Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Subjective Visual Vertical and the Subjective Haptic Vertical Access Different Gravity Estimates.

Identifieur interne : 000157 ( PubMed/Curation ); précédent : 000156; suivant : 000158

The Subjective Visual Vertical and the Subjective Haptic Vertical Access Different Gravity Estimates.

Auteurs : Lindsey E. Fraser [Canada] ; Bobbak Makooie [Canada] ; Laurence R. Harris [Canada]

Source :

RBID : pubmed:26716835

Abstract

The subjective visual vertical (SVV) and the subjective haptic vertical (SHV) both claim to probe the underlying perception of gravity. However, when the body is roll tilted these two measures evoke different patterns of errors with SVV generally becoming biased towards the body (A-effect, named for its discoverer, Hermann Rudolph Aubert) and SHV remaining accurate or becoming biased away from the body (E-effect, short for Entgegengesetzt-effect, meaning "opposite", i.e., opposite to the A-effect). We compared the two methods in a series of five experiments and provide evidence that the two measures access two different but related estimates of gravitational vertical. Experiment 1 compared SVV and SHV across three levels of whole-body tilt and found that SVV showed an A-effect at larger tilts while SHV was accurate. Experiment 2 found that tilting either the head or the trunk independently produced an A-effect in SVV while SHV remained accurate when the head was tilted on an upright body but showed an A-effect when the body was tilted below an upright head. Experiment 3 repeated these head/body configurations in the presence of vestibular noise induced by using disruptive galvanic vestibular stimulation (dGVS). dGVS abolished both SVV and SHV A-effects while evoking a massive E-effect in the SHV head tilt condition. Experiments 4 and 5 show that SVV and SHV do not combine in an optimally statistical fashion, but when vibration is applied to the dorsal neck muscles, integration becomes optimal. Overall our results suggest that SVV and SHV access distinct underlying gravity percepts based primarily on head and body position information respectively, consistent with a model proposed by Clemens and colleagues.

DOI: 10.1371/journal.pone.0145528
PubMed: 26716835

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26716835

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Subjective Visual Vertical and the Subjective Haptic Vertical Access Different Gravity Estimates.</title>
<author>
<name sortKey="Fraser, Lindsey E" sort="Fraser, Lindsey E" uniqKey="Fraser L" first="Lindsey E" last="Fraser">Lindsey E. Fraser</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Vision Research, York University, Toronto, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Center for Vision Research, York University, Toronto, Ontario</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Makooie, Bobbak" sort="Makooie, Bobbak" uniqKey="Makooie B" first="Bobbak" last="Makooie">Bobbak Makooie</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Vision Research, York University, Toronto, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Center for Vision Research, York University, Toronto, Ontario</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Harris, Laurence R" sort="Harris, Laurence R" uniqKey="Harris L" first="Laurence R" last="Harris">Laurence R. Harris</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Vision Research, York University, Toronto, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Center for Vision Research, York University, Toronto, Ontario</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="doi">10.1371/journal.pone.0145528</idno>
<idno type="RBID">pubmed:26716835</idno>
<idno type="pmid">26716835</idno>
<idno type="wicri:Area/PubMed/Corpus">000157</idno>
<idno type="wicri:Area/PubMed/Curation">000157</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Subjective Visual Vertical and the Subjective Haptic Vertical Access Different Gravity Estimates.</title>
<author>
<name sortKey="Fraser, Lindsey E" sort="Fraser, Lindsey E" uniqKey="Fraser L" first="Lindsey E" last="Fraser">Lindsey E. Fraser</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Vision Research, York University, Toronto, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Center for Vision Research, York University, Toronto, Ontario</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Makooie, Bobbak" sort="Makooie, Bobbak" uniqKey="Makooie B" first="Bobbak" last="Makooie">Bobbak Makooie</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Vision Research, York University, Toronto, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Center for Vision Research, York University, Toronto, Ontario</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Harris, Laurence R" sort="Harris, Laurence R" uniqKey="Harris L" first="Laurence R" last="Harris">Laurence R. Harris</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Vision Research, York University, Toronto, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Center for Vision Research, York University, Toronto, Ontario</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The subjective visual vertical (SVV) and the subjective haptic vertical (SHV) both claim to probe the underlying perception of gravity. However, when the body is roll tilted these two measures evoke different patterns of errors with SVV generally becoming biased towards the body (A-effect, named for its discoverer, Hermann Rudolph Aubert) and SHV remaining accurate or becoming biased away from the body (E-effect, short for Entgegengesetzt-effect, meaning "opposite", i.e., opposite to the A-effect). We compared the two methods in a series of five experiments and provide evidence that the two measures access two different but related estimates of gravitational vertical. Experiment 1 compared SVV and SHV across three levels of whole-body tilt and found that SVV showed an A-effect at larger tilts while SHV was accurate. Experiment 2 found that tilting either the head or the trunk independently produced an A-effect in SVV while SHV remained accurate when the head was tilted on an upright body but showed an A-effect when the body was tilted below an upright head. Experiment 3 repeated these head/body configurations in the presence of vestibular noise induced by using disruptive galvanic vestibular stimulation (dGVS). dGVS abolished both SVV and SHV A-effects while evoking a massive E-effect in the SHV head tilt condition. Experiments 4 and 5 show that SVV and SHV do not combine in an optimally statistical fashion, but when vibration is applied to the dorsal neck muscles, integration becomes optimal. Overall our results suggest that SVV and SHV access distinct underlying gravity percepts based primarily on head and body position information respectively, consistent with a model proposed by Clemens and colleagues.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="In-Process">
<PMID Version="1">26716835</PMID>
<DateCreated>
<Year>2015</Year>
<Month>12</Month>
<Day>31</Day>
</DateCreated>
<DateRevised>
<Year>2016</Year>
<Month>01</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>The Subjective Visual Vertical and the Subjective Haptic Vertical Access Different Gravity Estimates.</ArticleTitle>
<Pagination>
<MedlinePgn>e0145528</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0145528</ELocationID>
<Abstract>
<AbstractText>The subjective visual vertical (SVV) and the subjective haptic vertical (SHV) both claim to probe the underlying perception of gravity. However, when the body is roll tilted these two measures evoke different patterns of errors with SVV generally becoming biased towards the body (A-effect, named for its discoverer, Hermann Rudolph Aubert) and SHV remaining accurate or becoming biased away from the body (E-effect, short for Entgegengesetzt-effect, meaning "opposite", i.e., opposite to the A-effect). We compared the two methods in a series of five experiments and provide evidence that the two measures access two different but related estimates of gravitational vertical. Experiment 1 compared SVV and SHV across three levels of whole-body tilt and found that SVV showed an A-effect at larger tilts while SHV was accurate. Experiment 2 found that tilting either the head or the trunk independently produced an A-effect in SVV while SHV remained accurate when the head was tilted on an upright body but showed an A-effect when the body was tilted below an upright head. Experiment 3 repeated these head/body configurations in the presence of vestibular noise induced by using disruptive galvanic vestibular stimulation (dGVS). dGVS abolished both SVV and SHV A-effects while evoking a massive E-effect in the SHV head tilt condition. Experiments 4 and 5 show that SVV and SHV do not combine in an optimally statistical fashion, but when vibration is applied to the dorsal neck muscles, integration becomes optimal. Overall our results suggest that SVV and SHV access distinct underlying gravity percepts based primarily on head and body position information respectively, consistent with a model proposed by Clemens and colleagues.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fraser</LastName>
<ForeName>Lindsey E</ForeName>
<Initials>LE</Initials>
<AffiliationInfo>
<Affiliation>Center for Vision Research, York University, Toronto, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Makooie</LastName>
<ForeName>Bobbak</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Center for Vision Research, York University, Toronto, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harris</LastName>
<ForeName>Laurence R</ForeName>
<Initials>LR</Initials>
<AffiliationInfo>
<Affiliation>Center for Vision Research, York University, Toronto, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>12</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 1998 Jun;38(13):1989-99</RefSource>
<PMID Version="1">9797945</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2003 Nov 11;61(9):1260-2</RefSource>
<PMID Version="1">14610132</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vestib Res. 1999;9(2):145-52</RefSource>
<PMID Version="1">10378186</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2000 Jul;84(1):11-27</RefSource>
<PMID Version="1">10899179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2002 Jan 18;318(1):34-8</RefSource>
<PMID Version="1">11786219</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2002 Jan 24;415(6870):429-33</RefSource>
<PMID Version="1">11807554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2002 Apr;87(4):2064-73</RefSource>
<PMID Version="1">11929924</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2003 Feb;148(3):414-8</RefSource>
<PMID Version="1">12541151</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2003 May;150(1):40-9</RefSource>
<PMID Version="1">12698215</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 1999 Aug;39(16):2729-37</RefSource>
<PMID Version="1">10492833</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Psychol. 1957 Dec;70(4):493-511</RefSource>
<PMID Version="1">13487820</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Psychol. 1964 Sep;77:451-6</RefSource>
<PMID Version="1">14198668</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2006 Jun;172(2):208-20</RefSource>
<PMID Version="1">16432695</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2003 Jun;150(4):515-9</RefSource>
<PMID Version="1">12695873</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Naturwissenschaften. 1983 Jun;70(6):272-81</RefSource>
<PMID Version="1">6877388</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Psychol. 2004 Jan;60(1):1-10</RefSource>
<PMID Version="1">14692005</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Assoc Res Otolaryngol. 2004 Mar;5(1):25-31</RefSource>
<PMID Version="1">14569429</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 2004 Jun;96(6):2301-16</RefSource>
<PMID Version="1">15133017</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1970;93(2):313-28</RefSource>
<PMID Version="1">5310320</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 1983 Feb;33(2):113-20</RefSource>
<PMID Version="1">6844102</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 1987;10:363-401</RefSource>
<PMID Version="1">3105414</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vestib Res. 1992;2(1):15-30</RefSource>
<PMID Version="1">1342382</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 1994 Sep-Oct;4(5):555-72</RefSource>
<PMID Version="1">7833656</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Psychol. 1996 Jan 5;42(1-2):53-74</RefSource>
<PMID Version="1">8770370</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1997 Feb;113(2):353-60</RefSource>
<PMID Version="1">9063721</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Vision Res. 1997 Apr;37(8):1071-8</RefSource>
<PMID Version="1">9196725</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 1997 Sep 19;233(2-3):151-3</RefSource>
<PMID Version="1">9350855</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2006 Aug;173(3):364-73</RefSource>
<PMID Version="1">16628401</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2006 Oct;174(4):647-59</RefSource>
<PMID Version="1">16763834</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2007 May;179(2):263-90</RefSource>
<PMID Version="1">17136526</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2008 Sep;131(Pt 9):2401-13</RefSource>
<PMID Version="1">18678565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cortex. 2009 Jan;45(1):35-43</RefSource>
<PMID Version="1">19054504</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Vis. 2009;9(2):9.1-15</RefSource>
<PMID Version="1">19271919</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2009 Oct 2;462(1):85-8</RefSource>
<PMID Version="1">19545600</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2009 Sep;102(3):1657-71</RefSource>
<PMID Version="1">19571203</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2010 Feb;103(2):934-41</RefSource>
<PMID Version="1">20018837</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Neurosci. 2010;11:83</RefSource>
<PMID Version="1">20630097</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2010 Dec;133(Pt 12):3552-63</RefSource>
<PMID Version="1">21097492</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Apr 6;31(14):5365-77</RefSource>
<PMID Version="1">21471371</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2011 Oct;34(8):1337-44</RefSource>
<PMID Version="1">21978189</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Rehabil Res. 2011 Dec;34(4):307-15</RefSource>
<PMID Version="1">21959121</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(4):e34380</RefSource>
<PMID Version="1">22509295</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Neurosci. 2012;13:28</RefSource>
<PMID Version="1">22420467</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2012 Jun;107(11):3095-106</RefSource>
<PMID Version="1">22442575</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2012 Jul;50(8):1830-7</RefSource>
<PMID Version="1">22561888</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Neurosci. 2012;13:114</RefSource>
<PMID Version="1">22998034</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Atten Percept Psychophys. 2014 Jan;76(1):112-22</RefSource>
<PMID Version="1">24092357</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurophysiol Clin. 2014 Jan;44(1):41-8</RefSource>
<PMID Version="1">24502904</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Mot Skills. 1998 Oct;87(2):643-8</RefSource>
<PMID Version="1">9842617</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC4696803</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="ecollection">
<Year>2015</Year>
<Month></Month>
<Day></Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>8</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>12</Month>
<Day>4</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2015</Year>
<Month>12</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1371/journal.pone.0145528</ArticleId>
<ArticleId IdType="pii">PONE-D-15-35363</ArticleId>
<ArticleId IdType="pubmed">26716835</ArticleId>
<ArticleId IdType="pmc">PMC4696803</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000157 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000157 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26716835
   |texte=   The Subjective Visual Vertical and the Subjective Haptic Vertical Access Different Gravity Estimates.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:26716835" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024