Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tactile flow explains haptic counterparts of common visual illusions.

Identifieur interne : 001466 ( PubMed/Corpus ); précédent : 001465; suivant : 001467

Tactile flow explains haptic counterparts of common visual illusions.

Auteurs : Antonio Bicchi ; Enzo P. Scilingo ; Emiliano Ricciardi ; Pietro Pietrini

Source :

RBID : pubmed:18394519

English descriptors

Abstract

Interaction with the external world requires the ability to perceive dynamic changes in complex sensorial input and react promptly. Here, we show that perception of dynamic stimuli in the visual and tactile sensory modalities share fundamental psychophysical aspects that can be explained by similar computational models. In vision, optic flow provides information on relative motion between the individual and the content of percept. For instance, radial patterns of optic flow are used to estimate time before contact with an approaching object [J.J. Gibson, What gives rise to the perception of motion? Psychol. Rev. 75 (1968) 335-346]. Similarly, in the tactile modality, radial patterns of stimuli provide information on softness of probed objects [A. Bicchi, D. De Rossi, E.P. Scilingo, The role of the contact area spread rate (CASR) in haptic discrimination of softness, IEEE Trans. Rob. Autom. 16 (2000) 496-504]. Optic flow is also invoked to explain several visual illusions, including the well-known "barber-pole" effect [N. Fisher, J.M. Zanker, The directional tuning of the barber-pole illusion, Perception 30 (2001) 1321-1336]. Here, we introduce a computational model of tactile flow, which is intimately related to existing models for the visual counterpart. The model accounts for psychophysical aspects of dynamic tactile perception and predicts illusory phenomena in the tactile domain, analogous to the barber-pole effect. When subjects touched translating pads with differently oriented gratings, they perceived a direction of motion that was significantly biased towards the orientation of the gratings. Therefore, these findings indicate that visual and tactile flow share similarities at the psychophysical and computational level and may be intended for similar perceptive goals. Results of this analysis have impact on the engineering of better haptic and multimodal interfaces for human-computer interaction.

DOI: 10.1016/j.brainresbull.2008.01.011
PubMed: 18394519

Links to Exploration step

pubmed:18394519

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tactile flow explains haptic counterparts of common visual illusions.</title>
<author>
<name sortKey="Bicchi, Antonio" sort="Bicchi, Antonio" uniqKey="Bicchi A" first="Antonio" last="Bicchi">Antonio Bicchi</name>
<affiliation>
<nlm:affiliation>Interdepartmental Research Center "E. Piaggio", University of Pisa, Via Diotisalvi, 2-56126 Pisa, Italy. bicchi@ing.unipi.it</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scilingo, Enzo P" sort="Scilingo, Enzo P" uniqKey="Scilingo E" first="Enzo P" last="Scilingo">Enzo P. Scilingo</name>
</author>
<author>
<name sortKey="Ricciardi, Emiliano" sort="Ricciardi, Emiliano" uniqKey="Ricciardi E" first="Emiliano" last="Ricciardi">Emiliano Ricciardi</name>
</author>
<author>
<name sortKey="Pietrini, Pietro" sort="Pietrini, Pietro" uniqKey="Pietrini P" first="Pietro" last="Pietrini">Pietro Pietrini</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="doi">10.1016/j.brainresbull.2008.01.011</idno>
<idno type="RBID">pubmed:18394519</idno>
<idno type="pmid">18394519</idno>
<idno type="wicri:Area/PubMed/Corpus">001466</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tactile flow explains haptic counterparts of common visual illusions.</title>
<author>
<name sortKey="Bicchi, Antonio" sort="Bicchi, Antonio" uniqKey="Bicchi A" first="Antonio" last="Bicchi">Antonio Bicchi</name>
<affiliation>
<nlm:affiliation>Interdepartmental Research Center "E. Piaggio", University of Pisa, Via Diotisalvi, 2-56126 Pisa, Italy. bicchi@ing.unipi.it</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Scilingo, Enzo P" sort="Scilingo, Enzo P" uniqKey="Scilingo E" first="Enzo P" last="Scilingo">Enzo P. Scilingo</name>
</author>
<author>
<name sortKey="Ricciardi, Emiliano" sort="Ricciardi, Emiliano" uniqKey="Ricciardi E" first="Emiliano" last="Ricciardi">Emiliano Ricciardi</name>
</author>
<author>
<name sortKey="Pietrini, Pietro" sort="Pietrini, Pietro" uniqKey="Pietrini P" first="Pietro" last="Pietrini">Pietro Pietrini</name>
</author>
</analytic>
<series>
<title level="j">Brain research bulletin</title>
<idno type="ISSN">0361-9230</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Afferent Pathways (physiology)</term>
<term>Analysis of Variance</term>
<term>Bias (Epidemiology)</term>
<term>Computer Simulation</term>
<term>Female</term>
<term>Fingers (innervation)</term>
<term>Fingers (physiology)</term>
<term>Humans</term>
<term>Illusions (physiology)</term>
<term>Male</term>
<term>Mechanoreceptors (physiology)</term>
<term>Models, Neurological</term>
<term>Motion Perception (physiology)</term>
<term>Orientation (physiology)</term>
<term>Physical Stimulation</term>
<term>Psychomotor Performance (physiology)</term>
<term>Psychophysics (methods)</term>
<term>Somatosensory Cortex (physiology)</term>
<term>Touch (physiology)</term>
<term>Visual Cortex (physiology)</term>
<term>Visual Pathways (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="innervation" xml:lang="en">
<term>Fingers</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Psychophysics</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Afferent Pathways</term>
<term>Fingers</term>
<term>Illusions</term>
<term>Mechanoreceptors</term>
<term>Motion Perception</term>
<term>Orientation</term>
<term>Psychomotor Performance</term>
<term>Somatosensory Cortex</term>
<term>Touch</term>
<term>Visual Cortex</term>
<term>Visual Pathways</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Analysis of Variance</term>
<term>Bias (Epidemiology)</term>
<term>Computer Simulation</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Models, Neurological</term>
<term>Physical Stimulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Interaction with the external world requires the ability to perceive dynamic changes in complex sensorial input and react promptly. Here, we show that perception of dynamic stimuli in the visual and tactile sensory modalities share fundamental psychophysical aspects that can be explained by similar computational models. In vision, optic flow provides information on relative motion between the individual and the content of percept. For instance, radial patterns of optic flow are used to estimate time before contact with an approaching object [J.J. Gibson, What gives rise to the perception of motion? Psychol. Rev. 75 (1968) 335-346]. Similarly, in the tactile modality, radial patterns of stimuli provide information on softness of probed objects [A. Bicchi, D. De Rossi, E.P. Scilingo, The role of the contact area spread rate (CASR) in haptic discrimination of softness, IEEE Trans. Rob. Autom. 16 (2000) 496-504]. Optic flow is also invoked to explain several visual illusions, including the well-known "barber-pole" effect [N. Fisher, J.M. Zanker, The directional tuning of the barber-pole illusion, Perception 30 (2001) 1321-1336]. Here, we introduce a computational model of tactile flow, which is intimately related to existing models for the visual counterpart. The model accounts for psychophysical aspects of dynamic tactile perception and predicts illusory phenomena in the tactile domain, analogous to the barber-pole effect. When subjects touched translating pads with differently oriented gratings, they perceived a direction of motion that was significantly biased towards the orientation of the gratings. Therefore, these findings indicate that visual and tactile flow share similarities at the psychophysical and computational level and may be intended for similar perceptive goals. Results of this analysis have impact on the engineering of better haptic and multimodal interfaces for human-computer interaction.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">18394519</PMID>
<DateCreated>
<Year>2008</Year>
<Month>04</Month>
<Day>08</Day>
</DateCreated>
<DateCompleted>
<Year>2008</Year>
<Month>07</Month>
<Day>10</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0361-9230</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>75</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2008</Year>
<Month>Apr</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Brain research bulletin</Title>
<ISOAbbreviation>Brain Res. Bull.</ISOAbbreviation>
</Journal>
<ArticleTitle>Tactile flow explains haptic counterparts of common visual illusions.</ArticleTitle>
<Pagination>
<MedlinePgn>737-41</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.brainresbull.2008.01.011</ELocationID>
<Abstract>
<AbstractText>Interaction with the external world requires the ability to perceive dynamic changes in complex sensorial input and react promptly. Here, we show that perception of dynamic stimuli in the visual and tactile sensory modalities share fundamental psychophysical aspects that can be explained by similar computational models. In vision, optic flow provides information on relative motion between the individual and the content of percept. For instance, radial patterns of optic flow are used to estimate time before contact with an approaching object [J.J. Gibson, What gives rise to the perception of motion? Psychol. Rev. 75 (1968) 335-346]. Similarly, in the tactile modality, radial patterns of stimuli provide information on softness of probed objects [A. Bicchi, D. De Rossi, E.P. Scilingo, The role of the contact area spread rate (CASR) in haptic discrimination of softness, IEEE Trans. Rob. Autom. 16 (2000) 496-504]. Optic flow is also invoked to explain several visual illusions, including the well-known "barber-pole" effect [N. Fisher, J.M. Zanker, The directional tuning of the barber-pole illusion, Perception 30 (2001) 1321-1336]. Here, we introduce a computational model of tactile flow, which is intimately related to existing models for the visual counterpart. The model accounts for psychophysical aspects of dynamic tactile perception and predicts illusory phenomena in the tactile domain, analogous to the barber-pole effect. When subjects touched translating pads with differently oriented gratings, they perceived a direction of motion that was significantly biased towards the orientation of the gratings. Therefore, these findings indicate that visual and tactile flow share similarities at the psychophysical and computational level and may be intended for similar perceptive goals. Results of this analysis have impact on the engineering of better haptic and multimodal interfaces for human-computer interaction.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bicchi</LastName>
<ForeName>Antonio</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Interdepartmental Research Center "E. Piaggio", University of Pisa, Via Diotisalvi, 2-56126 Pisa, Italy. bicchi@ing.unipi.it</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scilingo</LastName>
<ForeName>Enzo P</ForeName>
<Initials>EP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ricciardi</LastName>
<ForeName>Emiliano</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pietrini</LastName>
<ForeName>Pietro</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>02</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Brain Res Bull</MedlineTA>
<NlmUniqueID>7605818</NlmUniqueID>
<ISSNLinking>0361-9230</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000344">Afferent Pathways</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000704">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015982">Bias (Epidemiology)</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005385">Fingers</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000294">innervation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007088">Illusions</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008465">Mechanoreceptors</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008959">Models, Neurological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009039">Motion Perception</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009949">Orientation</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010812">Physical Stimulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011597">Psychomotor Performance</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011601">Psychophysics</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013003">Somatosensory Cortex</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014110">Touch</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014793">Visual Cortex</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014795">Visual Pathways</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2008</Year>
<Month>2</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S0361-9230(08)00011-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.brainresbull.2008.01.011</ArticleId>
<ArticleId IdType="pubmed">18394519</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001466 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001466 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18394519
   |texte=   Tactile flow explains haptic counterparts of common visual illusions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:18394519" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024