Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data.

Identifieur interne : 001504 ( PubMed/Corpus ); précédent : 001503; suivant : 001505

Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data.

Auteurs : Gopikrishna Deshpande ; Xiaoping Hu ; Randall Stilla ; K. Sathian

Source :

RBID : pubmed:18329290

English descriptors

Abstract

Although it is accepted that visual cortical areas are recruited during touch, it remains uncertain whether this depends on top-down inputs mediating visual imagery or engagement of modality-independent representations by bottom-up somatosensory inputs. Here we addressed this by examining effective connectivity in humans during haptic perception of shape and texture with the right hand. Multivariate Granger causality analysis of functional magnetic resonance imaging (fMRI) data was conducted on a network of regions that were shape- or texture-selective. A novel network reduction procedure was employed to eliminate connections that did not contribute significantly to overall connectivity. Effective connectivity during haptic perception was found to involve a variety of interactions between areas generally regarded as somatosensory, multisensory, visual and motor, emphasizing flexible cooperation between different brain regions rather than rigid functional separation. The left postcentral sulcus (PCS), left precentral gyrus and right posterior insula were important sources of connections in the network. Bottom-up somatosensory inputs from the left PCS and right posterior insula fed into visual cortical areas, both the shape-selective right lateral occipital complex (LOC) and the texture-selective right medial occipital cortex (probable V2). In addition, top-down inputs from left postero-supero-medial parietal cortex influenced the right LOC. Thus, there is strong evidence for the bottom-up somatosensory inputs predicted by models of visual cortical areas as multisensory processors and suggestive evidence for top-down parietal (but not prefrontal) inputs that could mediate visual imagery. This is consistent with modality-independent representations accessible through both bottom-up sensory inputs and top-down processes such as visual imagery.

DOI: 10.1016/j.neuroimage.2008.01.044
PubMed: 18329290

Links to Exploration step

pubmed:18329290

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data.</title>
<author>
<name sortKey="Deshpande, Gopikrishna" sort="Deshpande, Gopikrishna" uniqKey="Deshpande G" first="Gopikrishna" last="Deshpande">Gopikrishna Deshpande</name>
<affiliation>
<nlm:affiliation>Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA 30322, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Xiaoping" sort="Hu, Xiaoping" uniqKey="Hu X" first="Xiaoping" last="Hu">Xiaoping Hu</name>
</author>
<author>
<name sortKey="Stilla, Randall" sort="Stilla, Randall" uniqKey="Stilla R" first="Randall" last="Stilla">Randall Stilla</name>
</author>
<author>
<name sortKey="Sathian, K" sort="Sathian, K" uniqKey="Sathian K" first="K" last="Sathian">K. Sathian</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="doi">10.1016/j.neuroimage.2008.01.044</idno>
<idno type="RBID">pubmed:18329290</idno>
<idno type="pmid">18329290</idno>
<idno type="wicri:Area/PubMed/Corpus">001504</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data.</title>
<author>
<name sortKey="Deshpande, Gopikrishna" sort="Deshpande, Gopikrishna" uniqKey="Deshpande G" first="Gopikrishna" last="Deshpande">Gopikrishna Deshpande</name>
<affiliation>
<nlm:affiliation>Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA 30322, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Xiaoping" sort="Hu, Xiaoping" uniqKey="Hu X" first="Xiaoping" last="Hu">Xiaoping Hu</name>
</author>
<author>
<name sortKey="Stilla, Randall" sort="Stilla, Randall" uniqKey="Stilla R" first="Randall" last="Stilla">Randall Stilla</name>
</author>
<author>
<name sortKey="Sathian, K" sort="Sathian, K" uniqKey="Sathian K" first="K" last="Sathian">K. Sathian</name>
</author>
</analytic>
<series>
<title level="j">NeuroImage</title>
<idno type="ISSN">1053-8119</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Algorithms</term>
<term>Female</term>
<term>Form Perception (physiology)</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Magnetic Resonance Imaging (methods)</term>
<term>Male</term>
<term>Nerve Net (physiology)</term>
<term>Parietal Lobe (physiology)</term>
<term>Perception (physiology)</term>
<term>Prefrontal Cortex (physiology)</term>
<term>Psychomotor Performance (physiology)</term>
<term>Recruitment, Neurophysiological (physiology)</term>
<term>Somatosensory Cortex (physiology)</term>
<term>Touch (physiology)</term>
<term>Visual Cortex (physiology)</term>
<term>Visual Perception (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Magnetic Resonance Imaging</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Form Perception</term>
<term>Nerve Net</term>
<term>Parietal Lobe</term>
<term>Perception</term>
<term>Prefrontal Cortex</term>
<term>Psychomotor Performance</term>
<term>Recruitment, Neurophysiological</term>
<term>Somatosensory Cortex</term>
<term>Touch</term>
<term>Visual Cortex</term>
<term>Visual Perception</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Algorithms</term>
<term>Female</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Male</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Although it is accepted that visual cortical areas are recruited during touch, it remains uncertain whether this depends on top-down inputs mediating visual imagery or engagement of modality-independent representations by bottom-up somatosensory inputs. Here we addressed this by examining effective connectivity in humans during haptic perception of shape and texture with the right hand. Multivariate Granger causality analysis of functional magnetic resonance imaging (fMRI) data was conducted on a network of regions that were shape- or texture-selective. A novel network reduction procedure was employed to eliminate connections that did not contribute significantly to overall connectivity. Effective connectivity during haptic perception was found to involve a variety of interactions between areas generally regarded as somatosensory, multisensory, visual and motor, emphasizing flexible cooperation between different brain regions rather than rigid functional separation. The left postcentral sulcus (PCS), left precentral gyrus and right posterior insula were important sources of connections in the network. Bottom-up somatosensory inputs from the left PCS and right posterior insula fed into visual cortical areas, both the shape-selective right lateral occipital complex (LOC) and the texture-selective right medial occipital cortex (probable V2). In addition, top-down inputs from left postero-supero-medial parietal cortex influenced the right LOC. Thus, there is strong evidence for the bottom-up somatosensory inputs predicted by models of visual cortical areas as multisensory processors and suggestive evidence for top-down parietal (but not prefrontal) inputs that could mediate visual imagery. This is consistent with modality-independent representations accessible through both bottom-up sensory inputs and top-down processes such as visual imagery.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">18329290</PMID>
<DateCreated>
<Year>2008</Year>
<Month>04</Month>
<Day>14</Day>
</DateCreated>
<DateCompleted>
<Year>2008</Year>
<Month>06</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>09</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1053-8119</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>40</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2008</Year>
<Month>May</Month>
<Day>1</Day>
</PubDate>
</JournalIssue>
<Title>NeuroImage</Title>
<ISOAbbreviation>Neuroimage</ISOAbbreviation>
</Journal>
<ArticleTitle>Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data.</ArticleTitle>
<Pagination>
<MedlinePgn>1807-14</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.neuroimage.2008.01.044</ELocationID>
<Abstract>
<AbstractText>Although it is accepted that visual cortical areas are recruited during touch, it remains uncertain whether this depends on top-down inputs mediating visual imagery or engagement of modality-independent representations by bottom-up somatosensory inputs. Here we addressed this by examining effective connectivity in humans during haptic perception of shape and texture with the right hand. Multivariate Granger causality analysis of functional magnetic resonance imaging (fMRI) data was conducted on a network of regions that were shape- or texture-selective. A novel network reduction procedure was employed to eliminate connections that did not contribute significantly to overall connectivity. Effective connectivity during haptic perception was found to involve a variety of interactions between areas generally regarded as somatosensory, multisensory, visual and motor, emphasizing flexible cooperation between different brain regions rather than rigid functional separation. The left postcentral sulcus (PCS), left precentral gyrus and right posterior insula were important sources of connections in the network. Bottom-up somatosensory inputs from the left PCS and right posterior insula fed into visual cortical areas, both the shape-selective right lateral occipital complex (LOC) and the texture-selective right medial occipital cortex (probable V2). In addition, top-down inputs from left postero-supero-medial parietal cortex influenced the right LOC. Thus, there is strong evidence for the bottom-up somatosensory inputs predicted by models of visual cortical areas as multisensory processors and suggestive evidence for top-down parietal (but not prefrontal) inputs that could mediate visual imagery. This is consistent with modality-independent representations accessible through both bottom-up sensory inputs and top-down processes such as visual imagery.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Deshpande</LastName>
<ForeName>Gopikrishna</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA 30322, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Xiaoping</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stilla</LastName>
<ForeName>Randall</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sathian</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>K24 EY017332</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K24 EY017332-02</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K24 EY17332</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB002009</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB002009</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB002009-12</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY012440</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY012440-07</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY12440</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>02</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Neuroimage</MedlineTA>
<NlmUniqueID>9215515</NlmUniqueID>
<ISSNLinking>1053-8119</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2000 Mar;11(3):188-202</RefSource>
<PMID Version="1">10694461</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2000 Jun;11(6 Pt 1):684-96</RefSource>
<PMID Version="1">10860796</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2000 Jul;84(1):558-69</RefSource>
<PMID Version="1">10899227</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Cybern. 2000 Jul;83(1):35-45</RefSource>
<PMID Version="1">10933236</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2001 Mar;4(3):324-30</RefSource>
<PMID Version="1">11224551</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Optom Vis Sci. 2001 May;78(5):276-81</RefSource>
<PMID Version="1">11384004</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2001 Aug 8;12(11):2483-6</RefSource>
<PMID Version="1">11496134</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2001 Sep;14(3):617-31</RefSource>
<PMID Version="1">11506535</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Cybern. 2001 Aug;85(2):145-57</RefSource>
<PMID Version="1">11508777</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2002;40(10):1706-14</RefSource>
<PMID Version="1">11992658</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2002 Nov;12(11):1202-12</RefSource>
<PMID Version="1">12379608</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15182-7</RefSource>
<PMID Version="1">12407177</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Cogn Brain Res. 2003 Jun;17(1):14-25</RefSource>
<PMID Version="1">12763188</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 2003 May 30;125(1-2):195-207</RefSource>
<PMID Version="1">12763246</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Psychophysiol. 2003 Oct;50(1-2):41-9</RefSource>
<PMID Version="1">14511835</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2004 Apr;21(4):1639-51</RefSource>
<PMID Version="1">15050587</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2004 Aug 6;305(5685):875-7</RefSource>
<PMID Version="1">15232072</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2004 Sep;51(9):1501-10</RefSource>
<PMID Version="1">15376498</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cogn Affect Behav Neurosci. 2004 Jun;4(2):251-9</RefSource>
<PMID Version="1">15460931</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2004 Nov;14(11):1256-65</RefSource>
<PMID Version="1">15192010</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1995 May;33(5):636-47</RefSource>
<PMID Version="1">7596267</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8135-9</RefSource>
<PMID Version="1">7667258</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1997 May;77(5):2268-92</RefSource>
<PMID Version="1">9163357</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 1997 Dec 22;8(18):3877-81</RefSource>
<PMID Version="1">9462459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Electroencephalogr Clin Neurophysiol. 1998 Apr;106(4):283-96</RefSource>
<PMID Version="1">9741757</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 1998 Nov;8(4):360-9</RefSource>
<PMID Version="1">9811554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 1999 Jul;10(1):63-83</RefSource>
<PMID Version="1">10385582</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1999 Oct 7;401(6753):587-90</RefSource>
<PMID Version="1">10524625</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 1):050902</RefSource>
<PMID Version="1">15600583</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2005 Mar;25(1):230-42</RefSource>
<PMID Version="1">15734358</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2005 Apr 1;25(2):462-70</RefSource>
<PMID Version="1">15784425</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Anat. 2005 Jul;207(1):3-17</RefSource>
<PMID Version="1">16011542</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2005 Nov 9;25(45):10564-73</RefSource>
<PMID Version="1">16280594</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2006 Feb;16(2):268-79</RefSource>
<PMID Version="1">15888606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2006 Feb;16(2):254-67</RefSource>
<PMID Version="1">15888607</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2007;2(9):e890</RefSource>
<PMID Version="1">17849019</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Oct 10;27(41):11091-102</RefSource>
<PMID Version="1">17928451</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2008 Oct;29(10):1123-38</RefSource>
<PMID Version="1">17924535</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2009 Apr;30(4):1361-73</RefSource>
<PMID Version="1">18537116</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Imaging. 2006 Feb;24(2):181-5</RefSource>
<PMID Version="1">16455407</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2007 Feb 1;45(3):476-83</RefSource>
<PMID Version="1">16616940</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2007 Jan 18;53(2):279-92</RefSource>
<PMID Version="1">17224408</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2007 Aug;17(8):1800-11</RefSource>
<PMID Version="1">17032710</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005556">Form Perception</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007091">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008279">Magnetic Resonance Imaging</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009415">Nerve Net</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010296">Parietal Lobe</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010465">Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017397">Prefrontal Cortex</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011597">Psychomotor Performance</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011999">Recruitment, Neurophysiological</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013003">Somatosensory Cortex</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014110">Touch</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014793">Visual Cortex</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014796">Visual Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS48522</OtherID>
<OtherID Source="NLM">PMC2483676</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>10</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2008</Year>
<Month>1</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>1</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2008</Year>
<Month>2</Month>
<Day>9</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>3</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S1053-8119(08)00084-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.neuroimage.2008.01.044</ArticleId>
<ArticleId IdType="pubmed">18329290</ArticleId>
<ArticleId IdType="pmc">PMC2483676</ArticleId>
<ArticleId IdType="mid">NIHMS48522</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001504 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001504 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18329290
   |texte=   Effective connectivity during haptic perception: a study using Granger causality analysis of functional magnetic resonance imaging data.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:18329290" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024