Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The dominance of haptics over audition in controlling wrist velocity during striking movements.

Identifieur interne : 000122 ( PubMed/Curation ); précédent : 000121; suivant : 000123

The dominance of haptics over audition in controlling wrist velocity during striking movements.

Auteurs : Yinan Cao [Royaume-Uni] ; Bruno L. Giordano [Royaume-Uni] ; Federico Avanzini [Italie] ; Stephen Mcadams [Canada]

Source :

RBID : pubmed:26790425

Abstract

Skilled interactions with sounding objects, such as drumming, rely on resolving the uncertainty in the acoustical and tactual feedback signals generated by vibrating objects. Uncertainty may arise from mis-estimation of the objects' geometry-independent mechanical properties, such as surface stiffness. How multisensory information feeds back into the fine-tuning of sound-generating actions remains unexplored. Participants (percussionists, non-percussion musicians, or non-musicians) held a stylus and learned to control their wrist velocity while repeatedly striking a virtual sounding object whose surface stiffness was under computer control. Sensory feedback was manipulated by perturbing the surface stiffness specified by audition and haptics in a congruent or incongruent manner. The compensatory changes in striking velocity were measured as the motor effects of the sensory perturbations, and sensory dominance was quantified by the asymmetry of congruency effects across audition and haptics. A pronounced dominance of haptics over audition suggested a superior utility of somatosensation developed through long-term experience with object exploration. Large interindividual differences in the motor effects of haptic perturbation potentially arose from a differential reliance on the type of tactual prediction error for which participants tend to compensate: vibrotactile force versus object deformation. Musical experience did not have much of an effect beyond a slightly greater reliance on object deformation in mallet percussionists. The bias toward haptics in the presence of crossmodal perturbations was greater when participants appeared to rely on object deformation feedback, suggesting a weaker association between haptically sensed object deformation and the acoustical structure of concomitant sound during everyday experience of actions upon objects.

DOI: 10.1007/s00221-015-4529-9
PubMed: 26790425

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26790425

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The dominance of haptics over audition in controlling wrist velocity during striking movements.</title>
<author>
<name sortKey="Cao, Yinan" sort="Cao, Yinan" uniqKey="Cao Y" first="Yinan" last="Cao">Yinan Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crossmodal Research Laboratory, Department of Experimental Psychology, University of Oxford, Oxford, UK. yinan.cao@psy.ox.ac.uk.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crossmodal Research Laboratory, Department of Experimental Psychology, University of Oxford, Oxford</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Giordano, Bruno L" sort="Giordano, Bruno L" uniqKey="Giordano B" first="Bruno L" last="Giordano">Bruno L. Giordano</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland, UK. bruno.giordano@glasgow.ac.uk.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Avanzini, Federico" sort="Avanzini, Federico" uniqKey="Avanzini F" first="Federico" last="Avanzini">Federico Avanzini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Information Engineering, University of Padova, Padua, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Information Engineering, University of Padova, Padua</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mcadams, Stephen" sort="Mcadams, Stephen" uniqKey="Mcadams S" first="Stephen" last="Mcadams">Stephen Mcadams</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Music Research, Centre for Interdisciplinary Research in Music, Media and Technology, McGill University, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Music Research, Centre for Interdisciplinary Research in Music, Media and Technology, McGill University, Montreal, QC</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26790425</idno>
<idno type="pmid">26790425</idno>
<idno type="doi">10.1007/s00221-015-4529-9</idno>
<idno type="wicri:Area/PubMed/Corpus">000122</idno>
<idno type="wicri:Area/PubMed/Curation">000122</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The dominance of haptics over audition in controlling wrist velocity during striking movements.</title>
<author>
<name sortKey="Cao, Yinan" sort="Cao, Yinan" uniqKey="Cao Y" first="Yinan" last="Cao">Yinan Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crossmodal Research Laboratory, Department of Experimental Psychology, University of Oxford, Oxford, UK. yinan.cao@psy.ox.ac.uk.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Crossmodal Research Laboratory, Department of Experimental Psychology, University of Oxford, Oxford</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Giordano, Bruno L" sort="Giordano, Bruno L" uniqKey="Giordano B" first="Bruno L" last="Giordano">Bruno L. Giordano</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland, UK. bruno.giordano@glasgow.ac.uk.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Avanzini, Federico" sort="Avanzini, Federico" uniqKey="Avanzini F" first="Federico" last="Avanzini">Federico Avanzini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Information Engineering, University of Padova, Padua, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Information Engineering, University of Padova, Padua</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mcadams, Stephen" sort="Mcadams, Stephen" uniqKey="Mcadams S" first="Stephen" last="Mcadams">Stephen Mcadams</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Music Research, Centre for Interdisciplinary Research in Music, Media and Technology, McGill University, Montreal, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Music Research, Centre for Interdisciplinary Research in Music, Media and Technology, McGill University, Montreal, QC</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Experimental brain research</title>
<idno type="eISSN">1432-1106</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Skilled interactions with sounding objects, such as drumming, rely on resolving the uncertainty in the acoustical and tactual feedback signals generated by vibrating objects. Uncertainty may arise from mis-estimation of the objects' geometry-independent mechanical properties, such as surface stiffness. How multisensory information feeds back into the fine-tuning of sound-generating actions remains unexplored. Participants (percussionists, non-percussion musicians, or non-musicians) held a stylus and learned to control their wrist velocity while repeatedly striking a virtual sounding object whose surface stiffness was under computer control. Sensory feedback was manipulated by perturbing the surface stiffness specified by audition and haptics in a congruent or incongruent manner. The compensatory changes in striking velocity were measured as the motor effects of the sensory perturbations, and sensory dominance was quantified by the asymmetry of congruency effects across audition and haptics. A pronounced dominance of haptics over audition suggested a superior utility of somatosensation developed through long-term experience with object exploration. Large interindividual differences in the motor effects of haptic perturbation potentially arose from a differential reliance on the type of tactual prediction error for which participants tend to compensate: vibrotactile force versus object deformation. Musical experience did not have much of an effect beyond a slightly greater reliance on object deformation in mallet percussionists. The bias toward haptics in the presence of crossmodal perturbations was greater when participants appeared to rely on object deformation feedback, suggesting a weaker association between haptically sensed object deformation and the acoustical structure of concomitant sound during everyday experience of actions upon objects.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="In-Data-Review">
<PMID Version="1">26790425</PMID>
<DateCreated>
<Year>2016</Year>
<Month>03</Month>
<Day>10</Day>
</DateCreated>
<DateRevised>
<Year>2016</Year>
<Month>04</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1106</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>234</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Experimental brain research</Title>
<ISOAbbreviation>Exp Brain Res</ISOAbbreviation>
</Journal>
<ArticleTitle>The dominance of haptics over audition in controlling wrist velocity during striking movements.</ArticleTitle>
<Pagination>
<MedlinePgn>1145-58</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00221-015-4529-9</ELocationID>
<Abstract>
<AbstractText>Skilled interactions with sounding objects, such as drumming, rely on resolving the uncertainty in the acoustical and tactual feedback signals generated by vibrating objects. Uncertainty may arise from mis-estimation of the objects' geometry-independent mechanical properties, such as surface stiffness. How multisensory information feeds back into the fine-tuning of sound-generating actions remains unexplored. Participants (percussionists, non-percussion musicians, or non-musicians) held a stylus and learned to control their wrist velocity while repeatedly striking a virtual sounding object whose surface stiffness was under computer control. Sensory feedback was manipulated by perturbing the surface stiffness specified by audition and haptics in a congruent or incongruent manner. The compensatory changes in striking velocity were measured as the motor effects of the sensory perturbations, and sensory dominance was quantified by the asymmetry of congruency effects across audition and haptics. A pronounced dominance of haptics over audition suggested a superior utility of somatosensation developed through long-term experience with object exploration. Large interindividual differences in the motor effects of haptic perturbation potentially arose from a differential reliance on the type of tactual prediction error for which participants tend to compensate: vibrotactile force versus object deformation. Musical experience did not have much of an effect beyond a slightly greater reliance on object deformation in mallet percussionists. The bias toward haptics in the presence of crossmodal perturbations was greater when participants appeared to rely on object deformation feedback, suggesting a weaker association between haptically sensed object deformation and the acoustical structure of concomitant sound during everyday experience of actions upon objects.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Yinan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Crossmodal Research Laboratory, Department of Experimental Psychology, University of Oxford, Oxford, UK. yinan.cao@psy.ox.ac.uk.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Music Research, Centre for Interdisciplinary Research in Music, Media and Technology, McGill University, Montreal, QC, Canada. yinan.cao@psy.ox.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Giordano</LastName>
<ForeName>Bruno L</ForeName>
<Initials>BL</Initials>
<AffiliationInfo>
<Affiliation>Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland, UK. bruno.giordano@glasgow.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Avanzini</LastName>
<ForeName>Federico</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Information Engineering, University of Padova, Padua, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McAdams</LastName>
<ForeName>Stephen</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Music Research, Centre for Interdisciplinary Research in Music, Media and Technology, McGill University, Montreal, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>01</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Exp Brain Res</MedlineTA>
<NlmUniqueID>0043312</NlmUniqueID>
<ISSNLinking>0014-4819</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Mar 31;24(13):3223-34</RefSource>
<PMID Version="1">15056701</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Aug 6;23(18):6982-92</RefSource>
<PMID Version="1">12904459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Mot Skills. 1974 Feb;38(1):15-23</RefSource>
<PMID Version="1">4815486</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 1979;8(1):93-103</RefSource>
<PMID Version="1">432084</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Bull. 1980 Nov;88(3):638-67</RefSource>
<PMID Version="1">7003641</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Perception. 1993;22(5):597-621</RefSource>
<PMID Version="1">8414884</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1997 Feb 15;17(4):1519-28</RefSource>
<PMID Version="1">9006993</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Rev. 1962 Nov;69:477-91</RefSource>
<PMID Version="1">13947730</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2005 Apr;162(2):172-80</RefSource>
<PMID Version="1">15791465</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2007;2(9):e943</RefSource>
<PMID Version="1">17895984</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acoust Soc Am. 2007 Oct;122(4):2306-19</RefSource>
<PMID Version="1">17902866</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2009 Aug 7;459(2):69-73</RefSource>
<PMID Version="1">19409958</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Jul 1;29(26):8419-28</RefSource>
<PMID Version="1">19571132</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Sep 30;29(39):12265-74</RefSource>
<PMID Version="1">19793985</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Hum Percept Perform. 2010 Apr;36(2):462-76</RefSource>
<PMID Version="1">20364930</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 2010;33:89-108</RefSource>
<PMID Version="1">20367317</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acoust Soc Am. 2011 Apr;129(4):2104-11</RefSource>
<PMID Version="1">21476666</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):E1441-50</RefSource>
<PMID Version="1">22114191</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Jan 18;32(3):1056-60</RefSource>
<PMID Version="1">22262903</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acoust Soc Am. 2012 May;131(5):4002-12</RefSource>
<PMID Version="1">22559373</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Jul 4;32(27):9351-8</RefSource>
<PMID Version="1">22764242</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014;9(1):e85743</RefSource>
<PMID Version="1">24465675</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Hum Percept Perform. 2004 Apr;30(2):330-45</RefSource>
<PMID Version="1">15053692</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Am Acad Audiol. 2000 Feb;11(2):64-6</RefSource>
<PMID Version="1">10685671</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2000 Apr;83(4):1777-86</RefSource>
<PMID Version="1">10758090</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2000 Nov;3 Suppl:1192-8</RefSource>
<PMID Version="1">11127837</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Percept Psychophys. 2002 May;64(4):616-30</RefSource>
<PMID Version="1">12132762</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2002 Sep;146(2):161-71</RefSource>
<PMID Version="1">12195518</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cogn Affect Behav Neurosci. 2004 Jun;4(2):208-17</RefSource>
<PMID Version="1">15460927</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC4785215</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Crossmodal congruency</Keyword>
<Keyword MajorTopicYN="N">Motor control</Keyword>
<Keyword MajorTopicYN="N">Striking objects</Keyword>
<Keyword MajorTopicYN="N">Surface stiffness</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>12</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2016</Year>
<Month>1</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>1</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26790425</ArticleId>
<ArticleId IdType="doi">10.1007/s00221-015-4529-9</ArticleId>
<ArticleId IdType="pii">10.1007/s00221-015-4529-9</ArticleId>
<ArticleId IdType="pmc">PMC4785215</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000122 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000122 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26790425
   |texte=   The dominance of haptics over audition in controlling wrist velocity during striking movements.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:26790425" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024