</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2007 Mar;178(1):99-114</RefSource>
<PMID Version="1">17053910</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Hum Percept Perform. 2006 Oct;32(5):1266-75</RefSource>
<PMID Version="1">17002536</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2006 Aug;16(8):1168-80</RefSource>
<PMID Version="1">16221922</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2005 Jun;93(6):3036-43</RefSource>
<PMID Version="1">15911888</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Surg Endosc. 2004 Oct;18(10):1514-8</RefSource>
<PMID Version="1">15791380</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1999 Apr;125(3):221-30</RefSource>
<PMID Version="1">10229012</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Neurosci. 1994 Dec;1(4):265-83</RefSource>
<PMID Version="1">8792234</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1995 Mar;73(3):1201-22</RefSource>
<PMID Version="1">7608766</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1994 Dec;14(12):7529-40</RefSource>
<PMID Version="1">7996193</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cogn Psychol. 1987 Jul;19(3):342-68</RefSource>
<PMID Version="1">3608405</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1985;57(3):562-75</RefSource>
<PMID Version="1">3979498</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Psychol (Amst). 1983 Oct;54(1-3):115-30</RefSource>
<PMID Version="1">6666647</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 1982 Feb;7(2):431-7</RefSource>
<PMID Version="1">7078732</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2003 Jun;89(6):3253-63</RefSource>
<PMID Version="1">12611990</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2003 May;150(1):95-108</RefSource>
<PMID Version="1">12698221</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 2003;32(2):235-48</RefSource>
<PMID Version="1">12696667</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2002 Nov;147(2):209-18</RefSource>
<PMID Version="1">12410336</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2013 Apr;37(7):1112-9</RefSource>
<PMID Version="1">23279153</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 1999;28(6):781-95</RefSource>
<PMID Version="1">10664771</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Endoscopy. 2002 Sep;34(9):698-702</RefSource>
<PMID Version="1">12195326</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005544">Forecasting</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005556">Form Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011434">Proprioception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011597">Psychomotor Performance</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013997">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055815">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS476629</OtherID>
<OtherID Source="NLM">PMC3691064</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>1</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>4</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>5</Month>
<Day>7</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00221-013-3529-x</ArticleId>
<ArticleId IdType="pubmed">23649968</ArticleId>
<ArticleId IdType="pmc">PMC3691064</ArticleId>
<ArticleId IdType="mid">NIHMS476629</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000963 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000963 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:23649968
   |texte=   Predictive mechanisms in the control of contour following.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:23649968" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024