Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bionic Control of Cheetah Bounding with a Segmented Spine.

Identifieur interne : 000042 ( PubMed/Curation ); précédent : 000041; suivant : 000043

Bionic Control of Cheetah Bounding with a Segmented Spine.

Auteurs : Chunlei Wang [République populaire de Chine] ; Shigang Wang [République populaire de Chine]

Source :

RBID : pubmed:27065749

Abstract

A cheetah model is built to mimic real cheetah and its mechanical and dimensional parameters are derived from the real cheetah. In particular, two joints in spine and four joints in a leg are used to realize the motion of segmented spine and segmented legs which are the key properties of the cheetah bounding. For actuating and stabilizing the bounding gait of cheetah, we present a bioinspired controller based on the state-machine. The controller mainly mimics the function of the cerebellum to plan the locomotion and keep the body balance. The haptic sensor and proprioception system are used to detect the trigger of the phase transition. Besides, the vestibular modulation could perceive the pitching angle of the trunk. At last, the cerebellum acts as the CPU to operate the information from the biological sensors. In addition, the calculated results are transmitted to the low-level controller to actuate and stabilize the cheetah bounding. Moreover, the delay feedback control method is employed to plan the motion of the leg joints to stabilize the pitching motion of trunk with the stability criterion. Finally, the cyclic cheetah bounding with biological properties is realized. Meanwhile, the stability and dynamic properties of the cheetah bounding gait are analyzed elaborately.

DOI: 10.1155/2016/5031586
PubMed: 27065749

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:27065749

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bionic Control of Cheetah Bounding with a Segmented Spine.</title>
<author>
<name sortKey="Wang, Chunlei" sort="Wang, Chunlei" uniqKey="Wang C" first="Chunlei" last="Wang">Chunlei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shigang" sort="Wang, Shigang" uniqKey="Wang S" first="Shigang" last="Wang">Shigang Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="doi">10.1155/2016/5031586</idno>
<idno type="RBID">pubmed:27065749</idno>
<idno type="pmid">27065749</idno>
<idno type="wicri:Area/PubMed/Corpus">000042</idno>
<idno type="wicri:Area/PubMed/Curation">000042</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bionic Control of Cheetah Bounding with a Segmented Spine.</title>
<author>
<name sortKey="Wang, Chunlei" sort="Wang, Chunlei" uniqKey="Wang C" first="Chunlei" last="Wang">Chunlei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shigang" sort="Wang, Shigang" uniqKey="Wang S" first="Shigang" last="Wang">Shigang Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied bionics and biomechanics</title>
<idno type="ISSN">1176-2322</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A cheetah model is built to mimic real cheetah and its mechanical and dimensional parameters are derived from the real cheetah. In particular, two joints in spine and four joints in a leg are used to realize the motion of segmented spine and segmented legs which are the key properties of the cheetah bounding. For actuating and stabilizing the bounding gait of cheetah, we present a bioinspired controller based on the state-machine. The controller mainly mimics the function of the cerebellum to plan the locomotion and keep the body balance. The haptic sensor and proprioception system are used to detect the trigger of the phase transition. Besides, the vestibular modulation could perceive the pitching angle of the trunk. At last, the cerebellum acts as the CPU to operate the information from the biological sensors. In addition, the calculated results are transmitted to the low-level controller to actuate and stabilize the cheetah bounding. Moreover, the delay feedback control method is employed to plan the motion of the leg joints to stabilize the pitching motion of trunk with the stability criterion. Finally, the cyclic cheetah bounding with biological properties is realized. Meanwhile, the stability and dynamic properties of the cheetah bounding gait are analyzed elaborately.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">27065749</PMID>
<DateCreated>
<Year>2016</Year>
<Month>04</Month>
<Day>12</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>04</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1176-2322</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>2016</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Applied bionics and biomechanics</Title>
<ISOAbbreviation>Appl Bionics Biomech</ISOAbbreviation>
</Journal>
<ArticleTitle>Bionic Control of Cheetah Bounding with a Segmented Spine.</ArticleTitle>
<Pagination>
<MedlinePgn>5031586</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1155/2016/5031586</ELocationID>
<Abstract>
<AbstractText>A cheetah model is built to mimic real cheetah and its mechanical and dimensional parameters are derived from the real cheetah. In particular, two joints in spine and four joints in a leg are used to realize the motion of segmented spine and segmented legs which are the key properties of the cheetah bounding. For actuating and stabilizing the bounding gait of cheetah, we present a bioinspired controller based on the state-machine. The controller mainly mimics the function of the cerebellum to plan the locomotion and keep the body balance. The haptic sensor and proprioception system are used to detect the trigger of the phase transition. Besides, the vestibular modulation could perceive the pitching angle of the trunk. At last, the cerebellum acts as the CPU to operate the information from the biological sensors. In addition, the calculated results are transmitted to the low-level controller to actuate and stabilize the cheetah bounding. Moreover, the delay feedback control method is employed to plan the motion of the leg joints to stabilize the pitching motion of trunk with the stability criterion. Finally, the cyclic cheetah bounding with biological properties is realized. Meanwhile, the stability and dynamic properties of the cheetah bounding gait are analyzed elaborately.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Chunlei</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Shigang</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Egypt</Country>
<MedlineTA>Appl Bionics Biomech</MedlineTA>
<NlmUniqueID>101208624</NlmUniqueID>
<ISSNLinking>1176-2322</ISSNLinking>
</MedlineJournalInfo>
<OtherID Source="NLM">PMC4808829</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>10</Month>
<Day>9</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>1</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>1</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2016</Year>
<Month>2</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1155/2016/5031586</ArticleId>
<ArticleId IdType="pubmed">27065749</ArticleId>
<ArticleId IdType="pmc">PMC4808829</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000042 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000042 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:27065749
   |texte=   Bionic Control of Cheetah Bounding with a Segmented Spine.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:27065749" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024