Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neuronal substrates of haptic shape encoding and matching: a functional magnetic resonance imaging study.

Identifieur interne : 001518 ( PubMed/Corpus ); précédent : 001517; suivant : 001519

Neuronal substrates of haptic shape encoding and matching: a functional magnetic resonance imaging study.

Auteurs : A. Miquée ; C. Xerri ; C. Rainville ; J L Anton ; B. Nazarian ; M. Roth ; Y. Zennou-Azogui

Source :

RBID : pubmed:18255234

English descriptors

Abstract

We used functional magnetic resonance imaging to differentiate cerebral areas involved in two different dimensions of haptic shape perception: encoding and matching. For this purpose, healthy right-handed subjects were asked to compare pairs of complex 2D geometrical tactile shapes presented in a sequential two-alternative forced-choice task. Shape encoding involved a large sensorimotor network including the primary (SI) and secondary (SII) somatosensory cortex, the anterior part of the intraparietal sulcus (IPA) and of the supramarginal gyrus (SMG), regions previously associated with somatosensory shape perception. Activations were also observed in posterior parietal regions (aSPL), motor and premotor regions (primary motor cortex (MI), ventral premotor cortex, dorsal premotor cortex, supplementary motor area), as well as prefrontal areas (aPFC, VLPFC), parietal-occipital cortex (POC) and cerebellum. We propose that this distributed network reflects construction and maintenance of sensorimotor traces of exploration hand movements during complex shape encoding, and subsequent transformation of these traces into a more abstract shape representation using kinesthetic imagery. Moreover, haptic shape encoding was found to activate the left lateral occipital complex (LOC), thus corroborating the implication of this extrastriate visual area in multisensory shape representation, besides its contribution to visual imagery. Furthermore, left hemisphere predominance was shown during encoding, whereas right hemisphere predominance was associated with the matching process. Activations of SI, MI, PMd and aSPL, which were predominant in the left hemisphere during the encoding, were shifted to the right hemisphere during the matching. In addition, new activations emerged (right dorsolateral pre-frontal cortex, bilateral inferior parietal lobe, right SII) suggesting their specific involvement during 2D geometrical shape matching.

DOI: 10.1016/j.neuroscience.2007.12.021
PubMed: 18255234

Links to Exploration step

pubmed:18255234

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neuronal substrates of haptic shape encoding and matching: a functional magnetic resonance imaging study.</title>
<author>
<name sortKey="Miquee, A" sort="Miquee, A" uniqKey="Miquee A" first="A" last="Miquée">A. Miquée</name>
<affiliation>
<nlm:affiliation>Laboratoire de Neurobiologie Intégrative et Adaptative (UMR 6149), Aix-Marseille Université/Université de Provence/CNRS, Centre St-Charles, Pôle 3C, case B, 3, Place Victor Hugo, 13331 Marseille 03, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xerri, C" sort="Xerri, C" uniqKey="Xerri C" first="C" last="Xerri">C. Xerri</name>
</author>
<author>
<name sortKey="Rainville, C" sort="Rainville, C" uniqKey="Rainville C" first="C" last="Rainville">C. Rainville</name>
</author>
<author>
<name sortKey="Anton, J L" sort="Anton, J L" uniqKey="Anton J" first="J L" last="Anton">J L Anton</name>
</author>
<author>
<name sortKey="Nazarian, B" sort="Nazarian, B" uniqKey="Nazarian B" first="B" last="Nazarian">B. Nazarian</name>
</author>
<author>
<name sortKey="Roth, M" sort="Roth, M" uniqKey="Roth M" first="M" last="Roth">M. Roth</name>
</author>
<author>
<name sortKey="Zennou Azogui, Y" sort="Zennou Azogui, Y" uniqKey="Zennou Azogui Y" first="Y" last="Zennou-Azogui">Y. Zennou-Azogui</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="doi">10.1016/j.neuroscience.2007.12.021</idno>
<idno type="RBID">pubmed:18255234</idno>
<idno type="pmid">18255234</idno>
<idno type="wicri:Area/PubMed/Corpus">001518</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Neuronal substrates of haptic shape encoding and matching: a functional magnetic resonance imaging study.</title>
<author>
<name sortKey="Miquee, A" sort="Miquee, A" uniqKey="Miquee A" first="A" last="Miquée">A. Miquée</name>
<affiliation>
<nlm:affiliation>Laboratoire de Neurobiologie Intégrative et Adaptative (UMR 6149), Aix-Marseille Université/Université de Provence/CNRS, Centre St-Charles, Pôle 3C, case B, 3, Place Victor Hugo, 13331 Marseille 03, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Xerri, C" sort="Xerri, C" uniqKey="Xerri C" first="C" last="Xerri">C. Xerri</name>
</author>
<author>
<name sortKey="Rainville, C" sort="Rainville, C" uniqKey="Rainville C" first="C" last="Rainville">C. Rainville</name>
</author>
<author>
<name sortKey="Anton, J L" sort="Anton, J L" uniqKey="Anton J" first="J L" last="Anton">J L Anton</name>
</author>
<author>
<name sortKey="Nazarian, B" sort="Nazarian, B" uniqKey="Nazarian B" first="B" last="Nazarian">B. Nazarian</name>
</author>
<author>
<name sortKey="Roth, M" sort="Roth, M" uniqKey="Roth M" first="M" last="Roth">M. Roth</name>
</author>
<author>
<name sortKey="Zennou Azogui, Y" sort="Zennou Azogui, Y" uniqKey="Zennou Azogui Y" first="Y" last="Zennou-Azogui">Y. Zennou-Azogui</name>
</author>
</analytic>
<series>
<title level="j">Neuroscience</title>
<idno type="ISSN">0306-4522</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Brain (physiology)</term>
<term>Brain Mapping</term>
<term>Form Perception (physiology)</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Magnetic Resonance Imaging</term>
<term>Male</term>
<term>Neurons (physiology)</term>
<term>Pattern Recognition, Visual (physiology)</term>
<term>Photic Stimulation</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Brain</term>
<term>Form Perception</term>
<term>Neurons</term>
<term>Pattern Recognition, Visual</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Brain Mapping</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Magnetic Resonance Imaging</term>
<term>Male</term>
<term>Photic Stimulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We used functional magnetic resonance imaging to differentiate cerebral areas involved in two different dimensions of haptic shape perception: encoding and matching. For this purpose, healthy right-handed subjects were asked to compare pairs of complex 2D geometrical tactile shapes presented in a sequential two-alternative forced-choice task. Shape encoding involved a large sensorimotor network including the primary (SI) and secondary (SII) somatosensory cortex, the anterior part of the intraparietal sulcus (IPA) and of the supramarginal gyrus (SMG), regions previously associated with somatosensory shape perception. Activations were also observed in posterior parietal regions (aSPL), motor and premotor regions (primary motor cortex (MI), ventral premotor cortex, dorsal premotor cortex, supplementary motor area), as well as prefrontal areas (aPFC, VLPFC), parietal-occipital cortex (POC) and cerebellum. We propose that this distributed network reflects construction and maintenance of sensorimotor traces of exploration hand movements during complex shape encoding, and subsequent transformation of these traces into a more abstract shape representation using kinesthetic imagery. Moreover, haptic shape encoding was found to activate the left lateral occipital complex (LOC), thus corroborating the implication of this extrastriate visual area in multisensory shape representation, besides its contribution to visual imagery. Furthermore, left hemisphere predominance was shown during encoding, whereas right hemisphere predominance was associated with the matching process. Activations of SI, MI, PMd and aSPL, which were predominant in the left hemisphere during the encoding, were shifted to the right hemisphere during the matching. In addition, new activations emerged (right dorsolateral pre-frontal cortex, bilateral inferior parietal lobe, right SII) suggesting their specific involvement during 2D geometrical shape matching.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">18255234</PMID>
<DateCreated>
<Year>2008</Year>
<Month>06</Month>
<Day>30</Day>
</DateCreated>
<DateCompleted>
<Year>2008</Year>
<Month>08</Month>
<Day>05</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0306-4522</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>152</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2008</Year>
<Month>Mar</Month>
<Day>3</Day>
</PubDate>
</JournalIssue>
<Title>Neuroscience</Title>
<ISOAbbreviation>Neuroscience</ISOAbbreviation>
</Journal>
<ArticleTitle>Neuronal substrates of haptic shape encoding and matching: a functional magnetic resonance imaging study.</ArticleTitle>
<Pagination>
<MedlinePgn>29-39</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.neuroscience.2007.12.021</ELocationID>
<Abstract>
<AbstractText>We used functional magnetic resonance imaging to differentiate cerebral areas involved in two different dimensions of haptic shape perception: encoding and matching. For this purpose, healthy right-handed subjects were asked to compare pairs of complex 2D geometrical tactile shapes presented in a sequential two-alternative forced-choice task. Shape encoding involved a large sensorimotor network including the primary (SI) and secondary (SII) somatosensory cortex, the anterior part of the intraparietal sulcus (IPA) and of the supramarginal gyrus (SMG), regions previously associated with somatosensory shape perception. Activations were also observed in posterior parietal regions (aSPL), motor and premotor regions (primary motor cortex (MI), ventral premotor cortex, dorsal premotor cortex, supplementary motor area), as well as prefrontal areas (aPFC, VLPFC), parietal-occipital cortex (POC) and cerebellum. We propose that this distributed network reflects construction and maintenance of sensorimotor traces of exploration hand movements during complex shape encoding, and subsequent transformation of these traces into a more abstract shape representation using kinesthetic imagery. Moreover, haptic shape encoding was found to activate the left lateral occipital complex (LOC), thus corroborating the implication of this extrastriate visual area in multisensory shape representation, besides its contribution to visual imagery. Furthermore, left hemisphere predominance was shown during encoding, whereas right hemisphere predominance was associated with the matching process. Activations of SI, MI, PMd and aSPL, which were predominant in the left hemisphere during the encoding, were shifted to the right hemisphere during the matching. In addition, new activations emerged (right dorsolateral pre-frontal cortex, bilateral inferior parietal lobe, right SII) suggesting their specific involvement during 2D geometrical shape matching.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Miquée</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Neurobiologie Intégrative et Adaptative (UMR 6149), Aix-Marseille Université/Université de Provence/CNRS, Centre St-Charles, Pôle 3C, case B, 3, Place Victor Hugo, 13331 Marseille 03, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xerri</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rainville</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Anton</LastName>
<ForeName>J L</ForeName>
<Initials>JL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nazarian</LastName>
<ForeName>B</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Roth</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zennou-Azogui</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Neuroscience</MedlineTA>
<NlmUniqueID>7605074</NlmUniqueID>
<ISSNLinking>0306-4522</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D001931">Brain Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005556">Form Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007091">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008279">Magnetic Resonance Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009474">Neurons</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010364">Pattern Recognition, Visual</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010775">Photic Stimulation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>10</Month>
<Day>7</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2007</Year>
<Month>12</Month>
<Day>5</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>12</Month>
<Day>6</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S0306-4522(07)01576-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.neuroscience.2007.12.021</ArticleId>
<ArticleId IdType="pubmed">18255234</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001518 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001518 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18255234
   |texte=   Neuronal substrates of haptic shape encoding and matching: a functional magnetic resonance imaging study.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:18255234" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024