Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Virtual-reality-based laparoscopic surgical training: the role of simulation fidelity in haptic feedback.

Identifieur interne : 001896 ( PubMed/Corpus ); précédent : 001895; suivant : 001897

Virtual-reality-based laparoscopic surgical training: the role of simulation fidelity in haptic feedback.

Auteurs : Hyun K. Kim ; David W. Rattner ; Mandayam A. Srinivasan

Source :

RBID : pubmed:16192064

English descriptors

Abstract

Although there have been significant advances in the development of virtual-reality-based surgical simulations, there remain fundamental questions concerning the fidelity required for effective surgical training. A dual-station experimental platform was built for the purpose of investigating these fidelity requirements. Analogous laparoscopic surgical tasks were implemented on a virtual station and a real station, with the virtual station modeling the real environment with various degrees of fidelity. After measuring the subjects' initial performance on the real station, different groups of subjects were trained on the virtual station under a variety of conditions and finally tested on the real station. Experiments involved bimanual pushing and cutting tasks on a nonlinear elastic object. The results showed that force feedback results in significantly improved training transfer as compared to training without force feedback. The training effectiveness of a linear approximation model was approximately the same as that of a more accurate nonlinear model.

DOI: 10.3109/10929080500066997
PubMed: 16192064

Links to Exploration step

pubmed:16192064

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Virtual-reality-based laparoscopic surgical training: the role of simulation fidelity in haptic feedback.</title>
<author>
<name sortKey="Kim, Hyun K" sort="Kim, Hyun K" uniqKey="Kim H" first="Hyun K" last="Kim">Hyun K. Kim</name>
<affiliation>
<nlm:affiliation>The Touch Lab, Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, Massachusetts, USA. hyunkim@mit.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rattner, David W" sort="Rattner, David W" uniqKey="Rattner D" first="David W" last="Rattner">David W. Rattner</name>
</author>
<author>
<name sortKey="Srinivasan, Mandayam A" sort="Srinivasan, Mandayam A" uniqKey="Srinivasan M" first="Mandayam A" last="Srinivasan">Mandayam A. Srinivasan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="doi">10.3109/10929080500066997</idno>
<idno type="RBID">pubmed:16192064</idno>
<idno type="pmid">16192064</idno>
<idno type="wicri:Area/PubMed/Corpus">001896</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Virtual-reality-based laparoscopic surgical training: the role of simulation fidelity in haptic feedback.</title>
<author>
<name sortKey="Kim, Hyun K" sort="Kim, Hyun K" uniqKey="Kim H" first="Hyun K" last="Kim">Hyun K. Kim</name>
<affiliation>
<nlm:affiliation>The Touch Lab, Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, Massachusetts, USA. hyunkim@mit.edu</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rattner, David W" sort="Rattner, David W" uniqKey="Rattner D" first="David W" last="Rattner">David W. Rattner</name>
</author>
<author>
<name sortKey="Srinivasan, Mandayam A" sort="Srinivasan, Mandayam A" uniqKey="Srinivasan M" first="Mandayam A" last="Srinivasan">Mandayam A. Srinivasan</name>
</author>
</analytic>
<series>
<title level="j">Computer aided surgery : official journal of the International Society for Computer Aided Surgery</title>
<idno type="ISSN">1092-9088</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analysis of Variance</term>
<term>Computer Simulation</term>
<term>Feedback</term>
<term>Humans</term>
<term>Laparoscopy (methods)</term>
<term>Linear Models</term>
<term>Minimally Invasive Surgical Procedures (education)</term>
<term>User-Computer Interface</term>
</keywords>
<keywords scheme="MESH" qualifier="education" xml:lang="en">
<term>Minimally Invasive Surgical Procedures</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Laparoscopy</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Analysis of Variance</term>
<term>Computer Simulation</term>
<term>Feedback</term>
<term>Humans</term>
<term>Linear Models</term>
<term>User-Computer Interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Although there have been significant advances in the development of virtual-reality-based surgical simulations, there remain fundamental questions concerning the fidelity required for effective surgical training. A dual-station experimental platform was built for the purpose of investigating these fidelity requirements. Analogous laparoscopic surgical tasks were implemented on a virtual station and a real station, with the virtual station modeling the real environment with various degrees of fidelity. After measuring the subjects' initial performance on the real station, different groups of subjects were trained on the virtual station under a variety of conditions and finally tested on the real station. Experiments involved bimanual pushing and cutting tasks on a nonlinear elastic object. The results showed that force feedback results in significantly improved training transfer as compared to training without force feedback. The training effectiveness of a linear approximation model was approximately the same as that of a more accurate nonlinear model.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">16192064</PMID>
<DateCreated>
<Year>2005</Year>
<Month>09</Month>
<Day>29</Day>
</DateCreated>
<DateCompleted>
<Year>2006</Year>
<Month>01</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1092-9088</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2004</Year>
</PubDate>
</JournalIssue>
<Title>Computer aided surgery : official journal of the International Society for Computer Aided Surgery</Title>
<ISOAbbreviation>Comput. Aided Surg.</ISOAbbreviation>
</Journal>
<ArticleTitle>Virtual-reality-based laparoscopic surgical training: the role of simulation fidelity in haptic feedback.</ArticleTitle>
<Pagination>
<MedlinePgn>227-34</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Although there have been significant advances in the development of virtual-reality-based surgical simulations, there remain fundamental questions concerning the fidelity required for effective surgical training. A dual-station experimental platform was built for the purpose of investigating these fidelity requirements. Analogous laparoscopic surgical tasks were implemented on a virtual station and a real station, with the virtual station modeling the real environment with various degrees of fidelity. After measuring the subjects' initial performance on the real station, different groups of subjects were trained on the virtual station under a variety of conditions and finally tested on the real station. Experiments involved bimanual pushing and cutting tasks on a nonlinear elastic object. The results showed that force feedback results in significantly improved training transfer as compared to training without force feedback. The training effectiveness of a linear approximation model was approximately the same as that of a more accurate nonlinear model.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Hyun K</ForeName>
<Initials>HK</Initials>
<AffiliationInfo>
<Affiliation>The Touch Lab, Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, Massachusetts, USA. hyunkim@mit.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rattner</LastName>
<ForeName>David W</ForeName>
<Initials>DW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Srinivasan</LastName>
<ForeName>Mandayam A</ForeName>
<Initials>MA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Comput Aided Surg</MedlineTA>
<NlmUniqueID>9708375</NlmUniqueID>
<ISSNLinking>1092-9088</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000704">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D005246">Feedback</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010535">Laparoscopy</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016014">Linear Models</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019060">Minimally Invasive Surgical Procedures</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000193">education</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>1</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">L70R30984PV303N2</ArticleId>
<ArticleId IdType="doi">10.3109/10929080500066997</ArticleId>
<ArticleId IdType="pubmed">16192064</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001896 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001896 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16192064
   |texte=   Virtual-reality-based laparoscopic surgical training: the role of simulation fidelity in haptic feedback.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:16192064" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024