Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation.

Identifieur interne : 001346 ( PubMed/Corpus ); précédent : 001345; suivant : 001347

Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation.

Auteurs : Grand Roman Joldes ; Adam Wittek ; Karol Miller

Source :

RBID : pubmed:19152791

English descriptors

Abstract

Real time computation of soft tissue deformation is important for the use of augmented reality devices and for providing haptic feedback during operation or surgeon training. This requires algorithms that are fast, accurate and can handle material nonlinearities and large deformations. A set of such algorithms is presented in this paper, starting with the finite element formulation and the integration scheme used and addressing common problems such as hourglass control and locking. The computation examples presented prove that by using these algorithms, real time computations become possible without sacrificing the accuracy of the results. For a brain model having more than 7,000 degrees of freedom, we computed the reaction forces due to indentation with frequency of around 1,000 Hz using a standard dual core PC. Similarly, we conducted simulation of brain shift using a model with more than 50,000 degrees of freedom in less than one minute. The speed benefits of our models result from combining the Total Lagrangian formulation with explicit time integration and low order finite elements.

DOI: 10.1016/j.media.2008.12.001
PubMed: 19152791

Links to Exploration step

pubmed:19152791

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation.</title>
<author>
<name sortKey="Joldes, Grand Roman" sort="Joldes, Grand Roman" uniqKey="Joldes G" first="Grand Roman" last="Joldes">Grand Roman Joldes</name>
<affiliation>
<nlm:affiliation>Intelligent Systems for Medicine Laboratory, School of Mechanical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley/Perth, WA 6009, Australia. grandj@mech.uwa.edu.au</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wittek, Adam" sort="Wittek, Adam" uniqKey="Wittek A" first="Adam" last="Wittek">Adam Wittek</name>
</author>
<author>
<name sortKey="Miller, Karol" sort="Miller, Karol" uniqKey="Miller K" first="Karol" last="Miller">Karol Miller</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="doi">10.1016/j.media.2008.12.001</idno>
<idno type="RBID">pubmed:19152791</idno>
<idno type="pmid">19152791</idno>
<idno type="wicri:Area/PubMed/Corpus">001346</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation.</title>
<author>
<name sortKey="Joldes, Grand Roman" sort="Joldes, Grand Roman" uniqKey="Joldes G" first="Grand Roman" last="Joldes">Grand Roman Joldes</name>
<affiliation>
<nlm:affiliation>Intelligent Systems for Medicine Laboratory, School of Mechanical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley/Perth, WA 6009, Australia. grandj@mech.uwa.edu.au</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wittek, Adam" sort="Wittek, Adam" uniqKey="Wittek A" first="Adam" last="Wittek">Adam Wittek</name>
</author>
<author>
<name sortKey="Miller, Karol" sort="Miller, Karol" uniqKey="Miller K" first="Karol" last="Miller">Karol Miller</name>
</author>
</analytic>
<series>
<title level="j">Medical image analysis</title>
<idno type="eISSN">1361-8423</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Animals</term>
<term>Computer Simulation</term>
<term>Connective Tissue (anatomy & histology)</term>
<term>Connective Tissue (physiology)</term>
<term>Elastic Modulus (physiology)</term>
<term>Finite Element Analysis</term>
<term>Humans</term>
<term>Image Interpretation, Computer-Assisted (methods)</term>
<term>Models, Anatomic</term>
<term>Models, Biological</term>
<term>Sensitivity and Specificity</term>
<term>Surgery, Computer-Assisted (methods)</term>
<term>Viscosity</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Connective Tissue</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Image Interpretation, Computer-Assisted</term>
<term>Surgery, Computer-Assisted</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Connective Tissue</term>
<term>Elastic Modulus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Animals</term>
<term>Computer Simulation</term>
<term>Finite Element Analysis</term>
<term>Humans</term>
<term>Models, Anatomic</term>
<term>Models, Biological</term>
<term>Sensitivity and Specificity</term>
<term>Viscosity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Real time computation of soft tissue deformation is important for the use of augmented reality devices and for providing haptic feedback during operation or surgeon training. This requires algorithms that are fast, accurate and can handle material nonlinearities and large deformations. A set of such algorithms is presented in this paper, starting with the finite element formulation and the integration scheme used and addressing common problems such as hourglass control and locking. The computation examples presented prove that by using these algorithms, real time computations become possible without sacrificing the accuracy of the results. For a brain model having more than 7,000 degrees of freedom, we computed the reaction forces due to indentation with frequency of around 1,000 Hz using a standard dual core PC. Similarly, we conducted simulation of brain shift using a model with more than 50,000 degrees of freedom in less than one minute. The speed benefits of our models result from combining the Total Lagrangian formulation with explicit time integration and low order finite elements.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">19152791</PMID>
<DateCreated>
<Year>2009</Year>
<Month>11</Month>
<Day>02</Day>
</DateCreated>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>09</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1361-8423</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2009</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Medical image analysis</Title>
<ISOAbbreviation>Med Image Anal</ISOAbbreviation>
</Journal>
<ArticleTitle>Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation.</ArticleTitle>
<Pagination>
<MedlinePgn>912-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.media.2008.12.001</ELocationID>
<Abstract>
<AbstractText>Real time computation of soft tissue deformation is important for the use of augmented reality devices and for providing haptic feedback during operation or surgeon training. This requires algorithms that are fast, accurate and can handle material nonlinearities and large deformations. A set of such algorithms is presented in this paper, starting with the finite element formulation and the integration scheme used and addressing common problems such as hourglass control and locking. The computation examples presented prove that by using these algorithms, real time computations become possible without sacrificing the accuracy of the results. For a brain model having more than 7,000 degrees of freedom, we computed the reaction forces due to indentation with frequency of around 1,000 Hz using a standard dual core PC. Similarly, we conducted simulation of brain shift using a model with more than 50,000 degrees of freedom in less than one minute. The speed benefits of our models result from combining the Total Lagrangian formulation with explicit time integration and low order finite elements.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Joldes</LastName>
<ForeName>Grand Roman</ForeName>
<Initials>GR</Initials>
<AffiliationInfo>
<Affiliation>Intelligent Systems for Medicine Laboratory, School of Mechanical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley/Perth, WA 6009, Australia. grandj@mech.uwa.edu.au</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wittek</LastName>
<ForeName>Adam</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Miller</LastName>
<ForeName>Karol</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1-RO3-CA126466-01A1</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R03 CA126466</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R03 CA126466-01A1</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>12</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Med Image Anal</MedlineTA>
<NlmUniqueID>9713490</NlmUniqueID>
<ISSNLinking>1361-8415</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2000 Aug;33(8):1005-9</RefSource>
<PMID Version="1">10828331</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2000 Nov;33(11):1369-76</RefSource>
<PMID Version="1">10940395</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2002 Apr;35(4):483-90</RefSource>
<PMID Version="1">11934417</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Image Anal. 2002 Dec;6(4):337-59</RefSource>
<PMID Version="1">12426109</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Image Anal. 2002 Dec;6(4):361-73</RefSource>
<PMID Version="1">12494947</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Crit Rev Biomed Eng. 2003;31(1-2):27-72</RefSource>
<PMID Version="1">14964351</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomech Model Mechanobiol. 2009 Feb;8(1):77-84</RefSource>
<PMID Version="1">18246376</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Biomed Eng. 2005 Jul;52(7):1167-79</RefSource>
<PMID Version="1">16041980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Med Imaging. 2005 Oct;24(10):1334-46</RefSource>
<PMID Version="1">16229419</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Comput Methods Biomech Biomed Engin. 2005 Aug;8(4):259-65</RefSource>
<PMID Version="1">16298848</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Image Comput Comput Assist Interv. 2005;8(Pt 2):583-90</RefSource>
<PMID Version="1">16686007</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosurg. 2007 Jan;106(1):164-9</RefSource>
<PMID Version="1">17236503</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 2007;40(4):919-29</RefSource>
<PMID Version="1">16678834</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biomech. 1997 Nov-Dec;30(11-12):1115-21</RefSource>
<PMID Version="1">9456379</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D000465">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003198">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003238">Connective Tissue</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000033">anatomy & histology</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055119">Elastic Modulus</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D020342">Finite Element Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007090">Image Interpretation, Computer-Assisted</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008953">Models, Anatomic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D008954">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012680">Sensitivity and Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D025321">Surgery, Computer-Assisted</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014783">Viscosity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS83641</OtherID>
<OtherID Source="NLM">PMC2783832</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>3</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2008</Year>
<Month>12</Month>
<Day>5</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>12</Month>
<Day>5</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2008</Year>
<Month>12</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>1</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>1</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">S1361-8415(08)00142-4</ArticleId>
<ArticleId IdType="doi">10.1016/j.media.2008.12.001</ArticleId>
<ArticleId IdType="pubmed">19152791</ArticleId>
<ArticleId IdType="pmc">PMC2783832</ArticleId>
<ArticleId IdType="mid">NIHMS83641</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001346 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001346 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19152791
   |texte=   Suite of finite element algorithms for accurate computation of soft tissue deformation for surgical simulation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:19152791" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024