Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Artificial kinesthetic systems for telerehabilitation.

Identifieur interne : 001990 ( PubMed/Corpus ); précédent : 001989; suivant : 001991

Artificial kinesthetic systems for telerehabilitation.

Auteurs : D. De Rossi ; F. Lorussi ; E P Scilingo ; F. Carpi ; A. Tognetti ; M. Tesconi

Source :

RBID : pubmed:15718648

English descriptors

Abstract

Artificial sensory motor systems are now under development in a truly wearable form using an innovative technology based on electroactive polymers. The integration of electroactive polymeric materials into wearable garments endorses them with strain sensing and mechanical actuation properties. The methodology underlying the design of haptic garments has necessarily to rely on knowledge of biological perceptual and motor processes which is, however, scattered and fragmented. Notwithstanding, the combined use of new polymeric electroactive materials in the form of fibers and fabrics with emerging concepts of biomimetic nature in sensor data analysis, pseudomuscular actuator control and biomechanical design may not only provide new avenues toward the realization of truly wearable kinesthetic and haptic interfaces, but also clues and instruments to better comprehend human manipulative and gestual functions. In this talk the conception, early stage implementation and preliminary testing of a fabric-based wearable interface endowed with spatially redundant strain sensing and distributed actuation are illustrated with reference to a wearable upper limb artificial kinesthesia system, intended to be used in telerehabilitation of post stroke patient.

PubMed: 15718648

Links to Exploration step

pubmed:15718648

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Artificial kinesthetic systems for telerehabilitation.</title>
<author>
<name sortKey="De Rossi, D" sort="De Rossi, D" uniqKey="De Rossi D" first="D" last="De Rossi">D. De Rossi</name>
<affiliation>
<nlm:affiliation>Interdepartmental Research Center E. Piaggio, Via Diotisalvi, 56126, Pisa, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lorussi, F" sort="Lorussi, F" uniqKey="Lorussi F" first="F" last="Lorussi">F. Lorussi</name>
</author>
<author>
<name sortKey="Scilingo, E P" sort="Scilingo, E P" uniqKey="Scilingo E" first="E P" last="Scilingo">E P Scilingo</name>
</author>
<author>
<name sortKey="Carpi, F" sort="Carpi, F" uniqKey="Carpi F" first="F" last="Carpi">F. Carpi</name>
</author>
<author>
<name sortKey="Tognetti, A" sort="Tognetti, A" uniqKey="Tognetti A" first="A" last="Tognetti">A. Tognetti</name>
</author>
<author>
<name sortKey="Tesconi, M" sort="Tesconi, M" uniqKey="Tesconi M" first="M" last="Tesconi">M. Tesconi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15718648</idno>
<idno type="pmid">15718648</idno>
<idno type="wicri:Area/PubMed/Corpus">001990</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Artificial kinesthetic systems for telerehabilitation.</title>
<author>
<name sortKey="De Rossi, D" sort="De Rossi, D" uniqKey="De Rossi D" first="D" last="De Rossi">D. De Rossi</name>
<affiliation>
<nlm:affiliation>Interdepartmental Research Center E. Piaggio, Via Diotisalvi, 56126, Pisa, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lorussi, F" sort="Lorussi, F" uniqKey="Lorussi F" first="F" last="Lorussi">F. Lorussi</name>
</author>
<author>
<name sortKey="Scilingo, E P" sort="Scilingo, E P" uniqKey="Scilingo E" first="E P" last="Scilingo">E P Scilingo</name>
</author>
<author>
<name sortKey="Carpi, F" sort="Carpi, F" uniqKey="Carpi F" first="F" last="Carpi">F. Carpi</name>
</author>
<author>
<name sortKey="Tognetti, A" sort="Tognetti, A" uniqKey="Tognetti A" first="A" last="Tognetti">A. Tognetti</name>
</author>
<author>
<name sortKey="Tesconi, M" sort="Tesconi, M" uniqKey="Tesconi M" first="M" last="Tesconi">M. Tesconi</name>
</author>
</analytic>
<series>
<title level="j">Studies in health technology and informatics</title>
<idno type="ISSN">0926-9630</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Clothing</term>
<term>Humans</term>
<term>Kinesthesis</term>
<term>Monitoring, Ambulatory (instrumentation)</term>
<term>Monitoring, Ambulatory (methods)</term>
<term>Polymers</term>
<term>Stroke (physiopathology)</term>
<term>Stroke (rehabilitation)</term>
<term>Telemedicine (instrumentation)</term>
<term>Telemedicine (methods)</term>
<term>Textiles</term>
<term>Upper Extremity (physiopathology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Polymers</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Monitoring, Ambulatory</term>
<term>Telemedicine</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Monitoring, Ambulatory</term>
<term>Telemedicine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Stroke</term>
<term>Upper Extremity</term>
</keywords>
<keywords scheme="MESH" qualifier="rehabilitation" xml:lang="en">
<term>Stroke</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Clothing</term>
<term>Humans</term>
<term>Kinesthesis</term>
<term>Textiles</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Artificial sensory motor systems are now under development in a truly wearable form using an innovative technology based on electroactive polymers. The integration of electroactive polymeric materials into wearable garments endorses them with strain sensing and mechanical actuation properties. The methodology underlying the design of haptic garments has necessarily to rely on knowledge of biological perceptual and motor processes which is, however, scattered and fragmented. Notwithstanding, the combined use of new polymeric electroactive materials in the form of fibers and fabrics with emerging concepts of biomimetic nature in sensor data analysis, pseudomuscular actuator control and biomechanical design may not only provide new avenues toward the realization of truly wearable kinesthetic and haptic interfaces, but also clues and instruments to better comprehend human manipulative and gestual functions. In this talk the conception, early stage implementation and preliminary testing of a fabric-based wearable interface endowed with spatially redundant strain sensing and distributed actuation are illustrated with reference to a wearable upper limb artificial kinesthesia system, intended to be used in telerehabilitation of post stroke patient.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">15718648</PMID>
<DateCreated>
<Year>2005</Year>
<Month>02</Month>
<Day>18</Day>
</DateCreated>
<DateCompleted>
<Year>2005</Year>
<Month>03</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2007</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0926-9630</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>108</Volume>
<PubDate>
<Year>2004</Year>
</PubDate>
</JournalIssue>
<Title>Studies in health technology and informatics</Title>
<ISOAbbreviation>Stud Health Technol Inform</ISOAbbreviation>
</Journal>
<ArticleTitle>Artificial kinesthetic systems for telerehabilitation.</ArticleTitle>
<Pagination>
<MedlinePgn>209-13</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Artificial sensory motor systems are now under development in a truly wearable form using an innovative technology based on electroactive polymers. The integration of electroactive polymeric materials into wearable garments endorses them with strain sensing and mechanical actuation properties. The methodology underlying the design of haptic garments has necessarily to rely on knowledge of biological perceptual and motor processes which is, however, scattered and fragmented. Notwithstanding, the combined use of new polymeric electroactive materials in the form of fibers and fabrics with emerging concepts of biomimetic nature in sensor data analysis, pseudomuscular actuator control and biomechanical design may not only provide new avenues toward the realization of truly wearable kinesthetic and haptic interfaces, but also clues and instruments to better comprehend human manipulative and gestual functions. In this talk the conception, early stage implementation and preliminary testing of a fabric-based wearable interface endowed with spatially redundant strain sensing and distributed actuation are illustrated with reference to a wearable upper limb artificial kinesthesia system, intended to be used in telerehabilitation of post stroke patient.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>De Rossi</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Interdepartmental Research Center E. Piaggio, Via Diotisalvi, 56126, Pisa, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lorussi</LastName>
<ForeName>F</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Scilingo</LastName>
<ForeName>E P</ForeName>
<Initials>EP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Carpi</LastName>
<ForeName>F</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tognetti</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tesconi</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Stud Health Technol Inform</MedlineTA>
<NlmUniqueID>9214582</NlmUniqueID>
<ISSNLinking>0926-9630</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011108">Polymers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>T</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D003020">Clothing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D007699">Kinesthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018670">Monitoring, Ambulatory</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011108">Polymers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D020521">Stroke</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000503">physiopathology</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000534">rehabilitation</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017216">Telemedicine</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013784">Textiles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D034941">Upper Extremity</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000503">physiopathology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15718648</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001990 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001990 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:15718648
   |texte=   Artificial kinesthetic systems for telerehabilitation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:15718648" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024