Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Calibrating grasp size and reach distance: interactions reveal integral organization of reaching-to-grasp movements.

Identifieur interne : 001442 ( PubMed/Corpus ); précédent : 001441; suivant : 001443

Calibrating grasp size and reach distance: interactions reveal integral organization of reaching-to-grasp movements.

Auteurs : Rachel Coats ; Geoffrey P. Bingham ; Mark Mon-Williams

Source :

RBID : pubmed:18493753

English descriptors

Abstract

Feedback is a central feature of neural systems and of crucial importance to human behaviour as shown in goal directed actions such as reaching-to-grasp. One important source of feedback in reach-to-grasp behaviour arises from the haptic information obtained after grasping an object. We manipulated the felt distance and/or size of a visually constant object to explore the role of haptic information in the calibration of reaching and grasping. Crucially, our design explored post-adaptation effects rather than the previously documented role of haptic information in movement organisation. A post-adaptation reach-to-grasp task showed: (1) distorted haptic feedback caused recalibration; (2) reach distance and grasp size could be calibrated separately but, if calibrated simultaneously, then (3) recalibration was greater when distance and size changed in a consistent (e.g. reaching for a larger object at a greater distance) rather than an inconsistent (e.g. a smaller object at a greater distance) fashion. These interactions reveal the integral nature of reach-to-grasp organization, that is, that reaching and grasping are integrated components of a single action system.

DOI: 10.1007/s00221-008-1418-5
PubMed: 18493753

Links to Exploration step

pubmed:18493753

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Calibrating grasp size and reach distance: interactions reveal integral organization of reaching-to-grasp movements.</title>
<author>
<name sortKey="Coats, Rachel" sort="Coats, Rachel" uniqKey="Coats R" first="Rachel" last="Coats">Rachel Coats</name>
<affiliation>
<nlm:affiliation>School of Psychology, University of Aberdeen, AB242UB Aberdeen, Scotland, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bingham, Geoffrey P" sort="Bingham, Geoffrey P" uniqKey="Bingham G" first="Geoffrey P" last="Bingham">Geoffrey P. Bingham</name>
</author>
<author>
<name sortKey="Mon Williams, Mark" sort="Mon Williams, Mark" uniqKey="Mon Williams M" first="Mark" last="Mon-Williams">Mark Mon-Williams</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="doi">10.1007/s00221-008-1418-5</idno>
<idno type="RBID">pubmed:18493753</idno>
<idno type="pmid">18493753</idno>
<idno type="wicri:Area/PubMed/Corpus">001442</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Calibrating grasp size and reach distance: interactions reveal integral organization of reaching-to-grasp movements.</title>
<author>
<name sortKey="Coats, Rachel" sort="Coats, Rachel" uniqKey="Coats R" first="Rachel" last="Coats">Rachel Coats</name>
<affiliation>
<nlm:affiliation>School of Psychology, University of Aberdeen, AB242UB Aberdeen, Scotland, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bingham, Geoffrey P" sort="Bingham, Geoffrey P" uniqKey="Bingham G" first="Geoffrey P" last="Bingham">Geoffrey P. Bingham</name>
</author>
<author>
<name sortKey="Mon Williams, Mark" sort="Mon Williams, Mark" uniqKey="Mon Williams M" first="Mark" last="Mon-Williams">Mark Mon-Williams</name>
</author>
</analytic>
<series>
<title level="j">Experimental brain research</title>
<idno type="eISSN">1432-1106</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Calibration</term>
<term>Hand Strength (physiology)</term>
<term>Humans</term>
<term>Movement (physiology)</term>
<term>Photic Stimulation (methods)</term>
<term>Psychomotor Performance (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Photic Stimulation</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Hand Strength</term>
<term>Movement</term>
<term>Psychomotor Performance</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Calibration</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Feedback is a central feature of neural systems and of crucial importance to human behaviour as shown in goal directed actions such as reaching-to-grasp. One important source of feedback in reach-to-grasp behaviour arises from the haptic information obtained after grasping an object. We manipulated the felt distance and/or size of a visually constant object to explore the role of haptic information in the calibration of reaching and grasping. Crucially, our design explored post-adaptation effects rather than the previously documented role of haptic information in movement organisation. A post-adaptation reach-to-grasp task showed: (1) distorted haptic feedback caused recalibration; (2) reach distance and grasp size could be calibrated separately but, if calibrated simultaneously, then (3) recalibration was greater when distance and size changed in a consistent (e.g. reaching for a larger object at a greater distance) rather than an inconsistent (e.g. a smaller object at a greater distance) fashion. These interactions reveal the integral nature of reach-to-grasp organization, that is, that reaching and grasping are integrated components of a single action system.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">18493753</PMID>
<DateCreated>
<Year>2008</Year>
<Month>07</Month>
<Day>28</Day>
</DateCreated>
<DateCompleted>
<Year>2008</Year>
<Month>12</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>12</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1106</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>189</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2008</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Experimental brain research</Title>
<ISOAbbreviation>Exp Brain Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Calibrating grasp size and reach distance: interactions reveal integral organization of reaching-to-grasp movements.</ArticleTitle>
<Pagination>
<MedlinePgn>211-20</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00221-008-1418-5</ELocationID>
<Abstract>
<AbstractText>Feedback is a central feature of neural systems and of crucial importance to human behaviour as shown in goal directed actions such as reaching-to-grasp. One important source of feedback in reach-to-grasp behaviour arises from the haptic information obtained after grasping an object. We manipulated the felt distance and/or size of a visually constant object to explore the role of haptic information in the calibration of reaching and grasping. Crucially, our design explored post-adaptation effects rather than the previously documented role of haptic information in movement organisation. A post-adaptation reach-to-grasp task showed: (1) distorted haptic feedback caused recalibration; (2) reach distance and grasp size could be calibrated separately but, if calibrated simultaneously, then (3) recalibration was greater when distance and size changed in a consistent (e.g. reaching for a larger object at a greater distance) rather than an inconsistent (e.g. a smaller object at a greater distance) fashion. These interactions reveal the integral nature of reach-to-grasp organization, that is, that reaching and grasping are integrated components of a single action system.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Coats</LastName>
<ForeName>Rachel</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>School of Psychology, University of Aberdeen, AB242UB Aberdeen, Scotland, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bingham</LastName>
<ForeName>Geoffrey P</ForeName>
<Initials>GP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mon-Williams</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>05</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Exp Brain Res</MedlineTA>
<NlmUniqueID>0043312</NlmUniqueID>
<ISSNLinking>0014-4819</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002138">Calibration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018737">Hand Strength</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009068">Movement</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010775">Photic Stimulation</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011597">Psychomotor Performance</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>2</Month>
<Day>5</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>4</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2008</Year>
<Month>5</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00221-008-1418-5</ArticleId>
<ArticleId IdType="pubmed">18493753</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001442 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001442 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18493753
   |texte=   Calibrating grasp size and reach distance: interactions reveal integral organization of reaching-to-grasp movements.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:18493753" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024