Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Velocity estimation algorithms for audio-haptic simulations involving stick-slip.

Identifieur interne : 000573 ( PubMed/Curation ); précédent : 000572; suivant : 000574

Velocity estimation algorithms for audio-haptic simulations involving stick-slip.

Auteurs : Stephen Sinclair ; Marcelo M. Wanderley ; Vincent Hayward

Source :

RBID : pubmed:25122594

English descriptors

Abstract

With real-time models of friction that take velocity as input, accuracy depends in great part on adequately estimating velocity from position measurements. This process can be sensitive to noise, especially at high sampling rates. In audio-haptic acoustic simulations, often characterized by friction-induced, relaxation-type stick-slip oscillations, this gives a gritty, dry haptic feel and a raspy, unnatural sound. Numerous techniques have been proposed, but each depend on tuning parameters so that they may offer a good trade-off between delay and noise rejection. In an effort to compare fairly, each of thirteen methods considered in the present study was automatically optimized and evaluated; finally a subset of these were compared subjectively. Results suggest that no one method is ideal for all gain levels, though the best general performance was found by using a sliding-mode differentiator as input to a Kalman integrator. An additional conclusion is that estimators do not approach the quality available in physical velocity transduction, and therefore such sensors should be considered in haptic device design.

DOI: 10.1109/TOH.2014.2346505
PubMed: 25122594

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25122594

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Velocity estimation algorithms for audio-haptic simulations involving stick-slip.</title>
<author>
<name sortKey="Sinclair, Stephen" sort="Sinclair, Stephen" uniqKey="Sinclair S" first="Stephen" last="Sinclair">Stephen Sinclair</name>
</author>
<author>
<name sortKey="Wanderley, Marcelo M" sort="Wanderley, Marcelo M" uniqKey="Wanderley M" first="Marcelo M" last="Wanderley">Marcelo M. Wanderley</name>
</author>
<author>
<name sortKey="Hayward, Vincent" sort="Hayward, Vincent" uniqKey="Hayward V" first="Vincent" last="Hayward">Vincent Hayward</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="????">
<PubDate>
<MedlineDate>2014 Oct-Dec</MedlineDate>
</PubDate>
</date>
<idno type="doi">10.1109/TOH.2014.2346505</idno>
<idno type="RBID">pubmed:25122594</idno>
<idno type="pmid">25122594</idno>
<idno type="wicri:Area/PubMed/Corpus">000573</idno>
<idno type="wicri:Area/PubMed/Curation">000573</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Velocity estimation algorithms for audio-haptic simulations involving stick-slip.</title>
<author>
<name sortKey="Sinclair, Stephen" sort="Sinclair, Stephen" uniqKey="Sinclair S" first="Stephen" last="Sinclair">Stephen Sinclair</name>
</author>
<author>
<name sortKey="Wanderley, Marcelo M" sort="Wanderley, Marcelo M" uniqKey="Wanderley M" first="Marcelo M" last="Wanderley">Marcelo M. Wanderley</name>
</author>
<author>
<name sortKey="Hayward, Vincent" sort="Hayward, Vincent" uniqKey="Hayward V" first="Vincent" last="Hayward">Vincent Hayward</name>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on haptics</title>
<idno type="eISSN">2329-4051</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acoustics</term>
<term>Algorithms</term>
<term>Computer Simulation</term>
<term>Equipment Design</term>
<term>Friction</term>
<term>Human Engineering (methods)</term>
<term>Models, Theoretical</term>
<term>Sound</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Human Engineering</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acoustics</term>
<term>Algorithms</term>
<term>Computer Simulation</term>
<term>Equipment Design</term>
<term>Friction</term>
<term>Models, Theoretical</term>
<term>Sound</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">With real-time models of friction that take velocity as input, accuracy depends in great part on adequately estimating velocity from position measurements. This process can be sensitive to noise, especially at high sampling rates. In audio-haptic acoustic simulations, often characterized by friction-induced, relaxation-type stick-slip oscillations, this gives a gritty, dry haptic feel and a raspy, unnatural sound. Numerous techniques have been proposed, but each depend on tuning parameters so that they may offer a good trade-off between delay and noise rejection. In an effort to compare fairly, each of thirteen methods considered in the present study was automatically optimized and evaluated; finally a subset of these were compared subjectively. Results suggest that no one method is ideal for all gain levels, though the best general performance was found by using a sliding-mode differentiator as input to a Kalman integrator. An additional conclusion is that estimators do not approach the quality available in physical velocity transduction, and therefore such sensors should be considered in haptic device design.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">25122594</PMID>
<DateCreated>
<Year>2014</Year>
<Month>12</Month>
<Day>23</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>09</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2329-4051</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>4</Issue>
<PubDate>
<MedlineDate>2014 Oct-Dec</MedlineDate>
</PubDate>
</JournalIssue>
<Title>IEEE transactions on haptics</Title>
<ISOAbbreviation>IEEE Trans Haptics</ISOAbbreviation>
</Journal>
<ArticleTitle>Velocity estimation algorithms for audio-haptic simulations involving stick-slip.</ArticleTitle>
<Pagination>
<MedlinePgn>533-44</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1109/TOH.2014.2346505</ELocationID>
<Abstract>
<AbstractText>With real-time models of friction that take velocity as input, accuracy depends in great part on adequately estimating velocity from position measurements. This process can be sensitive to noise, especially at high sampling rates. In audio-haptic acoustic simulations, often characterized by friction-induced, relaxation-type stick-slip oscillations, this gives a gritty, dry haptic feel and a raspy, unnatural sound. Numerous techniques have been proposed, but each depend on tuning parameters so that they may offer a good trade-off between delay and noise rejection. In an effort to compare fairly, each of thirteen methods considered in the present study was automatically optimized and evaluated; finally a subset of these were compared subjectively. Results suggest that no one method is ideal for all gain levels, though the best general performance was found by using a sliding-mode differentiator as input to a Kalman integrator. An additional conclusion is that estimators do not approach the quality available in physical velocity transduction, and therefore such sensors should be considered in haptic device design.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sinclair</LastName>
<ForeName>Stephen</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wanderley</LastName>
<ForeName>Marcelo M</ForeName>
<Initials>MM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hayward</LastName>
<ForeName>Vincent</ForeName>
<Initials>V</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>IEEE Trans Haptics</MedlineTA>
<NlmUniqueID>101491191</NlmUniqueID>
<ISSNLinking>1939-1412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000162">Acoustics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D017276">Friction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006804">Human Engineering</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008962">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D013016">Sound</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2014</Year>
<Month>8</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/TOH.2014.2346505</ArticleId>
<ArticleId IdType="pubmed">25122594</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000573 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000573 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25122594
   |texte=   Velocity estimation algorithms for audio-haptic simulations involving stick-slip.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25122594" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024