Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery.

Identifieur interne : 000294 ( PubMed/Curation ); précédent : 000293; suivant : 000295

Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery.

Auteurs : Claudio Pacchierotti ; Domenico Prattichizzo ; Katherine J. Kuchenbecker

Source :

RBID : pubmed:26186763

Abstract

Despite its expected clinical benefits, current teleoperated surgical robots do not provide the surgeon with haptic feedback largely because grounded forces can destabilize the system's closed-loop controller. This paper presents an alternative approach that enables the surgeon to feel fingertip contact deformations and vibrations while guaranteeing the teleoperator's stability. We implemented our cutaneous feedback solution on an Intuitive Surgical da Vinci Standard robot by mounting a SynTouch BioTac tactile sensor to the distal end of a surgical instrument and a custom cutaneous display to the corresponding master controller. As the user probes the remote environment, the contact deformations, dc pressure, and ac pressure (vibrations) sensed by the BioTac are directly mapped to input commands for the cutaneous device's motors using a model-free algorithm based on look-up tables. The cutaneous display continually moves, tilts, and vibrates a flat plate at the operator's fingertip to optimally reproduce the tactile sensations experienced by the BioTac. We tested the proposed approach by having eighteen subjects use the augmented da Vinci robot to palpate a heart model with no haptic feedback, only deformation feedback, and deformation plus vibration feedback. Fingertip deformation feedback significantly improved palpation performance by reducing the task completion time, the pressure exerted on the heart model, and the subject's absolute error in detecting the orientation of the embedded plastic stick. Vibration feedback significantly improved palpation performance only for the seven subjects who dragged the BioTac across the model, rather than pressing straight into it.

DOI: 10.1109/TBME.2015.2455932
PubMed: 26186763

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26186763

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery.</title>
<author>
<name sortKey="Pacchierotti, Claudio" sort="Pacchierotti, Claudio" uniqKey="Pacchierotti C" first="Claudio" last="Pacchierotti">Claudio Pacchierotti</name>
</author>
<author>
<name sortKey="Prattichizzo, Domenico" sort="Prattichizzo, Domenico" uniqKey="Prattichizzo D" first="Domenico" last="Prattichizzo">Domenico Prattichizzo</name>
</author>
<author>
<name sortKey="Kuchenbecker, Katherine J" sort="Kuchenbecker, Katherine J" uniqKey="Kuchenbecker K" first="Katherine J" last="Kuchenbecker">Katherine J. Kuchenbecker</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="doi">10.1109/TBME.2015.2455932</idno>
<idno type="RBID">pubmed:26186763</idno>
<idno type="pmid">26186763</idno>
<idno type="wicri:Area/PubMed/Corpus">000294</idno>
<idno type="wicri:Area/PubMed/Curation">000294</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery.</title>
<author>
<name sortKey="Pacchierotti, Claudio" sort="Pacchierotti, Claudio" uniqKey="Pacchierotti C" first="Claudio" last="Pacchierotti">Claudio Pacchierotti</name>
</author>
<author>
<name sortKey="Prattichizzo, Domenico" sort="Prattichizzo, Domenico" uniqKey="Prattichizzo D" first="Domenico" last="Prattichizzo">Domenico Prattichizzo</name>
</author>
<author>
<name sortKey="Kuchenbecker, Katherine J" sort="Kuchenbecker, Katherine J" uniqKey="Kuchenbecker K" first="Katherine J" last="Kuchenbecker">Katherine J. Kuchenbecker</name>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on bio-medical engineering</title>
<idno type="eISSN">1558-2531</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Despite its expected clinical benefits, current teleoperated surgical robots do not provide the surgeon with haptic feedback largely because grounded forces can destabilize the system's closed-loop controller. This paper presents an alternative approach that enables the surgeon to feel fingertip contact deformations and vibrations while guaranteeing the teleoperator's stability. We implemented our cutaneous feedback solution on an Intuitive Surgical da Vinci Standard robot by mounting a SynTouch BioTac tactile sensor to the distal end of a surgical instrument and a custom cutaneous display to the corresponding master controller. As the user probes the remote environment, the contact deformations, dc pressure, and ac pressure (vibrations) sensed by the BioTac are directly mapped to input commands for the cutaneous device's motors using a model-free algorithm based on look-up tables. The cutaneous display continually moves, tilts, and vibrates a flat plate at the operator's fingertip to optimally reproduce the tactile sensations experienced by the BioTac. We tested the proposed approach by having eighteen subjects use the augmented da Vinci robot to palpate a heart model with no haptic feedback, only deformation feedback, and deformation plus vibration feedback. Fingertip deformation feedback significantly improved palpation performance by reducing the task completion time, the pressure exerted on the heart model, and the subject's absolute error in detecting the orientation of the embedded plastic stick. Vibration feedback significantly improved palpation performance only for the seven subjects who dragged the BioTac across the model, rather than pressing straight into it.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="In-Process">
<PMID Version="1">26186763</PMID>
<DateCreated>
<Year>2016</Year>
<Month>01</Month>
<Day>23</Day>
</DateCreated>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1558-2531</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>63</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2016</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>IEEE transactions on bio-medical engineering</Title>
<ISOAbbreviation>IEEE Trans Biomed Eng</ISOAbbreviation>
</Journal>
<ArticleTitle>Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery.</ArticleTitle>
<Pagination>
<MedlinePgn>278-87</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1109/TBME.2015.2455932</ELocationID>
<Abstract>
<AbstractText>Despite its expected clinical benefits, current teleoperated surgical robots do not provide the surgeon with haptic feedback largely because grounded forces can destabilize the system's closed-loop controller. This paper presents an alternative approach that enables the surgeon to feel fingertip contact deformations and vibrations while guaranteeing the teleoperator's stability. We implemented our cutaneous feedback solution on an Intuitive Surgical da Vinci Standard robot by mounting a SynTouch BioTac tactile sensor to the distal end of a surgical instrument and a custom cutaneous display to the corresponding master controller. As the user probes the remote environment, the contact deformations, dc pressure, and ac pressure (vibrations) sensed by the BioTac are directly mapped to input commands for the cutaneous device's motors using a model-free algorithm based on look-up tables. The cutaneous display continually moves, tilts, and vibrates a flat plate at the operator's fingertip to optimally reproduce the tactile sensations experienced by the BioTac. We tested the proposed approach by having eighteen subjects use the augmented da Vinci robot to palpate a heart model with no haptic feedback, only deformation feedback, and deformation plus vibration feedback. Fingertip deformation feedback significantly improved palpation performance by reducing the task completion time, the pressure exerted on the heart model, and the subject's absolute error in detecting the orientation of the embedded plastic stick. Vibration feedback significantly improved palpation performance only for the seven subjects who dragged the BioTac across the model, rather than pressing straight into it.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pacchierotti</LastName>
<ForeName>Claudio</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Prattichizzo</LastName>
<ForeName>Domenico</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kuchenbecker</LastName>
<ForeName>Katherine J</ForeName>
<Initials>KJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>IEEE Trans Biomed Eng</MedlineTA>
<NlmUniqueID>0012737</NlmUniqueID>
<ISSNLinking>0018-9294</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2015</Year>
<Month>7</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1109/TBME.2015.2455932</ArticleId>
<ArticleId IdType="pubmed">26186763</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000294 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000294 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26186763
   |texte=   Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:26186763" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024